CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures
Hits 1 to 20 of 162
Reformat results as: short short into frame detailed detailed into frame
The energy performance of a base case building in each of four climates and cultures is presented. The climates are: Phoenix (hotdry), Minneapolis (cold-dry), Boston (cold-humid), and New Orleans ( hot- humid). Keeping the host climate, site, building size and function constant: but varying materials, shape and design concepts, each base case is iterated through a series of computer assisted re-designs to transform each base case building into an architecture representative of its regional climate and culture.
Traditional technologies and concepts produce traditional regional architecture. New technologies and concepts produce forms expressive of an emerging high-tech, high-touch, low energy society.
The paper presents computer generated work by the author and his students. It also presents an interim evaluation of the successes and difficulties of conducting a 'paper free' design studio.
A highly unusual feature of PHIDIAS II is that it implements all of its functions using only hypermedia mechanisms. Complex vector graphic drawings and objects are represented as composite hypermedia nodes. Inference and critiquing are implemented through use of what are known as virtual structures [Halasz 1988], including virtual links and virtual nodes. These nodes and links are dynamic (computed) rather than static (constant). They are defined as expressions in the same language used for queries and are computed at display time. The implementation of different kinds of functions using a common set of mechanisms makes it easy to use them in combination, thus further augmenting the system's functionality.
PHIDIAS supports design by informing architects as they develop a solution's form. The idea is thus not to make the design process faster or cheaper but rather to improve the quality of the things designed. We believe that architects can create better buildings for their users if they have better information. This includes information about buildings of given types, user populations, historical and modern precedents, local site and climate conditions, the urban and natural context and its historical development, as well as local, state and federal regulations.
The basic idea is that of top-down design - beginning with a very abstract representation, and elaborating that, in step-by-step fashion, into a complete and detailed representation. The basic operations are real-time parametric variation of designs (using the mouse and slide bar) and substitution of objects. Essentially, then, a knowledge-base in Topdown implements a kind of parametric shape grammar.
The main applications of Topdown are in introductory teaching of CAD, and (since it provides a very quick and easy way for a user to develop detailed geometric models) to provide a uniform front-end for a variety of different applications. The shell, and some example knowledge-bases, are publicly available.
This paper discusses the principles of the Topdown Shell, the implementation of knowledge bases within it, and a variety of practical design applications.
Issue-Based Information Systems are used as a means of widening the coverage of a problem. By encouraging a greater degree of participation, particularly in the earlier phases of the process, the designer is increasing the opportunity that difficulties of his proposed solution, unseen by him, will be discovered by others. Since the problem observed by a designer can always be treated as merely a symptom of another higher-level problem, the argumentative approach also increases the likelyhood that someone will attempt to attack the problem from this point of view. Another desirable characteristic of the Issue-Based Information System is that it helps to make the design process 'transparent'. Transparency here refers tO the ability of observers as well as participants to trace back the process of decision-making.
This paper offers a description of a computer-supported IBIS (written in 'C' using the 'XWindows' user interface), including a discussion of the usefulness of IBIS in design, as well as comments on the role of the computer in IBIS implementation, and related developments in computing.
For more results click below: