CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 160

_id diss_howe
id diss_howe
authors Howe, Alan Scott
year 1988
title A new paradigm for life-cycle management of kit-of-parts building systems
source UNIVERSITY OF MICHIGAN , PhD
summary The research described in this dissertation brings together various technologies in manufacturing and information management and suggests a new paradigm for the design, manufacture, and lifetime use of artifacts using kit-of-parts systems and rule-based assembly. The questions are asked: If architects, designers, and users were given direct online connection to real-time design information sources and fabrication processes, and have the ability to monitor and control the current state of designed objects throughout the objects' lifetime, how would the entire life-cycle of a product be affected, and how would design processes change? During the course of the research described in this dissertation, a series of simulations and experiments were conducted which produced a computer-based simulated design, manufacture, and use environment wherein these questions could begin to be answered. A kit-of-parts model building system was devised which could be used to design model buildings in virtual form by downloading virtual representations of the components from the Internet and assembling them into a desired form. The virtual model building could then be used to order the manufacture of real components online, and remotely controlled robots used to assemble the actual building on the site. Through the use of special hardware manufactured into the components, real-time remote monitoring and control of the current state of the finished model building was affected during the building's lifetime. The research establishes the feasibility of an online life-cycle environment where a virtual representation of an artifact is created and used to both manufacture a real-world counterpart and also monitor and control the current state of the real-world object. The state-of-the-art of pertinent technologies were explored through literature searches and experiments. Data representation, rule-based design techniques, robotics, and digital control were studied, and a series of design principles established which lend themselves toward a life-cycle management paradigm. Several case studies are cited which show how the design principles and life-cycle management environment can be applied to real buildings and other artifacts such as vehicles and marine structures. Ideas for expanded research on the life-cycle management paradigm are cited.  

series thesis:PhD
email
more http://wwwlib.umi.com/dissertations/fullcit/9909905
last changed 2003/11/20 19:57

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
doi https://doi.org/10.52842/conf.acadia.1994.039
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 8c6d
authors Brooks, H. Gordon
year 1988
title A New Communication Model for Architecture Using Video and 3D Computer Animated Graphics
doi https://doi.org/10.52842/conf.acadia.1988.263
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 263-274
summary The University of Arkansas School of Architecture has produced a half-hour television program describing Richard Meier's Atheneum in New Harmony, Indiana. The program uses an analysis technique developed by Dr. Geoffrey Baker, RIBA. The treatment for the material is a combination of on- site video and computer generated 3D animated graphics. An instrument was developed to evaluate the video and its 3D graphics. Based on analysis of the test data several conclusions are apparent. Students believe the video to be very helpful in understanding this building. This video appears to be paced too quickly for understanding in one viewing. Repetitive viewings of the video are helpful in understanding the content. Some students are able to understand principles presented visually better than those presented verbally, but best learning happens when information is reinforced visually and verbally.

series ACADIA
last changed 2022/06/07 07:54

_id caadria2011_061
id caadria2011_061
authors Celani, Gabriela; José P. Duarte and Carlos V. Vaz
year 2011
title The gardens revisited: The link between technology, meaning and logic?
doi https://doi.org/10.52842/conf.caadria.2011.643
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 643-652
summary The objective of this paper is to compare the computational concepts present in three books published by Mitchell between 1987 and 1990: The art of computer-graphics programming (1987), which has Robin Liggett and Thomas Kvan as co-authors, The logic of architecture (1990), probably his most influential work, and The poetics of gardens (1988), which has Charles Moore and William Turnbull as coauthors. By looking at the concepts that are presented in the three books and establishing a comparison between them, we expect to show that The poetics of Gardens should not be seen as a detour from Mitchell´s line of research, but rather as a key piece for understanding the relationship between technology, meaning and logic in his very coherent body of work.
keywords Computational design concepts; technology; meaning; logic
series CAADRIA
email
last changed 2022/06/07 07:55

_id 6f1b
authors De Floriani, Leila and Falcidieno, Bianca
year 1988
title A Hierarchical Boundary Model for Solid Object Representation
source ACM Transactions on Graphics. January, 1988. vol. 7: pp. 42-60 : ill. includes bibliography
summary A new hierarchical model for solid object representation is described. This model, called a Hierarchical Face Adjacency Hypergraph (HFAH), is based on a relational description of the object boundary, called a Face Adjacency Hypergraph (FAH), which considers faces as the primary topological entities defining the object boundary. The HFAH consists of a hierarchy of FAHs describing the decomposition of the boundary of an object into form features. In this paper the HFAH is described together with its internal encoding structure. Two basic transformations, called refinement and abstraction, are defined on the hierarchical model; these allow effective and efficient modifications of the hierarchical boundary model
keywords representation, computational geometry, solid modeling, algorithms, design, data structures, graphs, features, B-rep
series CADline
last changed 2003/06/02 13:58

_id 4743
authors Dvorak, Robert W.
year 1988
title Designing in the CAD Studio
doi https://doi.org/10.52842/conf.acadia.1988.123
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 123-134
summary The "CAD Studio" is one of many design options that fourth year students may select in the College of Architecture. In this electronic environment, the students analyze and present their designs totally on the computer. The vehicle used is a fifteen week architectural problem called the "Calor Redesign Project".

The "Calor" problem requires the move of a famous residence to a hot arid climate. The residence must then be redesigned in the original architect's style so the building becomes as energy efficient as possible in its new arid environment. The students are required to use as design criteria a new building program, the design philosophy of the original architect, and appropriate passive energy techniques that will reduce the thermal stress on the building. The building's energy response is measured by using an envelope energy analysis program called "Calor".

Much of the learning comes from imposing a new set of restraints on a famous piece of architecture and asking the student to redesign it. The students not only need to learn and use a different design philosophy, but also develop new skills to communicate their ideas on the computer. Both Macintosh and IBM computers are used with software ranging from Microsoft Works, Superpaint, AutoCAD, MegaCAD, Dr Halo, to Calor.

series ACADIA
last changed 2022/06/07 07:55

_id e7a8
authors Emde, H.
year 1988
title Geometrical Fundamentals for Design and Visualization of Spatial Objects
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 171-178
summary Every architectural object is a 3-dimensional entity of the human environment, haptically tangible and optically visible. During the architectural process of planning every object should be designed as a body and should be visualized in pictures. Thus the parts of construction get an order in space and the steps of construction get an order in time. The ideal planning object is a simulated anticipation of the real building object, which is to be performed later on. The possibility to relate the planning object immediately to the building object relies on the fact that they both have the same "geometry" This means: both can be described in the same geometric manner. Creating and visualizing spatial objects is based on geometrical fundamentals. Theoretical knowledge and practical control of these fundamentals is essential for the faultless construction and the realistic presentation of architectural objects. Therefore they have to be taught and learned thoroughly in the course of an architectural education. Geometrical design includes the forming of object- models (geometry of body boundaries), the structuring of object-hierarchies (geometry of body combinations) and the colouring of objects. Geometrical visualization includes controlling the processes of motion, of the bodies (when moving objects) and of the center of observation (when moving subjects) as well as the representation of 3-dimensional objects in 2- dimensional pictures and sequences of pictures. All these activities of architects are instances of geometrical information processing. They can be performed with the aid of computers. As for the computer this requires suitable hardware and software, as for the architect it requires suitable knowledge and capabilities to be able to talk about and to recall the perceivable objects and processes of the design with logic abstracts (language of geometry). In contrast to logical, numerical and textual informations the geometric informations concerning spatial objects are of much higher complexity. Usually these complexes of information are absorbed, processed and transmitted by the architect in a perceptive manner. The computer support in the field of geometry assumes that the processing of perceptions of the human consciousness can be converted by the computer as a framework of logical relations. Computer aided construction and representation require both suited devices for haptical and optical communication and suitable programs in particular.
series CAAD Futures
last changed 1999/04/03 17:58

_id 68c8
authors Flemming, U., Coyne, R. and Fenves, S. (et al.)
year 1994
title SEED: A Software Environment to Support the Early Phases in Building Design
source Proceeding of IKM '94, Weimar, Germany, pp. 5-10
summary The SEED project intends to develop a software environment that supports the early phases in building design (Flemming et al., 1993). The goal is to provide support, in principle, for the preliminary design of buildings in all aspects that can gain from computer support. This includes using the computer not only for analysis and evaluation, but also more actively for the generation of designs, or more accurately, for the rapid generation of design representations. A major motivation for the development of SEED is to bring the results of two multi-generational research efforts focusing on `generative' design systems closer to practice: 1. LOOS/ABLOOS, a generative system for the synthesis of layouts of rectangles (Flemming et al., 1988; Flemming, 1989; Coyne and Flemming, 1990; Coyne, 1991); 2. GENESIS, a rule-based system that supports the generation of assemblies of 3-dimensional solids (Heisserman, 1991; Heisserman and Woodbury, 1993). The rapid generation of design representations can take advantage of special opportunities when it deals with a recurring building type, that is, a building type dealt with frequently by the users of the system. Design firms - from housing manufacturers to government agencies - accumulate considerable experience with recurring building types. But current CAD systems capture this experience and support its reuse only marginally. SEED intends to provide systematic support for the storing and retrieval of past solutions and their adaptation to similar problem situations. This motivation aligns aspects of SEED closely with current work in Artificial Intelligence that focuses on case-based design (see, for example, Kolodner, 1991; Domeshek and Kolodner, 1992; Hua et al., 1992).
series other
email
last changed 2003/04/23 15:14

_id 88cb
authors Gero, John S. and Oksala, Tarkko (editors)
year 1988
title Knowledge-Based Systems in Architecture
source TIPS'88 - Knowledge Based Design in Architecture, Acta Polytechnica Scandinavica (1988 : Helsinki, Finland). 143 p. 1989
summary The technology of knowledge-based systems can be found in texts on artificial intelligence. There is very little published so far on knowledge-based systems in architecture. To this end an international conference -- TIPS' 88: Knowledge-Based Design in Architecture -- was organized for August 1988 in Finland. Thirteen papers from that conference have been selected and edited for this monograph. They are grouped under five parts: Introduction; Schemas and Models; Processes and Knowledge; Modeling Buildings; and Creativity and Knowledge-Based Systems
keywords knowledge base, architecture, representation, expert systems,building, creativity
series CADline
email
last changed 2003/06/02 13:58

_id 6745
authors Giraud, Christian and Hanrot, Stephane
year 1988
title Elements for Spatial Reasoning in Construction
source Robotics in Construction, International Symposium (5th : 1988 : Tokyo, Japan). pp. 105- 113 : ill. includes bibliography
summary According to AI techniques, spatial reasoning is seen in construction as generation and solving of goals involving a spatial representation model of buildings defining a rich taxonomy of parts and elements, and spatial relationships between these parts and elements. The authors define spatial representation model and spatial relationship from previous experiments in architect knowledge representation and automated surveying. The aim is to enable very abstract and short descriptions of building component assemblies, from designers at drawing-boards or from workers on sites, which can be processed and transformed in basic geometrical properties
keywords reasoning, representation, construction, automation
series CADline
last changed 2003/06/02 13:58

_id 4da4
authors Jordan, J. Peter
year 1988
title ARCH 431: Computer-Aided Design
doi https://doi.org/10.52842/conf.acadia.1988.187
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 187-200
summary There is a significant variance in the way computer courses are taught at various institutions around the country. Generally, it is useful to think of these courses falling either into a "tool-building" or a "tool-using" category. However, within either category, there is a variety of focus on the application of the "tool". Two courses have been developed at the University of Hawaii at Manoa which deal with computer applications. The first course is more quantitatively oriented, encouraging students to explore ways of dealing with problems in a more complex and substantial manner. This paper deals with the second course whose focus has shifted toward design issues, using the computer as a tool to explore these issues. This course exposes the student, not to training on a specific computer-aided drafting system, but to issues in computer-aided design which include hardware and software systems, human-machine interface, and the nature of the design process. This course seems to be an appropriate model for introducing computer-aided design to undergraduates in a professional design program.
series ACADIA
email
last changed 2022/06/07 07:52

_id 0711
authors Kunnath, S.K., Reinhorn, A.M. and Abel, J.F.
year 1990
title A Computational Tool for Evaluation of Seismic Performance of RC Buildings
source February, 1990. [1] 15 p. : ill. graphs, tables. includes bibliography: p. 10-11
summary Recent events have demonstrated the damaging power of earthquakes on structural assemblages resulting in immense loss of life and property (Mexico City, 1985; Armenia, 1988; San Francisco, 1989). While the present state-of-the-art in inelastic seismic response analysis of structures is capable of estimating response quantities in terms of deformations, stresses, etc., it has not established a physical qualification of these end-results into measures of damage sustained by the structure wherein system vulnerability is ascertained in terms of serviceability, repairability, and/or collapse. An enhanced computational tool is presented in this paper for evaluation of reinforced concrete structures (such as buildings and bridges) subjected to seismic loading. The program performs a series of tasks to enable a complete evaluation of the structural system: (a) elastic collapse- mode analysis to determine the base shear capacity of the system; (b) step-by-step time history analysis using a macromodel approach in which the inelastic behavior of RC structural components is incorporated; (c) reduction of the response quantities to damage indices so that a physical interpretation of the response is possible. The program is built around two graphical interfaces: one for preprocessing of structural and loading data; and the other for visualization of structural damage following the seismic analysis. This program can serve as an invaluable tool in estimating the seismic performance of existing RC buildings and for designing new structures within acceptable levels of damage
keywords seismic, structures, applications, evaluation, civil engineering, CAD
series CADline
last changed 2003/06/02 14:41

_id 7e15
authors Kvan, Thomas
year 1997
title Chips, chunks and sauces
source International Journal of Design Computing, 1, 1997 (Editorial)
summary I am sure there is an art in balancing the chunks to use with your chips. Then there is the sauce that envelops them both. I like my chips chunky and not too saucy. Not that I am obsessed with food but I don't think you can consider design computing without chunks. It's the sauce I'm not sure about. The chunks of which I write are not of course those in your salsa picante but those postulated by Chase and Simon (1973) reflecting on good chess players; the chunks of knowledge with which an expert tackles a problem in their domain of expertise. The more knowledge an expert has of complex and large configurations of typical problem situations (configurations of chess pieces), the greater range of solutions the expert can bring a wider to a particular problem. Those with more chunks have more options and arrive at better solutions. In other words, good designs come from having plenty of big chunks available. There has been a wealth of research in the field of computer-supported collaborative work in the contexts of writing, office management, software design and policy bodies. It is typically divided between systems which support decision making (GDSS: group decision support systems) and those which facilitate joint work (CSCW: computer-based systems for co-operative work) (see Dennis et al. (1988) for a discussion of the distinctions and their likely convergence). Most implementations in the world of design have been on CSCW systems, few have looked at trying to make a group design decision support system (GDDSS?). Most of the work in CSCD has been grounded in the heritage of situated cognition - the assumption that collaborative design is an act that is intrinsically grounded in the context within which it is carried out, that is, the sauce in which we find ourselves swimming daily. By sauce, therefore, I am referring to anything that is not knowledge in the domain of expertise, such as modes of interaction, gestures, social behaviours.
series journal paper
email
last changed 2003/05/15 10:29

_id e8bb
authors Lehto, M.
year 1988
title Optical Discs - Their Application in Mass Data Storage
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 189-198
summary Much of the building designer's time is taken up correlating the various sources of information so as to incorporate it in the design within a limited time span. The building information service should be able to provide him or her by the up-to-date information in a user friendly format. Optical disc technology makes it possible to combine different forms of building data into images which can be mass stored and randomly accessed on a single disc, with the minimal response time by personal computer or CAD- workstation. In this paper the use of various forms of optical disc technology in construction industry and the prototype video disc produced by VTT are described.
keywords Construction, Optical Discs, Interactive Video Disc, Mass Storage
series CAAD Futures
last changed 1999/04/03 17:58

_id 0347
authors Maver, T.
year 1988
title Software Tools for the Technical Evaluation of Design Alternatives
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 47-58
summary Designing buildings which 'work' - economically, socially and technically - remains the central challenge for architects. This paper is concerned with the state of development of software tools for the evaluation of the technical issues which are relevant at the conceptual stages, as opposed to the detailed stages, of design decision-making. The technical efficiency of building is of enormous economic importance. The capital investment in building in Europe represents some 12% of the Gross Domestic Product; this capital investment is exceeded by an order of magnitude, however, by the operating costs of buildings over their life span. In turn, these operating costs are exceeded - again by an order of magnitude - by the costs associated with the (human) operations which go on within the building, and on which the design of the building has some impact.
series CAAD Futures
email
last changed 2001/06/04 17:16

_id 651b
authors Maver, Tom and Wagter, Harry (eds.)
year 1988
title CAAD futures ‘87 [Conference Proceedings]
source Second International Conference on Computer Aided Architectural Design Futures / ISBN 0-444-42916-6 / Eindhoven (The Netherlands), 20-22 May 1987, 261 p.
summary The building Industry is Europe's largest single industry employing directly or indirectly 1 in 8 of the working population; yet it is fragmented, ill-organised and unprogressive. Part at least of the cause can be attributed to a failure by the architectural profession to adopt advances in Information Technology - notably Computer Aided Design. The purpose of the series of conferences on CAAD Futures is to chart a route towards a future in which the outcome of current and continuing research and development results in design tools which are acceptable to practioners and which substantially improve the quality of design decision-making and management. The papers which are printed in these proceedings make a significant contribution to our view of the future. Together they cover the range of issues which are the legitimate concern of researchers, developers, vendors, and users of CAAD software; as might be expected, they raise as many questions as they answer and they pose problems as well as reporting progress.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 11cb
id 11cb
authors Oguzhan Özcan
year 2004
title MATHEMATICS AND DESIGN EDUCATION
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 199-203.
summary Many people believe that mathematical thought is an essential element of creativity. The origin of this idea in art dates back to Plato. Asserting that aesthetics is based on logical and mathematical rules, Plato had noticed that geometrical forms were “forms of beauty” in his late years. Unlike his contemporaries, he had stressed that the use of geometrical forms such as lines, circles, planes, cubes in a composition would aid to form an aesthetics. The rational forms of Plato and the rules of geometry have formed the basis of antique Greek art, sculpture and architecture and have influenced art and design throughout history in varying degrees. This emphasis on geometry has continued in modern design, reflected prominently by Kandinsky’s geometric classifications .

Mathematics and especially geometry have found increasing application in the computer-based design environment of our day. The computer has become the central tool in the modern design environment, replacing the brush, the paints, the pens and pencils of the artist. However, if the artist does not master the internal working of this new tool thoroughly, he can neither develop nor express his creativity. If the designer merely learns how to use a computer-based tool, he risks producing designs that appear to be created by a computer. From this perspective, many design schools have included computer courses, which teach not only the use of application programs but also programming to modify and create computer-based tools.

In the current academic educational structure, different techniques are used to show the interrelationship of design and programming to students. One of the best examples in this area is an application program that attempts to teach the programming logic to design students in a simple way. One of the earliest examples of such programs is the Topdown Programming Shell developed by Mitchell, Liggett and Tan in 1988 . The Topdown system is an educational CAD tool for architectural applications, where students program in Pascal to create architectural objects. Different examples of such educational programs have appeared since then. A recent fine example of these is the book and program called “Design by Number” by John Maeda . In that book, students are led to learn programming by coding in a simple programming language to create various graphical primitives.

However, visual programming is based largely on geometry and one cannot master the use of computer-based tools without a through understanding of the mathematical principles involved. Therefore, in a model for design education, computer-based application and creativity classes should be supported by "mathematics for design" courses. The definition of such a course and its application in the multimedia design program is the subject of this article.

series other
type normal paper
email
last changed 2005/04/07 15:36

_id 45b7
authors Oxman, R.E.
year 1988
title Expert System for Generation and Evaluation in Architectural Design
source Technion, Faculty of Architecture and Town Planing, Haifa
summary The research field, focuses on a new research area of Knowledge Based Systems for Architectural Design. The research deals with concepts and tools emerging from Artificial Intelligence, Knowledge Based Systems and Expert Systems. The research is involved with the construction of a theoretical basis for the development of approaches and methods for the representation and control of design knowledge as a reasoning process. Key questions which attempt to reconsider representation and control in design are formulated. The following questions serve as a research framework out of which new approaches, methods and tools were developed. (1.)What are the existing ideas, methods and tools in Expert Systems? (2.) What are the performance characteristics of Expert Systems in Architectural Design ? (3.) What are the desired operative characteristics and interactions for Expert Systems in design ? (4.) How is it possible to formulate and apply the diverse forms of Architectural Knowledge in Expert Systems for design? (5.) What are the problems of implementation in the development of Expert Systems for design ? The state of the art in knowledge based systems is surveyed, while emphasizing the differences between conventional systems and knowledge based systems. Representation and control methods and the components of expert systems are reviewed. Expert systems for diagnosis, interpretation, planning and design are analysed with respect to their performance characteristics. Techniques and technologies of existing tools are defined. An expert system for the generation and evaluation of ill defined architectural design problems is develped. A formalization of the concept of 'design interpretation' is proposed and developed. It is applied in the process of defining and classifying the performance characteristics of expert systems for design. This concept is based upon two sets of reasoning processes: those which enable a mapping between design requirements and solution descriptions in the generation stage of design and those between solution descriptions and performance evaluation in the evaluation stage of design. On the basis of the formalization of this concept, an expert system capable of integrating various modes of performance is proposed and developed. The system functions as a 'design generator', a 'design critic', or a' design critic-generator'. These modes, which integrate generation and evaluation in the same system, operate by employing both forward chaining and backward chaining inference mechanisms. As a result of the examination of desired forms of interactions, a new approach for dual direction interpretation between graphic and verbal modes is developed. This approach reflects the importance of both graphical and verbal expression in design. The approach is based upon a simultaneous mapping between symbolic-verbal interpretation and graphic interpretation. The work presents the mapping process through the concept of design interpretation, employing geometrical knowledge, typological knowledge and evaluation knowledge. A tool which provides communication between an expert system and a graphic system was developed and is presented. The importance of such a tool in expert systems for design resides in the provision of free choice to the user for interacting with the system either graphically or verbally during the design process. An additional component in the development of knowledge-based systems for design is related to the important question of knowledge definition and the representational schemata of design knowledge. A new representational scheme for complex architectural knowledge, termed 'The generation and refinement scheme of a design prototype' is proposed and developed. Its operation as part of a total integrated design system is demonstrated. The scheme is based upon the structures of knowledge of design precedents which constitute typical situations and solutions in architectural design. This scheme provides an appropriate representation for the two types of knowledge which operate in a refinement process of a design prototype. Generative knowledge describes the solution space by predefined refinement stages; interpretive knowledge enables their selection. The examination of representational methods for the proposed scheme indicated that employing a single representational method lacked enough generalization and expressive power for the needs of the design knowledge structures. It was found that a way to represent complex structures is through the integration of multiple methods of representation, each one according to the knowledge characteristics. In order to represent the proposed scheme of design knowledge, a unique method was developed which integrates both rules and frames. The method consists of a rules-frames-rules structure for the representation of a design prototype. An approach is developed for the implementation of these concepts in an expert system for design. PRODS: A prototype based expert system shell for design is developed and demonstrated. The system consists of three basic components: a rule-based expert system shell, a frame system, and a knowledge base interface. All system interactions are controlled by the inference engine. It passes control between the rule-base and the frame-base inference engines, and provides communications between the rule-based and frame-based representations. It is suggested that expert system can interface with external CAD systems including graphics, communicating through a central representation. These concepts and developments are demonstrated in two implementations. The PREDIKT system for the preliminary design of the residential kitchen; the PROUST system for the selection and refinement of dwelling types. PREDIKT demonstrates the integration of rules and a graphical-verbal interpreter; in addition, PROUST demonstrates the significance of hybrid representation in the generation and refinement processes. The results and conlusions are summarized. Future research agenda within the field of knowledge-based systems for design is discussed, and potential research areas are defined.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id e304
authors Porada, M.
year 1988
title Digital Image: A Bridge Towards Mental Images?
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 209-216
summary How we see things depends on our education and our cultural pre-suppositions. This does not allow to convey some logical form, but nevertheless makes possible a more global and less formalized understanding of the objects, their environment and their physical proprieties. In architecture, the digital image acts according to two directions: (-) representation: the fine images are a means of communication between the different parties implementing building projects. (-) modelization: in addition to its iconic qualities the layers of different models simulate the most different aspects of the ,image and the environment characteristics. // At this level our vision is directly concerned with the design of the studied object; it acts both in the design process and in the expression of our conceptual images. How does modelization work? Infographical representation deals with a more or less schematic and conceptualized world the reading of which is more typified than particularized. It deals with a schematization nearly "ideographical" of the mental image thus is produced "synthetism", a neologism similar to such expressions as realism or abstractionism.
series CAAD Futures
last changed 1999/04/03 17:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 7HOMELOGIN (you are user _anon_604972 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002