CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 162

_id caadria2011_061
id caadria2011_061
authors Celani, Gabriela; José P. Duarte and Carlos V. Vaz
year 2011
title The gardens revisited: The link between technology, meaning and logic?
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 643-652
doi https://doi.org/10.52842/conf.caadria.2011.643
summary The objective of this paper is to compare the computational concepts present in three books published by Mitchell between 1987 and 1990: The art of computer-graphics programming (1987), which has Robin Liggett and Thomas Kvan as co-authors, The logic of architecture (1990), probably his most influential work, and The poetics of gardens (1988), which has Charles Moore and William Turnbull as coauthors. By looking at the concepts that are presented in the three books and establishing a comparison between them, we expect to show that The poetics of Gardens should not be seen as a detour from Mitchell´s line of research, but rather as a key piece for understanding the relationship between technology, meaning and logic in his very coherent body of work.
keywords Computational design concepts; technology; meaning; logic
series CAADRIA
email
last changed 2022/06/07 07:55

_id diss_howe
id diss_howe
authors Howe, Alan Scott
year 1988
title A new paradigm for life-cycle management of kit-of-parts building systems
source UNIVERSITY OF MICHIGAN , PhD
summary The research described in this dissertation brings together various technologies in manufacturing and information management and suggests a new paradigm for the design, manufacture, and lifetime use of artifacts using kit-of-parts systems and rule-based assembly. The questions are asked: If architects, designers, and users were given direct online connection to real-time design information sources and fabrication processes, and have the ability to monitor and control the current state of designed objects throughout the objects' lifetime, how would the entire life-cycle of a product be affected, and how would design processes change? During the course of the research described in this dissertation, a series of simulations and experiments were conducted which produced a computer-based simulated design, manufacture, and use environment wherein these questions could begin to be answered. A kit-of-parts model building system was devised which could be used to design model buildings in virtual form by downloading virtual representations of the components from the Internet and assembling them into a desired form. The virtual model building could then be used to order the manufacture of real components online, and remotely controlled robots used to assemble the actual building on the site. Through the use of special hardware manufactured into the components, real-time remote monitoring and control of the current state of the finished model building was affected during the building's lifetime. The research establishes the feasibility of an online life-cycle environment where a virtual representation of an artifact is created and used to both manufacture a real-world counterpart and also monitor and control the current state of the real-world object. The state-of-the-art of pertinent technologies were explored through literature searches and experiments. Data representation, rule-based design techniques, robotics, and digital control were studied, and a series of design principles established which lend themselves toward a life-cycle management paradigm. Several case studies are cited which show how the design principles and life-cycle management environment can be applied to real buildings and other artifacts such as vehicles and marine structures. Ideas for expanded research on the life-cycle management paradigm are cited.  

series thesis:PhD
email
more http://wwwlib.umi.com/dissertations/fullcit/9909905
last changed 2003/11/20 19:57

_id aef1
authors Rosenman, M.A., Gero, J.S. and Coyne, R.D. (et al)
year 1987
title SOLAREXPERT : A Prototype Expert System for Passive Solar Energy Design in Housing
source Canberra: Aust NZ Solar Energy Society, 1987. vol.II: pp. 361-370. Also published in People and Technology - Sun, Climate and Building, edited by V. Szokolay, Univ. of Queensland, Brisbane, 1988
summary Passive solar energy design is not an exact science in which a set of analytical procedures can be followed to produce results. Rather it depends heavily on subjective parameters and experience collected over time which is heuristic by nature. At present this knowledge is available in books but while this knowledge is comprehensive, it is unstructured and not always easy to make use of. A computer-based system allows for flexible interactive dialogue and for the incorporation of analytical procedures which may be required. This paper describes work on SOLAREXPERT, a prototype expert system to aid designers in passive solar energy design for single dwellings. The system operates at a strategic level to provide basic advice on the form of construction and types of passive solar systems and at a spatial zone level to provide more detailed advice on sizes and materials. It allows for modification of the information entered so that users may explore several possibilities
keywords applications, experience, housing, expert systems, energy, design, architecture
series CADline
email
last changed 2003/05/17 10:17

_id fc80
authors Ubbelohde, S. and Humann, C.
year 1998
title Comparative Evaluation of Four Daylighting Software Programs
source 1998 ACEEE Summer Study on Energy Efficiency in Buildings Proceedings. American Council for an Energy-Efficient Economy
summary By the mid-1980's, a number of software packages were under development to predict daylighting performance in buildings, in particular illumination levels in daylighted spaces. An evaluation in 1988 by Ubbelohde et al. demonstrated that none of the software then available was capable of predicting the simplest of real daylighting designs. In the last ten years computer capabilities have evolved rapidly and we have four major packages widely available in the United States. This paper presents a comparative evaluation from the perspective of building and daylighting design practice. A contemporary building completed in 1993 was used as a base case for evaluation. We present the results from field measurements, software predictions and physical modeling as a basis for discussing the capabilities of the software packages in architectural design practice. We found the current software packages far more powerful and nuanced in their ability to predict daylight than previously. Some can accurately predict quantitative daylight performance under varying sky conditions and produce handsome and accurate visualizations of the space. The programs differ significantly, however, in their ease of use, modeling basis and the emphasis between quantitative predictions and visualization in the output.
series other
last changed 2003/04/23 15:50

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
doi https://doi.org/10.52842/conf.acadia.1994.039
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 8c6d
authors Brooks, H. Gordon
year 1988
title A New Communication Model for Architecture Using Video and 3D Computer Animated Graphics
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 263-274
doi https://doi.org/10.52842/conf.acadia.1988.263
summary The University of Arkansas School of Architecture has produced a half-hour television program describing Richard Meier's Atheneum in New Harmony, Indiana. The program uses an analysis technique developed by Dr. Geoffrey Baker, RIBA. The treatment for the material is a combination of on- site video and computer generated 3D animated graphics. An instrument was developed to evaluate the video and its 3D graphics. Based on analysis of the test data several conclusions are apparent. Students believe the video to be very helpful in understanding this building. This video appears to be paced too quickly for understanding in one viewing. Repetitive viewings of the video are helpful in understanding the content. Some students are able to understand principles presented visually better than those presented verbally, but best learning happens when information is reinforced visually and verbally.

series ACADIA
last changed 2022/06/07 07:54

_id 4743
authors Dvorak, Robert W.
year 1988
title Designing in the CAD Studio
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 123-134
doi https://doi.org/10.52842/conf.acadia.1988.123
summary The "CAD Studio" is one of many design options that fourth year students may select in the College of Architecture. In this electronic environment, the students analyze and present their designs totally on the computer. The vehicle used is a fifteen week architectural problem called the "Calor Redesign Project".

The "Calor" problem requires the move of a famous residence to a hot arid climate. The residence must then be redesigned in the original architect's style so the building becomes as energy efficient as possible in its new arid environment. The students are required to use as design criteria a new building program, the design philosophy of the original architect, and appropriate passive energy techniques that will reduce the thermal stress on the building. The building's energy response is measured by using an envelope energy analysis program called "Calor".

Much of the learning comes from imposing a new set of restraints on a famous piece of architecture and asking the student to redesign it. The students not only need to learn and use a different design philosophy, but also develop new skills to communicate their ideas on the computer. Both Macintosh and IBM computers are used with software ranging from Microsoft Works, Superpaint, AutoCAD, MegaCAD, Dr Halo, to Calor.

series ACADIA
last changed 2022/06/07 07:55

_id e7a8
authors Emde, H.
year 1988
title Geometrical Fundamentals for Design and Visualization of Spatial Objects
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 171-178
summary Every architectural object is a 3-dimensional entity of the human environment, haptically tangible and optically visible. During the architectural process of planning every object should be designed as a body and should be visualized in pictures. Thus the parts of construction get an order in space and the steps of construction get an order in time. The ideal planning object is a simulated anticipation of the real building object, which is to be performed later on. The possibility to relate the planning object immediately to the building object relies on the fact that they both have the same "geometry" This means: both can be described in the same geometric manner. Creating and visualizing spatial objects is based on geometrical fundamentals. Theoretical knowledge and practical control of these fundamentals is essential for the faultless construction and the realistic presentation of architectural objects. Therefore they have to be taught and learned thoroughly in the course of an architectural education. Geometrical design includes the forming of object- models (geometry of body boundaries), the structuring of object-hierarchies (geometry of body combinations) and the colouring of objects. Geometrical visualization includes controlling the processes of motion, of the bodies (when moving objects) and of the center of observation (when moving subjects) as well as the representation of 3-dimensional objects in 2- dimensional pictures and sequences of pictures. All these activities of architects are instances of geometrical information processing. They can be performed with the aid of computers. As for the computer this requires suitable hardware and software, as for the architect it requires suitable knowledge and capabilities to be able to talk about and to recall the perceivable objects and processes of the design with logic abstracts (language of geometry). In contrast to logical, numerical and textual informations the geometric informations concerning spatial objects are of much higher complexity. Usually these complexes of information are absorbed, processed and transmitted by the architect in a perceptive manner. The computer support in the field of geometry assumes that the processing of perceptions of the human consciousness can be converted by the computer as a framework of logical relations. Computer aided construction and representation require both suited devices for haptical and optical communication and suitable programs in particular.
series CAAD Futures
last changed 1999/04/03 17:58

_id 68c8
authors Flemming, U., Coyne, R. and Fenves, S. (et al.)
year 1994
title SEED: A Software Environment to Support the Early Phases in Building Design
source Proceeding of IKM '94, Weimar, Germany, pp. 5-10
summary The SEED project intends to develop a software environment that supports the early phases in building design (Flemming et al., 1993). The goal is to provide support, in principle, for the preliminary design of buildings in all aspects that can gain from computer support. This includes using the computer not only for analysis and evaluation, but also more actively for the generation of designs, or more accurately, for the rapid generation of design representations. A major motivation for the development of SEED is to bring the results of two multi-generational research efforts focusing on `generative' design systems closer to practice: 1. LOOS/ABLOOS, a generative system for the synthesis of layouts of rectangles (Flemming et al., 1988; Flemming, 1989; Coyne and Flemming, 1990; Coyne, 1991); 2. GENESIS, a rule-based system that supports the generation of assemblies of 3-dimensional solids (Heisserman, 1991; Heisserman and Woodbury, 1993). The rapid generation of design representations can take advantage of special opportunities when it deals with a recurring building type, that is, a building type dealt with frequently by the users of the system. Design firms - from housing manufacturers to government agencies - accumulate considerable experience with recurring building types. But current CAD systems capture this experience and support its reuse only marginally. SEED intends to provide systematic support for the storing and retrieval of past solutions and their adaptation to similar problem situations. This motivation aligns aspects of SEED closely with current work in Artificial Intelligence that focuses on case-based design (see, for example, Kolodner, 1991; Domeshek and Kolodner, 1992; Hua et al., 1992).
series other
email
last changed 2003/04/23 15:14

_id 88cb
authors Gero, John S. and Oksala, Tarkko (editors)
year 1988
title Knowledge-Based Systems in Architecture
source TIPS'88 - Knowledge Based Design in Architecture, Acta Polytechnica Scandinavica (1988 : Helsinki, Finland). 143 p. 1989
summary The technology of knowledge-based systems can be found in texts on artificial intelligence. There is very little published so far on knowledge-based systems in architecture. To this end an international conference -- TIPS' 88: Knowledge-Based Design in Architecture -- was organized for August 1988 in Finland. Thirteen papers from that conference have been selected and edited for this monograph. They are grouped under five parts: Introduction; Schemas and Models; Processes and Knowledge; Modeling Buildings; and Creativity and Knowledge-Based Systems
keywords knowledge base, architecture, representation, expert systems,building, creativity
series CADline
email
last changed 2003/06/02 13:58

_id 6745
authors Giraud, Christian and Hanrot, Stephane
year 1988
title Elements for Spatial Reasoning in Construction
source Robotics in Construction, International Symposium (5th : 1988 : Tokyo, Japan). pp. 105- 113 : ill. includes bibliography
summary According to AI techniques, spatial reasoning is seen in construction as generation and solving of goals involving a spatial representation model of buildings defining a rich taxonomy of parts and elements, and spatial relationships between these parts and elements. The authors define spatial representation model and spatial relationship from previous experiments in architect knowledge representation and automated surveying. The aim is to enable very abstract and short descriptions of building component assemblies, from designers at drawing-boards or from workers on sites, which can be processed and transformed in basic geometrical properties
keywords reasoning, representation, construction, automation
series CADline
last changed 2003/06/02 13:58

_id 4da4
authors Jordan, J. Peter
year 1988
title ARCH 431: Computer-Aided Design
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 187-200
doi https://doi.org/10.52842/conf.acadia.1988.187
summary There is a significant variance in the way computer courses are taught at various institutions around the country. Generally, it is useful to think of these courses falling either into a "tool-building" or a "tool-using" category. However, within either category, there is a variety of focus on the application of the "tool". Two courses have been developed at the University of Hawaii at Manoa which deal with computer applications. The first course is more quantitatively oriented, encouraging students to explore ways of dealing with problems in a more complex and substantial manner. This paper deals with the second course whose focus has shifted toward design issues, using the computer as a tool to explore these issues. This course exposes the student, not to training on a specific computer-aided drafting system, but to issues in computer-aided design which include hardware and software systems, human-machine interface, and the nature of the design process. This course seems to be an appropriate model for introducing computer-aided design to undergraduates in a professional design program.
series ACADIA
email
last changed 2022/06/07 07:52

_id 0711
authors Kunnath, S.K., Reinhorn, A.M. and Abel, J.F.
year 1990
title A Computational Tool for Evaluation of Seismic Performance of RC Buildings
source February, 1990. [1] 15 p. : ill. graphs, tables. includes bibliography: p. 10-11
summary Recent events have demonstrated the damaging power of earthquakes on structural assemblages resulting in immense loss of life and property (Mexico City, 1985; Armenia, 1988; San Francisco, 1989). While the present state-of-the-art in inelastic seismic response analysis of structures is capable of estimating response quantities in terms of deformations, stresses, etc., it has not established a physical qualification of these end-results into measures of damage sustained by the structure wherein system vulnerability is ascertained in terms of serviceability, repairability, and/or collapse. An enhanced computational tool is presented in this paper for evaluation of reinforced concrete structures (such as buildings and bridges) subjected to seismic loading. The program performs a series of tasks to enable a complete evaluation of the structural system: (a) elastic collapse- mode analysis to determine the base shear capacity of the system; (b) step-by-step time history analysis using a macromodel approach in which the inelastic behavior of RC structural components is incorporated; (c) reduction of the response quantities to damage indices so that a physical interpretation of the response is possible. The program is built around two graphical interfaces: one for preprocessing of structural and loading data; and the other for visualization of structural damage following the seismic analysis. This program can serve as an invaluable tool in estimating the seismic performance of existing RC buildings and for designing new structures within acceptable levels of damage
keywords seismic, structures, applications, evaluation, civil engineering, CAD
series CADline
last changed 2003/06/02 14:41

_id 7e15
authors Kvan, Thomas
year 1997
title Chips, chunks and sauces
source International Journal of Design Computing, 1, 1997 (Editorial)
summary I am sure there is an art in balancing the chunks to use with your chips. Then there is the sauce that envelops them both. I like my chips chunky and not too saucy. Not that I am obsessed with food but I don't think you can consider design computing without chunks. It's the sauce I'm not sure about. The chunks of which I write are not of course those in your salsa picante but those postulated by Chase and Simon (1973) reflecting on good chess players; the chunks of knowledge with which an expert tackles a problem in their domain of expertise. The more knowledge an expert has of complex and large configurations of typical problem situations (configurations of chess pieces), the greater range of solutions the expert can bring a wider to a particular problem. Those with more chunks have more options and arrive at better solutions. In other words, good designs come from having plenty of big chunks available. There has been a wealth of research in the field of computer-supported collaborative work in the contexts of writing, office management, software design and policy bodies. It is typically divided between systems which support decision making (GDSS: group decision support systems) and those which facilitate joint work (CSCW: computer-based systems for co-operative work) (see Dennis et al. (1988) for a discussion of the distinctions and their likely convergence). Most implementations in the world of design have been on CSCW systems, few have looked at trying to make a group design decision support system (GDDSS?). Most of the work in CSCD has been grounded in the heritage of situated cognition - the assumption that collaborative design is an act that is intrinsically grounded in the context within which it is carried out, that is, the sauce in which we find ourselves swimming daily. By sauce, therefore, I am referring to anything that is not knowledge in the domain of expertise, such as modes of interaction, gestures, social behaviours.
series journal paper
email
last changed 2003/05/15 10:29

_id e8bb
authors Lehto, M.
year 1988
title Optical Discs - Their Application in Mass Data Storage
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 189-198
summary Much of the building designer's time is taken up correlating the various sources of information so as to incorporate it in the design within a limited time span. The building information service should be able to provide him or her by the up-to-date information in a user friendly format. Optical disc technology makes it possible to combine different forms of building data into images which can be mass stored and randomly accessed on a single disc, with the minimal response time by personal computer or CAD- workstation. In this paper the use of various forms of optical disc technology in construction industry and the prototype video disc produced by VTT are described.
keywords Construction, Optical Discs, Interactive Video Disc, Mass Storage
series CAAD Futures
last changed 1999/04/03 17:58

_id 0347
authors Maver, T.
year 1988
title Software Tools for the Technical Evaluation of Design Alternatives
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 47-58
summary Designing buildings which 'work' - economically, socially and technically - remains the central challenge for architects. This paper is concerned with the state of development of software tools for the evaluation of the technical issues which are relevant at the conceptual stages, as opposed to the detailed stages, of design decision-making. The technical efficiency of building is of enormous economic importance. The capital investment in building in Europe represents some 12% of the Gross Domestic Product; this capital investment is exceeded by an order of magnitude, however, by the operating costs of buildings over their life span. In turn, these operating costs are exceeded - again by an order of magnitude - by the costs associated with the (human) operations which go on within the building, and on which the design of the building has some impact.
series CAAD Futures
email
last changed 2001/06/04 17:16

_id 651b
authors Maver, Tom and Wagter, Harry (eds.)
year 1988
title CAAD futures ‘87 [Conference Proceedings]
source Second International Conference on Computer Aided Architectural Design Futures / ISBN 0-444-42916-6 / Eindhoven (The Netherlands), 20-22 May 1987, 261 p.
summary The building Industry is Europe's largest single industry employing directly or indirectly 1 in 8 of the working population; yet it is fragmented, ill-organised and unprogressive. Part at least of the cause can be attributed to a failure by the architectural profession to adopt advances in Information Technology - notably Computer Aided Design. The purpose of the series of conferences on CAAD Futures is to chart a route towards a future in which the outcome of current and continuing research and development results in design tools which are acceptable to practioners and which substantially improve the quality of design decision-making and management. The papers which are printed in these proceedings make a significant contribution to our view of the future. Together they cover the range of issues which are the legitimate concern of researchers, developers, vendors, and users of CAAD software; as might be expected, they raise as many questions as they answer and they pose problems as well as reporting progress.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id ed0f
authors Moshe, R. and Shaviv, E.
year 1988
title Natural Language Interface for CAAD System
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 137-148
summary This work explores issues involved in the development of a natural interface for man-machine dialogue in architectural design processes. A hand-touch on an interactive surface is suggested as the best natural-language interface for architectural CAD systems. To allow the development of a rich range of hand-touch natural-language for communicating information and commands to the computer, it is proposed to develop a new type of a touch-panel, for which a set of specifications is presented. A conceptual design of an architectural workstation, having the described touch-panel, is presented. This workstation is characterized by the integration of the entire range of control and communication facilities required for any architectural task into a single interactive unit. The conceptual model for this workstation is the standard size drawing board, on which the architect is accustomed to spread documents, drawings, books and tools, shuffle them around and interchange them freely by using the natural-language interface developed in this work. The potential of the suggested hand-touch natural-language and the proposed workstation are demonstrated by a case-study.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 11cb
id 11cb
authors Oguzhan Özcan
year 2004
title MATHEMATICS AND DESIGN EDUCATION
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 199-203.
summary Many people believe that mathematical thought is an essential element of creativity. The origin of this idea in art dates back to Plato. Asserting that aesthetics is based on logical and mathematical rules, Plato had noticed that geometrical forms were “forms of beauty” in his late years. Unlike his contemporaries, he had stressed that the use of geometrical forms such as lines, circles, planes, cubes in a composition would aid to form an aesthetics. The rational forms of Plato and the rules of geometry have formed the basis of antique Greek art, sculpture and architecture and have influenced art and design throughout history in varying degrees. This emphasis on geometry has continued in modern design, reflected prominently by Kandinsky’s geometric classifications .

Mathematics and especially geometry have found increasing application in the computer-based design environment of our day. The computer has become the central tool in the modern design environment, replacing the brush, the paints, the pens and pencils of the artist. However, if the artist does not master the internal working of this new tool thoroughly, he can neither develop nor express his creativity. If the designer merely learns how to use a computer-based tool, he risks producing designs that appear to be created by a computer. From this perspective, many design schools have included computer courses, which teach not only the use of application programs but also programming to modify and create computer-based tools.

In the current academic educational structure, different techniques are used to show the interrelationship of design and programming to students. One of the best examples in this area is an application program that attempts to teach the programming logic to design students in a simple way. One of the earliest examples of such programs is the Topdown Programming Shell developed by Mitchell, Liggett and Tan in 1988 . The Topdown system is an educational CAD tool for architectural applications, where students program in Pascal to create architectural objects. Different examples of such educational programs have appeared since then. A recent fine example of these is the book and program called “Design by Number” by John Maeda . In that book, students are led to learn programming by coding in a simple programming language to create various graphical primitives.

However, visual programming is based largely on geometry and one cannot master the use of computer-based tools without a through understanding of the mathematical principles involved. Therefore, in a model for design education, computer-based application and creativity classes should be supported by "mathematics for design" courses. The definition of such a course and its application in the multimedia design program is the subject of this article.

series other
type normal paper
email
last changed 2005/04/07 15:36

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 8HOMELOGIN (you are user _anon_678795 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002