CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 132

_id avocaad_2001_20
id avocaad_2001_20
authors Shen-Kai Tang
year 2001
title Toward a procedure of computer simulation in the restoration of historical architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the field of architectural design, “visualization¨ generally refers to some media, communicating and representing the idea of designers, such as ordinary drafts, maps, perspectives, photos and physical models, etc. (Rahman, 1992; Susan, 2000). The main reason why we adopt visualization is that it enables us to understand clearly and to control complicated procedures (Gombrich, 1990). Secondly, the way we get design knowledge is more from the published visualized images and less from personal experiences (Evans, 1989). Thus the importance of the representation of visualization is manifested.Due to the developments of computer technology in recent years, various computer aided design system are invented and used in a great amount, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and collaboration, etc. (Lawson, 1995; Liu, 1996). The conventional media are greatly replaced by computer media, and the visualization is further brought into the computerized stage. The procedure of visual impact analysis and assessment (VIAA), addressed by Rahman (1992), is renewed and amended for the intervention of computer (Liu, 2000). Based on the procedures above, a great amount of applied researches are proceeded. Therefore it is evident that the computer visualization is helpful to the discussion and evaluation during the design process (Hall, 1988, 1990, 1992, 1995, 1996, 1997, 1998; Liu, 1997; Sasada, 1986, 1988, 1990, 1993, 1997, 1998). In addition to the process of architectural design, the computer visualization is also applied to the subject of construction, which is repeatedly amended and corrected by the images of computer simulation (Liu, 2000). Potier (2000) probes into the contextual research and restoration of historical architecture by the technology of computer simulation before the practical restoration is constructed. In this way he established a communicative mode among archeologists, architects via computer media.In the research of restoration and preservation of historical architecture in Taiwan, many scholars have been devoted into the studies of historical contextual criticism (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000). Clues that accompany the historical contextual criticism (such as oral information, writings, photographs, pictures, etc.) help to explore the construction and the procedure of restoration (Hung, 1995), and serve as an aid to the studies of the usage and durability of the materials in the restoration of historical architecture (Dasser, 1990; Wang, 1998). Many clues are lost, because historical architecture is often age-old (Hung, 1995). Under the circumstance, restoration of historical architecture can only be proceeded by restricted pictures, written data and oral information (Shi, 1989). Therefore, computer simulation is employed by scholars to simulate the condition of historical architecture with restricted information after restoration (Potier, 2000). Yet this is only the early stage of computer-aid restoration. The focus of the paper aims at exploring that whether visual simulation of computer can help to investigate the practice of restoration and the estimation and evaluation after restoration.By exploring the restoration of historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example), this study aims to establish a complete work on computer visualization, including the concept of restoration, the practice of restoration, and the estimation and evaluation of restoration.This research is to simulate the process of restoration by computer simulation based on visualized media (restricted pictures, restricted written data and restricted oral information) and the specialized experience of historical architects (Potier, 2000). During the process of practicing, communicates with craftsmen repeatedly with some simulated alternatives, and makes the result as the foundation of evaluating and adjusting the simulating process and outcome. In this way we address a suitable and complete process of computer visualization for historical architecture.The significance of this paper is that we are able to control every detail more exactly, and then prevent possible problems during the process of restoration of historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
doi https://doi.org/10.52842/conf.acadia.1994.039
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id 4743
authors Dvorak, Robert W.
year 1988
title Designing in the CAD Studio
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 123-134
doi https://doi.org/10.52842/conf.acadia.1988.123
summary The "CAD Studio" is one of many design options that fourth year students may select in the College of Architecture. In this electronic environment, the students analyze and present their designs totally on the computer. The vehicle used is a fifteen week architectural problem called the "Calor Redesign Project".

The "Calor" problem requires the move of a famous residence to a hot arid climate. The residence must then be redesigned in the original architect's style so the building becomes as energy efficient as possible in its new arid environment. The students are required to use as design criteria a new building program, the design philosophy of the original architect, and appropriate passive energy techniques that will reduce the thermal stress on the building. The building's energy response is measured by using an envelope energy analysis program called "Calor".

Much of the learning comes from imposing a new set of restraints on a famous piece of architecture and asking the student to redesign it. The students not only need to learn and use a different design philosophy, but also develop new skills to communicate their ideas on the computer. Both Macintosh and IBM computers are used with software ranging from Microsoft Works, Superpaint, AutoCAD, MegaCAD, Dr Halo, to Calor.

series ACADIA
last changed 2022/06/07 07:55

_id a4ce
authors Goldberg, D.
year 1988
title Genetic Algorithms in Search, Optimization and Machine Learning
source Addison-Wesley, Reading, Massachusetts
summary David Goldberg's Genetic Algorithms in Search, Optimization and Machine Learning is by far the bestselling introduction to genetic algorithms. Goldberg is one of the preeminent researchers in the field--he has published over 100 research articles on genetic algorithms and is a student of John Holland, the father of genetic algorithms--and his deep understanding of the material shines through. The book contains a complete listing of a simple genetic algorithm in Pascal, which C programmers can easily understand. The book covers all of the important topics in the field, including crossover, mutation, classifier systems, and fitness scaling, giving a novice with a computer science background enough information to implement a genetic algorithm and describe genetic algorithms to a friend.
series other
last changed 2003/04/23 15:14

_id 98bd
authors Pea, R.
year 1993
title Practices of Distributed Intelligence and Designs for Education
source Distributed Cognitions, edited by G. Salomon. New York, NY: CambridgeUniversity Press
summary v Knowledge is commonly socially constructed, through collaborative efforts... v Intelligence may also be distributed for use in designed artifacts as diverse as physical tools, representations such as diagrams, and computer-user interfaces to complex tasks. v Leont'ev 1978 for activity theory that argues forcibly for the centrality of people-in-action, activity systems, as units of analysis for deepening our understanding of thinking. v Intelligence is distributed: the resources that shape and enable activity are distributed across people, environments, and situations. v Intelligence is accomplished rather than possessed. v Affordance refers to the perceived and actual properties of a thing, primarily those functional properties that determine how the thing could possibly be used. v Norman 1988 on design and psychology - the psychology of everyday things" v We deploy effort-saving strategies in recognition of their cognitive economy and diminished opportunity for error. v The affordances of artifacts may be more or less difficult to convey to novice users of these artifacts in the activities to which they contribute distributed intelligence. v Starts with Norman's seven stages of action Ø Forming a goal; an intention § Task desire - clear goal and intention - an action and a means § Mapping desire - unable to map goal back to action § Circumstantial desire - no specific goal or intention - opportunistic approach to potential new goal § Habitual desire - familiar course of action - rapidly cycle all seven stages of action v Differentiates inscriptional systems from representational or symbol systems because inscriptional systems are completely external, while representational or symbol systems have been used in cognitive science as mental constructs. v The situated properties of everyday cognition are highly inventive in exploiting features of the physical and social situation as resources for performing a task, thereby avoiding the need for mental symbol manipulations unless they are required by that task. v Explicit recognition of the intelligence represented and representable in design, specifically in designed artifacts that play important roles in human activities. v Once intelligence is designed into the affordances properties of artifacts, it both guides and constrains the likely contributions of that artifact to distributed intelligence in activity. v Culturally valued designs for distributed intelligence will change over time, especially as new technology becomes associated with a task domain. v If we treat distributed intelligence in action as the scientific unit of analysis for research and theory on learning and reasoning... Ø What is distributed? Ø What constraints govern the dynamics of such distributions in different time scales? Ø Through what reconfigurations of distributed intelligence might the performance of an activity system improve over time? v Intelligence is manifest in activity and distributed in nature. v Intelligent activities ...in the real world... are often collaborative, depend on resources beyond an individual's long-term memory, and require the use of information-handling tools... v Wartofsky 1979 - the artifact is to cultural evolution what the gene is to biological evolution - the vehicle of information across generations. v Systems of activity - involving persons, environment, tools - become the locus of developmental investigation. v Disagrees with Salomon et al.'s entity-oriented approach - a language of containers holding things. v Human cognition aspires to efficiency in distributing intelligence - across individuals, environment, external symbolic representations, tools, and artifacts - as a means of coping with the complexity of activities we often cal "mental." "
series other
last changed 2003/04/23 15:14

_id 252a
authors Reich, Yoram
year 1988
title Machine Learning for Expert Systems : Motivation and Techniques
source i-iii, 51 p. : some ill Pittsburgh, PA: Engineering Design Research Center, CMU, June, 1988. EDRC 12-27-88. includes bibliography. First generation expert systems suffer from two major problems: they are brittle and their development is a long, effortful process. Few successful expert systems for real world problems have been demonstrated. In this paper, learning, the key to intelligent behavior and expertise, is described as the answer to both expert systems deficiencies. Machine learning techniques are described, with their applicability to expert systems. A framework to organize machine learning techniques is provided. The description is followed by examples taken from the structural design domain. AI / learning / expert systems / structures / techniques. 37. Requicha, Aristides A. G. 'Mathematical Models of Rigid Solid Objects -- Production Automation Project.' Rochester, NY: College of Engineering & Applied Science, University of Rochester, November, 1977. [3], 37 p. : ill.
summary Computational models of solid objects are potentially useful in a variety of scientific and engineering fields, and in particular in the field of design and manufacturing automation for the mechanical industries. In recent years a multitude of modelling systems have been implemented both by research laboratories and commercial vendors, but little attention has been paid to the fundamental theoretical issues in geometric modelling. This has led to severe difficulties in assessing current and proposed systems, and in distinguishing essential capabilities and limitations from user conveniences and efficiency considerations. This paper seeks a sharp mathematical characterization of 'rigid solids' in a manner that is suitable for studies in design and production automation. It draws heavily on established results in modern geometry and topology. Relevant results scattered throughout the mathematical literature are placed in a coherent framework and presented in a form accessible to engineers and computer scientists. A companion paper is devoted to a discussion of representational issues in the context set forth by this paper
keywords solid modeling, geometric modeling
series CADline
last changed 1999/02/12 15:09

_id e7a8
authors Emde, H.
year 1988
title Geometrical Fundamentals for Design and Visualization of Spatial Objects
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 171-178
summary Every architectural object is a 3-dimensional entity of the human environment, haptically tangible and optically visible. During the architectural process of planning every object should be designed as a body and should be visualized in pictures. Thus the parts of construction get an order in space and the steps of construction get an order in time. The ideal planning object is a simulated anticipation of the real building object, which is to be performed later on. The possibility to relate the planning object immediately to the building object relies on the fact that they both have the same "geometry" This means: both can be described in the same geometric manner. Creating and visualizing spatial objects is based on geometrical fundamentals. Theoretical knowledge and practical control of these fundamentals is essential for the faultless construction and the realistic presentation of architectural objects. Therefore they have to be taught and learned thoroughly in the course of an architectural education. Geometrical design includes the forming of object- models (geometry of body boundaries), the structuring of object-hierarchies (geometry of body combinations) and the colouring of objects. Geometrical visualization includes controlling the processes of motion, of the bodies (when moving objects) and of the center of observation (when moving subjects) as well as the representation of 3-dimensional objects in 2- dimensional pictures and sequences of pictures. All these activities of architects are instances of geometrical information processing. They can be performed with the aid of computers. As for the computer this requires suitable hardware and software, as for the architect it requires suitable knowledge and capabilities to be able to talk about and to recall the perceivable objects and processes of the design with logic abstracts (language of geometry). In contrast to logical, numerical and textual informations the geometric informations concerning spatial objects are of much higher complexity. Usually these complexes of information are absorbed, processed and transmitted by the architect in a perceptive manner. The computer support in the field of geometry assumes that the processing of perceptions of the human consciousness can be converted by the computer as a framework of logical relations. Computer aided construction and representation require both suited devices for haptical and optical communication and suitable programs in particular.
series CAAD Futures
last changed 1999/04/03 17:58

_id 8d41
authors Bourque, Paul N.
year 1988
title Computer-Aided Learning of Structural Behavior
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 135-146
doi https://doi.org/10.52842/conf.acadia.1988.135
summary Computer-aided learning of structural behavior can be very effective and motivating. Students are able to analyse structures in far less time than by traditional methods and address problems of much greater complexity. They do so without the burden of manual computation.

Computer programs exist that are well suited for this purpose, two of which are described. They offer a broad range of design capabilities, and are easy to master because of their intuitive and graphically oriented approach.

A number of examples are given to illustrate the potential of computer-aided learning as a complement to traditional methods either in the classroom or in coursework.

series ACADIA
last changed 2022/06/07 07:54

_id 8c6d
authors Brooks, H. Gordon
year 1988
title A New Communication Model for Architecture Using Video and 3D Computer Animated Graphics
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 263-274
doi https://doi.org/10.52842/conf.acadia.1988.263
summary The University of Arkansas School of Architecture has produced a half-hour television program describing Richard Meier's Atheneum in New Harmony, Indiana. The program uses an analysis technique developed by Dr. Geoffrey Baker, RIBA. The treatment for the material is a combination of on- site video and computer generated 3D animated graphics. An instrument was developed to evaluate the video and its 3D graphics. Based on analysis of the test data several conclusions are apparent. Students believe the video to be very helpful in understanding this building. This video appears to be paced too quickly for understanding in one viewing. Repetitive viewings of the video are helpful in understanding the content. Some students are able to understand principles presented visually better than those presented verbally, but best learning happens when information is reinforced visually and verbally.

series ACADIA
last changed 2022/06/07 07:54

_id a19d
authors Brown, G.Z. and Novitski, Barbara-Jo
year 1988
title A Macintosh Design Studio
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 151-162
doi https://doi.org/10.52842/conf.acadia.1988.151
summary During the past year at the University of Oregon, we have conducted an experimental design studio in which each student had an Apple Macintosh SE microcomputer on his or her studio desk. Each term we experimented with a variety of software, furniture arrangements, and pedagogical approaches to integrating computers in design teaching. Like most others who have conducted such experiments, we encountered problems in trying to use hardware and software which is fundamentally inappropriate for the intuitive, graphic, and creative processes characteristic of preliminary design. However, we solved many of these problems and have produced useful techniques that may form the beginnings of a new approach to the use of computers in architecture schools.

Our results fall in three major categories: 1) pedagogical discoveries about learning to design with a computer, which is greater than the sum of learning to design and learning about computers; 2) design exercises based on the Macintosh environment, exploiting the unique graphic qualities of the machine while simultaneously developing the ideas and drawing skills needed in the preliminary stages of design; 3) descriptions of the studio environment, including hardware, software, workstation layouts, security solutions, and other practical information that might be useful to others who are contemplating a similar project.

series ACADIA
email
last changed 2022/06/07 07:54

_id cf2005_2_22_193
id cf2005_2_22_193
authors HSIEH Chun-Yu
year 2005
title A Preliminary Model of Creativity in Digital Development of Architecture
source Learning from the Past a Foundation for the Future [Special publication of papers presented at the CAAD futures 2005 conference held at the Vienna University of Technology / ISBN 3-85437-276-0], Vienna (Austria) 20-22 June 2005, pp. 63-74
summary Research into the various forms and processes of creativity has been a topic of great interest in the design field for many years. Part of the view is personality, and part of the answer is behavioural. Creativity is also explained through the identity of social values and the whole creative process. This paper proposes to use the interacting creativity model of Csikszentmihalyi as the basic structure, to establish the major criteria of testing creativity in the digital era. This paper demonstrates two facts: first, it confirms that creativity in architecture is truly valuable in the digital age; second, it proves that in the digital era, individuals, cultures and societies are all under the impact of digital technologies, a fact which transforms the model of interacting creativity proposed by Csikszentmihalyi in 1988 into a new model of digital interacting creativity.
keywords creativity, digital media, society, culture
series CAAD Futures
email
last changed 2005/05/05 07:06

_id c5ec
authors Smith Shaw, Doris
year 1988
title The Conceptual Approach to CAD Education
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 35-45
doi https://doi.org/10.52842/conf.acadia.1988.035
summary Recent research at the Corps of Engineers Construction Engineering Research Laboratory (CERL) investigated embedded computer-based instruction for AutoCAD. The results of this study, which are the focus of this paper, indicated that the only factor which correlated with success in completing the final test was previous experience with another CAD system. Those who knew another CAD system had higher scores and required less than half the time to complete the lessons. Presumably their conceptual knowledge about CAD transferred to the new software environment, even though the Corps' study showed that they were initially biased against learning the new system. Such biased attitudes have been observed when users are asked to learn a second similar software of any kind.

Architects who are deeply involved in computer-aided design have stated that one must learn to program the computer to build the conceptual framework for the creative process. We at CERL agree that an understanding of underlying graphics concepts is essential to the designer. Our research shows that giving students the freedom to explore an existing software program can result in the development of conceptual knowledge. Interviews also reveal that students can invent ways to meet individual objectives when "guided discovery" learning is encouraged.

series ACADIA
last changed 2022/06/07 07:56

_id 450c
authors Akin, Ömer
year 1990
title Computational Design Instruction: Toward a Pedagogy
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 302-316
summary The computer offers enormous potential both in and out of the classroom that is realized only in limited ways through the applications available to us today. In the early days of the computer it was generally argued that it would replace the architect. When this idea became obsolete, the prevailing opinion of proponents and opponents alike shifted to the notion of the computer as merely adding to present design capabilities. This idea is so ingrained in our thinking that we still speak of "aiding" design with computers. It is clear to those who grasp the real potential of this still new technology - as in the case of many other major technological innovations - that it continues to change the way we design, rather than to merely augment or replace human designers. In the classroom the computer has the potential to radically change three fundamental ingredients: student, instruction, and instructor. It is obvious that changes of this kind spell out a commensurate change in design pedagogy. If the computer is going to be more than a passive instrument in the design studio, then design pedagogy will have to be changed, fundamentally. While the practice of computing in the studio continues to be a significant I aspect of architectural education, articulation of viable pedagogy for use in the design studio is truly rare. In this paper the question of pedagogy in the CAD studio will be considered first. Then one particular design studio taught during Fall 1988 at Carnegie Mellon University will be presented. Finally, we shall return to issues of change in the student, instruction, and instructor, as highlighted by this particular experience.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id 0697
authors Balachandran, M.B. and Gero, John S.
year 1988
title Development of a Knowledge-Based System for Structural Optimization
source Dordrecht: Kluwer, 1988. pp. 17-24
summary Optimization is a useful and challenging activity in structural design. It provides designers with tools for better designs while saving time in the design process. The features of conventional optimization tools are presented and their limitations are outlined. The impact and role of knowledge-based methodologies in structural optimization processes is discussed. Structural optimization involves a number of tasks which require human expertise, and are traditionally assisted by human designers. These include design optimization formulation, problem recognition and the selection of appropriate algorithm(s). In this representation and processing of constraints are crucial tasks. This paper presents a framework for developing a knowledge-based system to accomplish these tasks. Based on the needs and the nature of the optimization process, a conceptual architecture of an integrated knowledge-based system is presented. The structure and functions of various components of the system are described
keywords knowledge base, systems, integration, optimization, structures, engineering
series CADline
email
last changed 2003/06/02 13:58

_id 696c
authors Beheshti, M. and Monroy, M.
year 1988
title Requirements for Developing an Information System for Architecture
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 149-170
summary This paper discusses possibilities of developing new tools for architectural design. It argues that architects should meet the challenge of information technology and computer-based design techniques. One such attempt has been the first phase of the development of an architectural design information system (ADIS), also an architectural design decision support system. The system should benefit from the developments of the artificial intelligence to enable the architect to have access to information required to carry out design work. In other words: the system functions as a huge on-line electronic library of architecture, containing up-to-date architectural design information, literature, documents, etc. At the same time, the system offers necessary design aids such as computer programs for design process, drawing programs, evaluation programs, cost calculation programs, etc. The system also provides data communication between the architect and members of the design coalition team. This is found to be of vital importance in the architectural design process, because it can enable the architect to fit in changes, brought about in the project by different parties. Furthermore, they will be able, to oversee promptly the consequences of changes or decisions in a comprehensive manner. The system will offer advantages over the more commonly applied microcomputer based CAAD and IGDM (integrated graphics database management) systems, or even larger systems available to an architect. Computer programs as well as hardware change rapidly and become obsolete. Therefore, unrelenting investment pressure to up-date both software and hardware exists. The financial burden of this is heavy, in particular for smaller architectural practices (for instance an architect working for himself or herself and usually with few or no permanent staff). ADIS, as an on-line architectural design aid, is constantly up-dated by its own organisation. This task will be co-ordinated by the ADIS data- base administrator (DBA). The processing possibilities of the system are faster, therefore more complex processing tasks can be handled. Complicated large graphic data files, can be easily retrieved and manipulated by ADIS, a large system. In addition, the cost of an on-line system will be much less than any other system. The system is based on one model of the architectural design process, but will eventually contain a variety of design models, as it develops. The development of the system will be an evolutionary process, making use of its users' feed-back system. ADIS is seen as a step towards full automation of architectural design practices. Apart from being an architectural design support system, ADIS will assist the architect in his/her administrative and organisational activities.
series CAAD Futures
last changed 2003/11/21 15:16

_id 2a36
authors Ben-Moshe, R. and Sorgen, A.
year 1988
title Parametric Shape Definition by Example
source 12, [13] p., [7] p. of ill. Israel: MICROCAD, 1988(?). includes bibliography
summary Incorporation of parametric design facilities into CAD systems presents some serious problems. The major issues are: (1) functionality - the need to cater for a great variety of designs, (2) natural user interface, with no need for the user to acquire programming skills, (3) integration and consistency with the 'host' CAD environment
keywords parametrization, user interface, CAD, geometric modeling, mechanical engineering, CAM
series CADline
last changed 2003/06/02 13:58

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id c57b
authors Bier, Eric A.
year 1988
title Snap-Dragging. Interactive Geometric design in Two and Three Dimensions
source University of California, Berkeley
summary Graphic artists, mechanical designers, architects, animators, authors of technical papers and others create geometric designs (illustrations and solid models) as a major part of their daily efforts. Some part of this shape construction must be done with precision. For instance, certain line segments should be horizontal, parallel or congruent. In recent years, interactive computer programs have been used to speed up the production of precise geometric designs. These programs take advantage of high-speed graphics, equation solving, and computer input peripherals to reduce the time needed to describe point positions to the machine. Previous techniques include rounding the cursor to points on a rectangular grid, solving networks of constraints, and supporting step-by-step drafting-style constructions. Snap-dragging is a modification of the drafting approach that takes advantage of powerful workstations to reduce the time needed to make precise illustrations. Using a single gravity mapping, a cursor can be snapped to either points, lines or surface. The gravity algorithm achieves good performance by computing intersection points on the fly. To aid precise construction, a set of lines, circles, planes, and spheres, called alignment objects, are constructed by the system at a set of slopes, angles, and distances specified by the user. These alignments objects are constructed at each vertex or edge that the user has declared to be hot (of interest). Vertices and edges can also be made hot by the system through the action of an automatic hotness rule. When snap-dragging is used, shapes can often be constructed using a few more keystrokes than would be needed to sketch them freehand. Objects can be edited at arbitrary orientations and sizes. The number of primitive operations is small, making it possible to provide keyboard combinations for quickly activating most of these operations. The user interface works nearly identically in two or three dimensions. In three dimensions, snap-dragging works with a two-dimensional pointing device in a single perspective view.  
series thesis:PhD
email
last changed 2003/02/12 22:37

_id c9e4
authors Birmingham, William P. and Siewiorek, Daniel P.
year 1988
title Automated knowledge Acquisition for a Computer Hardware Synthesis System
source 19 p. : ill. Engineering Design Research Center, CMU, June, 1988. EDRC 18-06-88. includes bibliography
summary The MICON Synthesizer Version 1 (M1) is a rule-based system which produces a complete small computer design from a set of abstract specifications. The ability of M1 to produce designs depends on the encoding of large amounts of domain knowledge. An automated knowledge acquisition tool, CGEN, works symbiotically with M1 by gathering the knowledge required by M1. CGEN acquires knowledge about how to build and when to use various computer structures. This paper overviews the operation of CGEN by providing an example of the types of knowledge acquired and the mechanisms employed. A novel knowledge-intensive generalization scheme is presented. Generalization is a pragmatic necessity for knowledge acquisition in this domain. A series of experiments to test CGEN's capabilities are explained. A description of the architecture and knowledge-base of M1 is also provided
keywords electrical engineering, automation, knowledge acquisition, knowledge base, systems
series CADline
last changed 2003/06/02 13:58

_id 5f4b
authors Coyne, R.D.
year 1988
title Logic Models of Design
source Pitman, London
summary This monograph places design in a theoretical context which applies developments in knowledge-based systems, logic programming and planning to design. It addresses two important design issues: the interpretation of designs, which concerns the discovery of implicit design attributes, a key activity in design evaluation that can be modelled by deductive inference in logic programming; and the process of generation, whereby a design description is produced which exhibits these implicit design attributes. Implicit attributes can be seen as analogous to the semantic content of natural language utterances. The work presented here is mainly concerned with design generation, and an operational model of design is investigated in which operations on processes are treated in a similar way to operations on form. It is argued that there are advantages in representing control knowledge as rules in a design system, and that logic is an effective medium for this purpose. This is demonstrated by means of programs developed in Prolog and C using the example of spatial layout in buildings. Primarily, this book is directed at those in artificial intelligence (AI) involved in logic programming, planning and expert systems. However, since AI techniques are finding widespread application in industry, the use of an architectural design example makes this work relevant to architects, designers, engineers and developers of intelligent architectural design software.
series other
email
last changed 2003/04/23 15:14

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5show page 6HOMELOGIN (you are user _anon_890889 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002