CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 131

_id e7a8
authors Emde, H.
year 1988
title Geometrical Fundamentals for Design and Visualization of Spatial Objects
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 171-178
summary Every architectural object is a 3-dimensional entity of the human environment, haptically tangible and optically visible. During the architectural process of planning every object should be designed as a body and should be visualized in pictures. Thus the parts of construction get an order in space and the steps of construction get an order in time. The ideal planning object is a simulated anticipation of the real building object, which is to be performed later on. The possibility to relate the planning object immediately to the building object relies on the fact that they both have the same "geometry" This means: both can be described in the same geometric manner. Creating and visualizing spatial objects is based on geometrical fundamentals. Theoretical knowledge and practical control of these fundamentals is essential for the faultless construction and the realistic presentation of architectural objects. Therefore they have to be taught and learned thoroughly in the course of an architectural education. Geometrical design includes the forming of object- models (geometry of body boundaries), the structuring of object-hierarchies (geometry of body combinations) and the colouring of objects. Geometrical visualization includes controlling the processes of motion, of the bodies (when moving objects) and of the center of observation (when moving subjects) as well as the representation of 3-dimensional objects in 2- dimensional pictures and sequences of pictures. All these activities of architects are instances of geometrical information processing. They can be performed with the aid of computers. As for the computer this requires suitable hardware and software, as for the architect it requires suitable knowledge and capabilities to be able to talk about and to recall the perceivable objects and processes of the design with logic abstracts (language of geometry). In contrast to logical, numerical and textual informations the geometric informations concerning spatial objects are of much higher complexity. Usually these complexes of information are absorbed, processed and transmitted by the architect in a perceptive manner. The computer support in the field of geometry assumes that the processing of perceptions of the human consciousness can be converted by the computer as a framework of logical relations. Computer aided construction and representation require both suited devices for haptical and optical communication and suitable programs in particular.
series CAAD Futures
last changed 1999/04/03 17:58

_id b0f7
authors Martens, Bob
year 1992
title A FINISHING TOUCH TO THE FULL-SCALE LABORATORY AT THE UNIVERSITY OF TECHNOLOGY IN VIENNA
source Proceedings of the 4rd European Full-Scale Modelling Conference / Lausanne (Switzerland) 9-12 September 1992, Part A, pp. 7-14
summary The development planning of the full-scale laboratory at the Vienna University of Technology was already presented to the third E.F.A. Conference in Lund (1990). Exchange of experience has greatly encouraged us to take all measures necessary for an immediate provisional operation. Working experience was of considerable significance regarding reconstruction work having repeatedly been postponed ever since 1988. This paper deals with the Vienna full-scale laboratory in its ultimate form and all the equipment designed therefore. Summarizingly, the further measures for operation are being considered.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
type normal paper
email
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 15:30

_id diss_howe
id diss_howe
authors Howe, Alan Scott
year 1988
title A new paradigm for life-cycle management of kit-of-parts building systems
source UNIVERSITY OF MICHIGAN , PhD
summary The research described in this dissertation brings together various technologies in manufacturing and information management and suggests a new paradigm for the design, manufacture, and lifetime use of artifacts using kit-of-parts systems and rule-based assembly. The questions are asked: If architects, designers, and users were given direct online connection to real-time design information sources and fabrication processes, and have the ability to monitor and control the current state of designed objects throughout the objects' lifetime, how would the entire life-cycle of a product be affected, and how would design processes change? During the course of the research described in this dissertation, a series of simulations and experiments were conducted which produced a computer-based simulated design, manufacture, and use environment wherein these questions could begin to be answered. A kit-of-parts model building system was devised which could be used to design model buildings in virtual form by downloading virtual representations of the components from the Internet and assembling them into a desired form. The virtual model building could then be used to order the manufacture of real components online, and remotely controlled robots used to assemble the actual building on the site. Through the use of special hardware manufactured into the components, real-time remote monitoring and control of the current state of the finished model building was affected during the building's lifetime. The research establishes the feasibility of an online life-cycle environment where a virtual representation of an artifact is created and used to both manufacture a real-world counterpart and also monitor and control the current state of the real-world object. The state-of-the-art of pertinent technologies were explored through literature searches and experiments. Data representation, rule-based design techniques, robotics, and digital control were studied, and a series of design principles established which lend themselves toward a life-cycle management paradigm. Several case studies are cited which show how the design principles and life-cycle management environment can be applied to real buildings and other artifacts such as vehicles and marine structures. Ideas for expanded research on the life-cycle management paradigm are cited.  

series thesis:PhD
email
more http://wwwlib.umi.com/dissertations/fullcit/9909905
last changed 2003/11/20 19:57

_id 98bd
authors Pea, R.
year 1993
title Practices of Distributed Intelligence and Designs for Education
source Distributed Cognitions, edited by G. Salomon. New York, NY: CambridgeUniversity Press
summary v Knowledge is commonly socially constructed, through collaborative efforts... v Intelligence may also be distributed for use in designed artifacts as diverse as physical tools, representations such as diagrams, and computer-user interfaces to complex tasks. v Leont'ev 1978 for activity theory that argues forcibly for the centrality of people-in-action, activity systems, as units of analysis for deepening our understanding of thinking. v Intelligence is distributed: the resources that shape and enable activity are distributed across people, environments, and situations. v Intelligence is accomplished rather than possessed. v Affordance refers to the perceived and actual properties of a thing, primarily those functional properties that determine how the thing could possibly be used. v Norman 1988 on design and psychology - the psychology of everyday things" v We deploy effort-saving strategies in recognition of their cognitive economy and diminished opportunity for error. v The affordances of artifacts may be more or less difficult to convey to novice users of these artifacts in the activities to which they contribute distributed intelligence. v Starts with Norman's seven stages of action Ø Forming a goal; an intention § Task desire - clear goal and intention - an action and a means § Mapping desire - unable to map goal back to action § Circumstantial desire - no specific goal or intention - opportunistic approach to potential new goal § Habitual desire - familiar course of action - rapidly cycle all seven stages of action v Differentiates inscriptional systems from representational or symbol systems because inscriptional systems are completely external, while representational or symbol systems have been used in cognitive science as mental constructs. v The situated properties of everyday cognition are highly inventive in exploiting features of the physical and social situation as resources for performing a task, thereby avoiding the need for mental symbol manipulations unless they are required by that task. v Explicit recognition of the intelligence represented and representable in design, specifically in designed artifacts that play important roles in human activities. v Once intelligence is designed into the affordances properties of artifacts, it both guides and constrains the likely contributions of that artifact to distributed intelligence in activity. v Culturally valued designs for distributed intelligence will change over time, especially as new technology becomes associated with a task domain. v If we treat distributed intelligence in action as the scientific unit of analysis for research and theory on learning and reasoning... Ø What is distributed? Ø What constraints govern the dynamics of such distributions in different time scales? Ø Through what reconfigurations of distributed intelligence might the performance of an activity system improve over time? v Intelligence is manifest in activity and distributed in nature. v Intelligent activities ...in the real world... are often collaborative, depend on resources beyond an individual's long-term memory, and require the use of information-handling tools... v Wartofsky 1979 - the artifact is to cultural evolution what the gene is to biological evolution - the vehicle of information across generations. v Systems of activity - involving persons, environment, tools - become the locus of developmental investigation. v Disagrees with Salomon et al.'s entity-oriented approach - a language of containers holding things. v Human cognition aspires to efficiency in distributing intelligence - across individuals, environment, external symbolic representations, tools, and artifacts - as a means of coping with the complexity of activities we often cal "mental." "
series other
last changed 2003/04/23 15:14

_id 5f4b
authors Coyne, R.D.
year 1988
title Logic Models of Design
source Pitman, London
summary This monograph places design in a theoretical context which applies developments in knowledge-based systems, logic programming and planning to design. It addresses two important design issues: the interpretation of designs, which concerns the discovery of implicit design attributes, a key activity in design evaluation that can be modelled by deductive inference in logic programming; and the process of generation, whereby a design description is produced which exhibits these implicit design attributes. Implicit attributes can be seen as analogous to the semantic content of natural language utterances. The work presented here is mainly concerned with design generation, and an operational model of design is investigated in which operations on processes are treated in a similar way to operations on form. It is argued that there are advantages in representing control knowledge as rules in a design system, and that logic is an effective medium for this purpose. This is demonstrated by means of programs developed in Prolog and C using the example of spatial layout in buildings. Primarily, this book is directed at those in artificial intelligence (AI) involved in logic programming, planning and expert systems. However, since AI techniques are finding widespread application in industry, the use of an architectural design example makes this work relevant to architects, designers, engineers and developers of intelligent architectural design software.
series other
email
last changed 2003/04/23 15:14

_id a62c
authors Flemming, Ulrich, Coyne, Robert F. and Glavin, Timothy J. (et al)
year 1988
title A Generative Expert System for the Design of Building Layouts -- Version 2
source Artificial Intelligence in Engineering: Design. editor. John J. Gero. Elsevier (Computational Mechanics Publications), 1988. PP. 445-464 : ill. includes bibliography
summary The paper describes an attempt to increase the intelligence of a CAD system by adding capabilities (1) to systematically enumerate alternative solutions to a design problem, and (2) to take, at the same time, a broad spectrum of criteria or concerns into account. These capabilities are intended to complement the designer's abilities and performance. In connection with such attempts, fundamental problems arise when the objects to be designed have shape and are located in space. These problems are identified, and an approach to solve them is outlined. This approach is currently being tested over a range of domains all of which deal with the design of layouts of rectangles subject to constraints and criteria. The search for alternatives takes place in a state space with properties that make it possible to systematically explore and evaluate the power of various search strategies or planning paradigms. The state space is established through a domain-independent generator, while the evaluation of points in that space is carried out by a domain-dependent tester built up through a process of knowledge acquisition familiar from work with expert systems
keywords design, expert systems, CAD, enumeration, shape grammars,architecture, intelligence, synthesis, space allocation, layout, floor plans
series CADline
email
last changed 2003/06/02 13:58

_id 436b
authors Gero, John S. (editor)
year 1988
title Artificial Intelligence in Engineering : Robotics and Processes
source 403 p. Amsterdam: Elsevier/CMP, 1988. CADLINE has abstract only
summary This volume contains the papers in the robotics and processes areas from the Third International Conference on Artificial Intelligence in Engineering. Robotics has the potential to change the physical face of engineering and has no counterpart in traditional engineering. It requires the integration of numerous disparate aspects of engineering. There is a fundamental requirement for geometric and spatial reasoning of a qualitative kind. A variety of other processes in engineering are being examined through the artificial intelligence lens. The material collected under the process rubric demonstrates both the benefits and potential of utilizing this approach. The papers are presented under the following headings: Robotics; Geometric and Spatial Reasoning; Interpretation Processes; Reasoning Processes; Planning and Scheduling Processes; Interfaces
keywords AI, robotics, reasoning, planning, user interface, engineering, construction
series CADline
email
last changed 2003/06/02 13:58

_id c70a
authors Lindgren, Christina Axelsson
year 1988
title Forest Visual Variation as a Recreative Force
source Knowledge-Based Design in Architecture, Tips-88 (pre-proceedings) (1988 : Otaniemi). editors. John S Gero and T. Oksala. Espoo, Finland: Research Institute for Built Environment, Helsinki University of Technology, Department of Architecture, pp. 149-157. includes bibliography.
summary --- A revised version of this paper has been published in the Acta Polytechnica Scandinavica series. The article presents some findings concerning the importance of forest visual variation and the possibilities to create a Forest Visual Opportunity Spectrum. In the light of suggestions on theory of recreation and of the actual multiple use planning situation of forests, the possibilities and limits of empirical studies as a tool to receive knowledge of visual aspects of forests are discussed
keywords planning, knowledge, applications, landscape
series CADline
last changed 1999/02/12 15:09

_id 4901
authors McIntosh, John F.
year 1988
title The ASU Strategic Plan For Computing Support
doi https://doi.org/10.52842/conf.acadia.1988.301
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 301-310
summary Our College has spent approximately one hundred thousand dollars per year on computing over the last five years. This paper, which developed out of a University-wide strategic planning exercise, speaks to the question: What are we getting for all that money?

The background to this large planning exercise is sketched, the goals of our computing support plan are stated, the strategies aimed at achieving these goals are explained, and the observed outcomes from implementing these strategies are listed.

In evaluating the plan, this paper argues the position that a computer culture must take hold within the College before computer-aided design will have a truly profound effect upon pedagogy. Operationally, this means that every faculty member must have a personal computer and that every student must have free access to a microcomputer facility. Only then does the whole College adopt the new culture.

The fiscal commitment is high, but there are payoffs in of fice automation that justify the investment even in the short-term. Trivial as it seems, wordprocessing is the first step in seeding this culture. These short term payoffs help make the case for investing in the promise of long-term payoffs in superior design through computer aids.

series ACADIA
email
last changed 2022/06/07 07:58

_id ca71
authors Noble, Douglas and Rittel, Horst W.J.
year 1988
title Issue-Based Information Systems for Design
doi https://doi.org/10.52842/conf.acadia.1988.275
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 275-286
summary The understanding of planning and design as a process of argumentation (of the designer with himself or with others) has led to the concept of IBIS (Issue-Based Information Systems). The elements of IBIS are Issues, each of which are associated with alternative positions. These in turn are associated with arguments which support or object to a given position (or another argument). In the course of the treatment of issues, new issues come up which are treated likewise.

Issue-Based Information Systems are used as a means of widening the coverage of a problem. By encouraging a greater degree of participation, particularly in the earlier phases of the process, the designer is increasing the opportunity that difficulties of his proposed solution, unseen by him, will be discovered by others. Since the problem observed by a designer can always be treated as merely a symptom of another higher-level problem, the argumentative approach also increases the likelyhood that someone will attempt to attack the problem from this point of view. Another desirable characteristic of the Issue-Based Information System is that it helps to make the design process 'transparent'. Transparency here refers tO the ability of observers as well as participants to trace back the process of decision-making.

This paper offers a description of a computer-supported IBIS (written in 'C' using the 'XWindows' user interface), including a discussion of the usefulness of IBIS in design, as well as comments on the role of the computer in IBIS implementation, and related developments in computing.

series ACADIA
email
last changed 2022/06/07 07:58

_id 45b7
authors Oxman, R.E.
year 1988
title Expert System for Generation and Evaluation in Architectural Design
source Technion, Faculty of Architecture and Town Planing, Haifa
summary The research field, focuses on a new research area of Knowledge Based Systems for Architectural Design. The research deals with concepts and tools emerging from Artificial Intelligence, Knowledge Based Systems and Expert Systems. The research is involved with the construction of a theoretical basis for the development of approaches and methods for the representation and control of design knowledge as a reasoning process. Key questions which attempt to reconsider representation and control in design are formulated. The following questions serve as a research framework out of which new approaches, methods and tools were developed. (1.)What are the existing ideas, methods and tools in Expert Systems? (2.) What are the performance characteristics of Expert Systems in Architectural Design ? (3.) What are the desired operative characteristics and interactions for Expert Systems in design ? (4.) How is it possible to formulate and apply the diverse forms of Architectural Knowledge in Expert Systems for design? (5.) What are the problems of implementation in the development of Expert Systems for design ? The state of the art in knowledge based systems is surveyed, while emphasizing the differences between conventional systems and knowledge based systems. Representation and control methods and the components of expert systems are reviewed. Expert systems for diagnosis, interpretation, planning and design are analysed with respect to their performance characteristics. Techniques and technologies of existing tools are defined. An expert system for the generation and evaluation of ill defined architectural design problems is develped. A formalization of the concept of 'design interpretation' is proposed and developed. It is applied in the process of defining and classifying the performance characteristics of expert systems for design. This concept is based upon two sets of reasoning processes: those which enable a mapping between design requirements and solution descriptions in the generation stage of design and those between solution descriptions and performance evaluation in the evaluation stage of design. On the basis of the formalization of this concept, an expert system capable of integrating various modes of performance is proposed and developed. The system functions as a 'design generator', a 'design critic', or a' design critic-generator'. These modes, which integrate generation and evaluation in the same system, operate by employing both forward chaining and backward chaining inference mechanisms. As a result of the examination of desired forms of interactions, a new approach for dual direction interpretation between graphic and verbal modes is developed. This approach reflects the importance of both graphical and verbal expression in design. The approach is based upon a simultaneous mapping between symbolic-verbal interpretation and graphic interpretation. The work presents the mapping process through the concept of design interpretation, employing geometrical knowledge, typological knowledge and evaluation knowledge. A tool which provides communication between an expert system and a graphic system was developed and is presented. The importance of such a tool in expert systems for design resides in the provision of free choice to the user for interacting with the system either graphically or verbally during the design process. An additional component in the development of knowledge-based systems for design is related to the important question of knowledge definition and the representational schemata of design knowledge. A new representational scheme for complex architectural knowledge, termed 'The generation and refinement scheme of a design prototype' is proposed and developed. Its operation as part of a total integrated design system is demonstrated. The scheme is based upon the structures of knowledge of design precedents which constitute typical situations and solutions in architectural design. This scheme provides an appropriate representation for the two types of knowledge which operate in a refinement process of a design prototype. Generative knowledge describes the solution space by predefined refinement stages; interpretive knowledge enables their selection. The examination of representational methods for the proposed scheme indicated that employing a single representational method lacked enough generalization and expressive power for the needs of the design knowledge structures. It was found that a way to represent complex structures is through the integration of multiple methods of representation, each one according to the knowledge characteristics. In order to represent the proposed scheme of design knowledge, a unique method was developed which integrates both rules and frames. The method consists of a rules-frames-rules structure for the representation of a design prototype. An approach is developed for the implementation of these concepts in an expert system for design. PRODS: A prototype based expert system shell for design is developed and demonstrated. The system consists of three basic components: a rule-based expert system shell, a frame system, and a knowledge base interface. All system interactions are controlled by the inference engine. It passes control between the rule-base and the frame-base inference engines, and provides communications between the rule-based and frame-based representations. It is suggested that expert system can interface with external CAD systems including graphics, communicating through a central representation. These concepts and developments are demonstrated in two implementations. The PREDIKT system for the preliminary design of the residential kitchen; the PROUST system for the selection and refinement of dwelling types. PREDIKT demonstrates the integration of rules and a graphical-verbal interpreter; in addition, PROUST demonstrates the significance of hybrid representation in the generation and refinement processes. The results and conlusions are summarized. Future research agenda within the field of knowledge-based systems for design is discussed, and potential research areas are defined.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 2d82
authors Radford, Anthony D., Oxman, Robert and Oxman, Rivka
year 1988
title Design Teaching: The Language of Architectural Plans
doi https://doi.org/10.52842/conf.acadia.1988.099
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 99-110
summary The aims, operation and student reaction to a design studio course for beginning architecture students on the syntax of architectural plans are described. The course is highly structured and draws from computer graphics templates and a teaching manual which set up a series of exercises. The process of learning comes from execution of the exercises and from associated reading, discussion and debate on architectural planning issues.

series ACADIA
email
last changed 2022/06/07 08:00

_id 6a1d
authors Woodbury, Robert F.
year 1988
title The knowledge based representation and manipulation of geometry
source Carnegie Mellon University
summary An approach to the integration of geometric information in knowledge based systems is described as an architecture for geometric reasoning. The general requirements for this integration arise from the need for rich geometry representations in engineering domains and the conflicting demands of current geometric modelling and knowledge based systems. Four concepts are used as a basis: (1) Classes of spatial sets, which act by inheritance as a means for incremental definition by specialization, (2) Features, which denote evaluated portions of a geometric model, (3) Abstractions, which provide partial representations of geometric objects, and (4) Constraints through which spatial relationships are expressed. These four concepts combine in a synergistic manner to define the complete architecture. A prototype implementation of the architecture, built using object oriented programming techniques and a boundary based solid modeller, has been achieved and demonstrated through examples in the domains of robot task planning and automotive parts design.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 0dff
authors Woodbury, Robert F., Fenves, Stephen J. and Baker, Nelson C. (et al)
year 1988
title Geometric Reasoning in Computer Integrated Building Construction
source Robotics in Construction, International Symposium (5th : 1988 : Tokyo, Japan). pp. 115-124 : ill. includes bibliography
summary Geometric reasoning, the integration of geometric representation and inference in advanced computer systems, is presented as an issue at the forefront of research in construction automation. The unique demands that construction automation poses on such reasoning are discussed. An architecture that provides a structure for geometric reasoning is presented and results from a prototype implementation are shown. A project to develop geometric reasoning in the construction domain of panelized building systems is introduced. Within this project, two exemplary applications, structural/architectural design and construction sequence planning, each supported by the same geometric reasoning facility, are being demonstrated
keywords geometry, reasoning, representation, inference, construction, automation, applications, architecture, engineering
series CADline
email
last changed 2003/06/02 13:58

_id 450c
authors Akin, Ömer
year 1990
title Computational Design Instruction: Toward a Pedagogy
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 302-316
summary The computer offers enormous potential both in and out of the classroom that is realized only in limited ways through the applications available to us today. In the early days of the computer it was generally argued that it would replace the architect. When this idea became obsolete, the prevailing opinion of proponents and opponents alike shifted to the notion of the computer as merely adding to present design capabilities. This idea is so ingrained in our thinking that we still speak of "aiding" design with computers. It is clear to those who grasp the real potential of this still new technology - as in the case of many other major technological innovations - that it continues to change the way we design, rather than to merely augment or replace human designers. In the classroom the computer has the potential to radically change three fundamental ingredients: student, instruction, and instructor. It is obvious that changes of this kind spell out a commensurate change in design pedagogy. If the computer is going to be more than a passive instrument in the design studio, then design pedagogy will have to be changed, fundamentally. While the practice of computing in the studio continues to be a significant I aspect of architectural education, articulation of viable pedagogy for use in the design studio is truly rare. In this paper the question of pedagogy in the CAD studio will be considered first. Then one particular design studio taught during Fall 1988 at Carnegie Mellon University will be presented. Finally, we shall return to issues of change in the student, instruction, and instructor, as highlighted by this particular experience.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id 696c
authors Beheshti, M. and Monroy, M.
year 1988
title Requirements for Developing an Information System for Architecture
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 149-170
summary This paper discusses possibilities of developing new tools for architectural design. It argues that architects should meet the challenge of information technology and computer-based design techniques. One such attempt has been the first phase of the development of an architectural design information system (ADIS), also an architectural design decision support system. The system should benefit from the developments of the artificial intelligence to enable the architect to have access to information required to carry out design work. In other words: the system functions as a huge on-line electronic library of architecture, containing up-to-date architectural design information, literature, documents, etc. At the same time, the system offers necessary design aids such as computer programs for design process, drawing programs, evaluation programs, cost calculation programs, etc. The system also provides data communication between the architect and members of the design coalition team. This is found to be of vital importance in the architectural design process, because it can enable the architect to fit in changes, brought about in the project by different parties. Furthermore, they will be able, to oversee promptly the consequences of changes or decisions in a comprehensive manner. The system will offer advantages over the more commonly applied microcomputer based CAAD and IGDM (integrated graphics database management) systems, or even larger systems available to an architect. Computer programs as well as hardware change rapidly and become obsolete. Therefore, unrelenting investment pressure to up-date both software and hardware exists. The financial burden of this is heavy, in particular for smaller architectural practices (for instance an architect working for himself or herself and usually with few or no permanent staff). ADIS, as an on-line architectural design aid, is constantly up-dated by its own organisation. This task will be co-ordinated by the ADIS data- base administrator (DBA). The processing possibilities of the system are faster, therefore more complex processing tasks can be handled. Complicated large graphic data files, can be easily retrieved and manipulated by ADIS, a large system. In addition, the cost of an on-line system will be much less than any other system. The system is based on one model of the architectural design process, but will eventually contain a variety of design models, as it develops. The development of the system will be an evolutionary process, making use of its users' feed-back system. ADIS is seen as a step towards full automation of architectural design practices. Apart from being an architectural design support system, ADIS will assist the architect in his/her administrative and organisational activities.
series CAAD Futures
last changed 2003/11/21 15:16

_id e1e2
authors Danahy, John
year 1988
title Engaging Intuitive Visual Thinking in Urban Design Modelling: A Real-Time Hypothesis
doi https://doi.org/10.52842/conf.acadia.1988.087
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 87-97
summary This paper will present prototypical software being used in the teaching of urban design to students and for use by professionals in the early stages of a project. The system is intended to support a heuristic approach to design. That is, it supports a process of refining ideas and understandings through a process of trial and error. The support or aid to design comes in the form of a didactic real-time programme. Its power lies in its ability to provide instantaneous response to operations on the data that can allow one to develop threedimensional spatial ideas in an intuitively driven manner. This condition appears to occur for both novice and expert computer operators.

The presentation will present our experience to-date in using conventional computer graphic tools to represent design ideas and contrast it with a video demonstration of our prototypical dynamic urban design modelling software for the Silicon Graphics IRIS computers.

series ACADIA
email
last changed 2022/06/07 07:55

_id 819d
authors Eiteljorg, H.
year 1988
title Computing Assisted Drafting and Design: new technologies for old problems
source Center for the study of architecture, Bryn Mawr, Pennsylvania
summary In past issues of the Newsletter, George Tressel and I have written about virtual reality and renderings. We have each discussed particular problems with the technology, and both of us mentioned how compelling computer visualizations can be. In my article ("Virtual Reality and Rendering," February, 1995, Vol. 7, no. 4), I indicated my concerns about the quality of the scholarship and the level of detail used in making renderings or virtual worlds. Mr. Tressel (in "Visualizing the Ancient World," November, 1996, Vol. IX, no. 3) wrote about the need to distinguish between real and hypothetical parts of a visualization, the need to differentiate materials, and the difficulties involved in creating the visualizations (some of which were included in the Newsletter in black-and-white and on the Web in color). I am returning to this topic now, in part because the quality of the images available to us is improving so fast and in part because it seems now that neither Mr. Tressel nor I treated all the issues raised by the use of high-quality visualizations. The quality may be illustrated by new images of the older propylon that were created by Mr. Tressel (Figs. 1 - 3); these images are significantly more realistic than the earlier ones, but they do not represent the ultimate in quality, since they were created on a personal computer.
series other
last changed 2003/04/23 15:50

_id 68c8
authors Flemming, U., Coyne, R. and Fenves, S. (et al.)
year 1994
title SEED: A Software Environment to Support the Early Phases in Building Design
source Proceeding of IKM '94, Weimar, Germany, pp. 5-10
summary The SEED project intends to develop a software environment that supports the early phases in building design (Flemming et al., 1993). The goal is to provide support, in principle, for the preliminary design of buildings in all aspects that can gain from computer support. This includes using the computer not only for analysis and evaluation, but also more actively for the generation of designs, or more accurately, for the rapid generation of design representations. A major motivation for the development of SEED is to bring the results of two multi-generational research efforts focusing on `generative' design systems closer to practice: 1. LOOS/ABLOOS, a generative system for the synthesis of layouts of rectangles (Flemming et al., 1988; Flemming, 1989; Coyne and Flemming, 1990; Coyne, 1991); 2. GENESIS, a rule-based system that supports the generation of assemblies of 3-dimensional solids (Heisserman, 1991; Heisserman and Woodbury, 1993). The rapid generation of design representations can take advantage of special opportunities when it deals with a recurring building type, that is, a building type dealt with frequently by the users of the system. Design firms - from housing manufacturers to government agencies - accumulate considerable experience with recurring building types. But current CAD systems capture this experience and support its reuse only marginally. SEED intends to provide systematic support for the storing and retrieval of past solutions and their adaptation to similar problem situations. This motivation aligns aspects of SEED closely with current work in Artificial Intelligence that focuses on case-based design (see, for example, Kolodner, 1991; Domeshek and Kolodner, 1992; Hua et al., 1992).
series other
email
last changed 2003/04/23 15:14

_id 2e5a
authors Matsumoto, N. and Seta, S.
year 1997
title A history and application of visual simulation in which perceptual behaviour movement is measured.
source Architectural and Urban Simulation Techniques in Research and Education [3rd EAEA-Conference Proceedings]
summary For our research on perception and judgment, we have developed a new visual simulation system based on the previous system. Here, we report on the development history of our system and on the current research employing it. In 1975, the first visual simulation system was introduced, witch comprised a fiberscope and small-scale models. By manipulating the fiberscope's handles, the subject was able to view the models at eye level. When the pen-size CCD TV camera came out, we immediately embraced it, incorporating it into a computer controlled visual simulation system in 1988. It comprises four elements: operation input, drive control, model shooting, and presentation. This system was easy to operate, and the subject gained an omnidirectional, eye-level image as though walking through the model. In 1995, we began developing a new visual system. We wanted to relate the scale model image directly to perceptual behavior, to make natural background images, and to record human feelings in a non-verbal method. Restructuring the above four elements to meet our equirements and adding two more (background shooting and emotion spectrum analysis), we inally completed the new simulation system in 1996. We are employing this system in streetscape research. Using the emotion spectrum system, we are able to record brain waves. Quantifying the visual effects through these waves, we are analyzing the relation between visual effects and physical elements. Thus, we are presented with a new aspect to study: the relationship between brain waves and changes in the physical environment. We will be studying the relation of brain waves in our sequential analysis of the streetscape.
keywords Architectural Endoscopy, Endoscopy, Simulation, Visualisation, Visualization, Real Environments
series EAEA
email
more http://www.bk.tudelft.nl/media/eaea/eaea97.html
last changed 2005/09/09 10:43

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5show page 6HOMELOGIN (you are user _anon_243609 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002