CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 161

_id caadria2011_061
id caadria2011_061
authors Celani, Gabriela; José P. Duarte and Carlos V. Vaz
year 2011
title The gardens revisited: The link between technology, meaning and logic?
doi https://doi.org/10.52842/conf.caadria.2011.643
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 643-652
summary The objective of this paper is to compare the computational concepts present in three books published by Mitchell between 1987 and 1990: The art of computer-graphics programming (1987), which has Robin Liggett and Thomas Kvan as co-authors, The logic of architecture (1990), probably his most influential work, and The poetics of gardens (1988), which has Charles Moore and William Turnbull as coauthors. By looking at the concepts that are presented in the three books and establishing a comparison between them, we expect to show that The poetics of Gardens should not be seen as a detour from Mitchell´s line of research, but rather as a key piece for understanding the relationship between technology, meaning and logic in his very coherent body of work.
keywords Computational design concepts; technology; meaning; logic
series CAADRIA
email
last changed 2022/06/07 07:55

_id avocaad_2001_20
id avocaad_2001_20
authors Shen-Kai Tang
year 2001
title Toward a procedure of computer simulation in the restoration of historical architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the field of architectural design, “visualization¨ generally refers to some media, communicating and representing the idea of designers, such as ordinary drafts, maps, perspectives, photos and physical models, etc. (Rahman, 1992; Susan, 2000). The main reason why we adopt visualization is that it enables us to understand clearly and to control complicated procedures (Gombrich, 1990). Secondly, the way we get design knowledge is more from the published visualized images and less from personal experiences (Evans, 1989). Thus the importance of the representation of visualization is manifested.Due to the developments of computer technology in recent years, various computer aided design system are invented and used in a great amount, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and collaboration, etc. (Lawson, 1995; Liu, 1996). The conventional media are greatly replaced by computer media, and the visualization is further brought into the computerized stage. The procedure of visual impact analysis and assessment (VIAA), addressed by Rahman (1992), is renewed and amended for the intervention of computer (Liu, 2000). Based on the procedures above, a great amount of applied researches are proceeded. Therefore it is evident that the computer visualization is helpful to the discussion and evaluation during the design process (Hall, 1988, 1990, 1992, 1995, 1996, 1997, 1998; Liu, 1997; Sasada, 1986, 1988, 1990, 1993, 1997, 1998). In addition to the process of architectural design, the computer visualization is also applied to the subject of construction, which is repeatedly amended and corrected by the images of computer simulation (Liu, 2000). Potier (2000) probes into the contextual research and restoration of historical architecture by the technology of computer simulation before the practical restoration is constructed. In this way he established a communicative mode among archeologists, architects via computer media.In the research of restoration and preservation of historical architecture in Taiwan, many scholars have been devoted into the studies of historical contextual criticism (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000). Clues that accompany the historical contextual criticism (such as oral information, writings, photographs, pictures, etc.) help to explore the construction and the procedure of restoration (Hung, 1995), and serve as an aid to the studies of the usage and durability of the materials in the restoration of historical architecture (Dasser, 1990; Wang, 1998). Many clues are lost, because historical architecture is often age-old (Hung, 1995). Under the circumstance, restoration of historical architecture can only be proceeded by restricted pictures, written data and oral information (Shi, 1989). Therefore, computer simulation is employed by scholars to simulate the condition of historical architecture with restricted information after restoration (Potier, 2000). Yet this is only the early stage of computer-aid restoration. The focus of the paper aims at exploring that whether visual simulation of computer can help to investigate the practice of restoration and the estimation and evaluation after restoration.By exploring the restoration of historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example), this study aims to establish a complete work on computer visualization, including the concept of restoration, the practice of restoration, and the estimation and evaluation of restoration.This research is to simulate the process of restoration by computer simulation based on visualized media (restricted pictures, restricted written data and restricted oral information) and the specialized experience of historical architects (Potier, 2000). During the process of practicing, communicates with craftsmen repeatedly with some simulated alternatives, and makes the result as the foundation of evaluating and adjusting the simulating process and outcome. In this way we address a suitable and complete process of computer visualization for historical architecture.The significance of this paper is that we are able to control every detail more exactly, and then prevent possible problems during the process of restoration of historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id caadria2006_569
id caadria2006_569
authors WEI-TSANG CHANG, TENG-WEN CHANG
year 2006
title FOLDING SPACE WITH TIME-BASED OPERATIONS
doi https://doi.org/10.52842/conf.caadria.2006.x.j6m
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 569-571
summary Folding is not only a design operation of shaping but also a philosophy theory from Deleuze (Deleuze 1988) which was adopted by architecture. Basically, folding constitutes to forming and topology, which often delivered a mathematical and philosophical expression in generating 3D architectural form. For instance, the work of Eisenman (Eisenman 2003), Libeskind and Lynn (Lynn 1998), they use folding as inspiration to explore the textural folding and bifurcation meaning in the process of form-making. While exploring the meaning of folding, their ideas are expressed by the form using computational tools. Therefore, if a suitable or inspirable tool like our Folding Space (FoS) could be available, such action –fold can be expressed further in the form exploration process.
series CAADRIA
email
last changed 2022/06/07 07:50

_id 696c
authors Beheshti, M. and Monroy, M.
year 1988
title Requirements for Developing an Information System for Architecture
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 149-170
summary This paper discusses possibilities of developing new tools for architectural design. It argues that architects should meet the challenge of information technology and computer-based design techniques. One such attempt has been the first phase of the development of an architectural design information system (ADIS), also an architectural design decision support system. The system should benefit from the developments of the artificial intelligence to enable the architect to have access to information required to carry out design work. In other words: the system functions as a huge on-line electronic library of architecture, containing up-to-date architectural design information, literature, documents, etc. At the same time, the system offers necessary design aids such as computer programs for design process, drawing programs, evaluation programs, cost calculation programs, etc. The system also provides data communication between the architect and members of the design coalition team. This is found to be of vital importance in the architectural design process, because it can enable the architect to fit in changes, brought about in the project by different parties. Furthermore, they will be able, to oversee promptly the consequences of changes or decisions in a comprehensive manner. The system will offer advantages over the more commonly applied microcomputer based CAAD and IGDM (integrated graphics database management) systems, or even larger systems available to an architect. Computer programs as well as hardware change rapidly and become obsolete. Therefore, unrelenting investment pressure to up-date both software and hardware exists. The financial burden of this is heavy, in particular for smaller architectural practices (for instance an architect working for himself or herself and usually with few or no permanent staff). ADIS, as an on-line architectural design aid, is constantly up-dated by its own organisation. This task will be co-ordinated by the ADIS data- base administrator (DBA). The processing possibilities of the system are faster, therefore more complex processing tasks can be handled. Complicated large graphic data files, can be easily retrieved and manipulated by ADIS, a large system. In addition, the cost of an on-line system will be much less than any other system. The system is based on one model of the architectural design process, but will eventually contain a variety of design models, as it develops. The development of the system will be an evolutionary process, making use of its users' feed-back system. ADIS is seen as a step towards full automation of architectural design practices. Apart from being an architectural design support system, ADIS will assist the architect in his/her administrative and organisational activities.
series CAAD Futures
last changed 2003/11/21 15:16

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id c9e4
authors Birmingham, William P. and Siewiorek, Daniel P.
year 1988
title Automated knowledge Acquisition for a Computer Hardware Synthesis System
source 19 p. : ill. Engineering Design Research Center, CMU, June, 1988. EDRC 18-06-88. includes bibliography
summary The MICON Synthesizer Version 1 (M1) is a rule-based system which produces a complete small computer design from a set of abstract specifications. The ability of M1 to produce designs depends on the encoding of large amounts of domain knowledge. An automated knowledge acquisition tool, CGEN, works symbiotically with M1 by gathering the knowledge required by M1. CGEN acquires knowledge about how to build and when to use various computer structures. This paper overviews the operation of CGEN by providing an example of the types of knowledge acquired and the mechanisms employed. A novel knowledge-intensive generalization scheme is presented. Generalization is a pragmatic necessity for knowledge acquisition in this domain. A series of experiments to test CGEN's capabilities are explained. A description of the architecture and knowledge-base of M1 is also provided
keywords electrical engineering, automation, knowledge acquisition, knowledge base, systems
series CADline
last changed 2003/06/02 13:58

_id 4743
authors Dvorak, Robert W.
year 1988
title Designing in the CAD Studio
doi https://doi.org/10.52842/conf.acadia.1988.123
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 123-134
summary The "CAD Studio" is one of many design options that fourth year students may select in the College of Architecture. In this electronic environment, the students analyze and present their designs totally on the computer. The vehicle used is a fifteen week architectural problem called the "Calor Redesign Project".

The "Calor" problem requires the move of a famous residence to a hot arid climate. The residence must then be redesigned in the original architect's style so the building becomes as energy efficient as possible in its new arid environment. The students are required to use as design criteria a new building program, the design philosophy of the original architect, and appropriate passive energy techniques that will reduce the thermal stress on the building. The building's energy response is measured by using an envelope energy analysis program called "Calor".

Much of the learning comes from imposing a new set of restraints on a famous piece of architecture and asking the student to redesign it. The students not only need to learn and use a different design philosophy, but also develop new skills to communicate their ideas on the computer. Both Macintosh and IBM computers are used with software ranging from Microsoft Works, Superpaint, AutoCAD, MegaCAD, Dr Halo, to Calor.

series ACADIA
last changed 2022/06/07 07:55

_id 4cbb
authors Gero, John S. (editor)
year 1988
title Artificial Intelligence in Engineering : Design
source 465 p. Amsterdam: Elsevier/CMP, 1988. CADLINE has abstract only
summary This volume contains the papers in the design area from the Third International Conference on Artificial Intelligence in Engineering. Design is that most fundamental but least understood of engineering activities. Most current computer- aided design systems are primarily concerned with graphical representations of objects as they are being designed. The introduction of artificial intelligence into engineering has fostered the burgeoning interest in formal methods of engineering design. These methods treat design as being modelable using reasoning processes. The papers related to design can be grouped into two categories: those primarily concerned with design knowledge in its various forms and those primarily concerned with applications in specific domains. The papers in this volume are presented under the following headings: Design Knowledge and Representation; Integrated Circuit Design; Mechanical Engineering Design; Structural Engineering Design; Simultaneous Engineering Design; Architectural Design
keywords AI, design, engineering, knowledge, applications, architecture, CAD, CAE, integrated circuits, representation, structures, civil engineering
series CADline
email
last changed 2003/06/02 13:58

_id 88cb
authors Gero, John S. and Oksala, Tarkko (editors)
year 1988
title Knowledge-Based Systems in Architecture
source TIPS'88 - Knowledge Based Design in Architecture, Acta Polytechnica Scandinavica (1988 : Helsinki, Finland). 143 p. 1989
summary The technology of knowledge-based systems can be found in texts on artificial intelligence. There is very little published so far on knowledge-based systems in architecture. To this end an international conference -- TIPS' 88: Knowledge-Based Design in Architecture -- was organized for August 1988 in Finland. Thirteen papers from that conference have been selected and edited for this monograph. They are grouped under five parts: Introduction; Schemas and Models; Processes and Knowledge; Modeling Buildings; and Creativity and Knowledge-Based Systems
keywords knowledge base, architecture, representation, expert systems,building, creativity
series CADline
email
last changed 2003/06/02 13:58

_id f65d
authors Kalisperis, L.N.
year 1988
title A Conceptual Framework for Computing in Architectural Design
source Pennsylvania State University
summary A brief historical overview of architectural design reveals that there has been a slow development in the conceptualization of the scope of architectural design. Advancing our understanding of the architectural design process reveals new directions for computing in architectural design. This study proposes a conceptual framework for an integrated computing environment. Design disciplines have embarked on a rigorous search for theoretical perspectives and methods that encompass a comprehensive view of architecture. Architectural design has been seen as a sequential process similar to that of industrial design. Attempts to formalize this process based on industrial design methods solved only a fraction of the overall integration problem. The resultant models are inadequate to deal with the complexity of architectural design. Emerging social problem-solving paradigms seek to construct a cognitive psychology of problem solving and have a direct relevance to architectural design. These problem-solving activities include structured, semi-structured, and ill-defined problems, which are included to varying degrees in each problem situation across a continuum of difficulty. Problem solving in architectural design involves the determination of certain objectives and also whether or not it is possible to accomplish them. Developments in computing in architecture have paralleled developments in architectural methodologies. The application of computing in architectural design has predominantly focused only on sequential process, optimum solutions, and quantifiable tasks of the design process. Qualitative, generative, tasks of architectural design were dealt with through the introduction of paradigms from linguistics and knowledge-based systems borrowed from engineering applications. Although the application of such paradigms resulted in some success, this reductionist approach to computing in architecture fragmented its integration into the design process. What is required, therefore, is a unified approach to computing in architecture based on a holistic view of the architectural design process. The model proposed in this study provides such a conceptual framework. This model shifts the focus from product to process and views the design problem as a goal-oriented problem-solving activity that allows a design team to identify strategies and methodologies in the quest for design solutions.  
series thesis:PhD
email
last changed 2003/02/12 22:37

_id ec36
authors Meurant, Robert C.
year 1988
title Some Metaphysical Considerations Raised by the Computer-Generated Electronic Environment
doi https://doi.org/10.52842/conf.acadia.1988.059
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 59-70
summary The effects of the computer on the designer are profound, and affect design methodology and habitation. The computer-aided designer experiences within the electronic environment a freedom from certain important constraints of real-world modelling of physical reality. Electronic configurations are not bound by the constructional, material, or structural constraints operating in the physical world. This freedom is liberating, in that the imagination is given a powerful tool with which to develop external representations of ideal environments. But there is also the potential of destructive tendencies. Is the increasing sophistication of external tools of the imagination at the expense of the ability of the individual to master the internal imagination - are we externalizing at the price of inner vision? There is also the possibility of greater alienation from the physical world. We loose the tactile sensitivity, and the spatial and structural intuition with which we draw and make physical models. These are essential parts of the design of the physical environment.

We are left on the horns of a dilemma. The rapid response and exciting images of the computergenerated video environment suggest we are entering an era when architecture itself becomes electronic. The physical built-form recedes in importance, and may even become redundant. But we must also ask: Are we entering a post-computer age? Will we realize the potential profundity of our innate human biocomputers - to the point where we renounce the hard technology of the material for the soft technology of consciousness?

series ACADIA
last changed 2022/06/07 07:58

_id 0350
authors Norman, Richard B.
year 1988
title The Role of Color in Architectural Pedagogy Computation as a Creative Tool
doi https://doi.org/10.52842/conf.acadia.1988.217
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 217-223
summary From among the possible ways of introducing graphic computing in the design studio, it is customary to develop an argument from point, to line, to shape and finally to colon The logic of this process is undeniable as technology and perhaps as history, but it should be questioned as pedagogy. A designer, tuned to the visual focus of the studio and searching for creative self-expression is not overly stimulated by drawing lines, at first laboriously, in imitation of what he can do by hand.

Using color is among the more difficult of traditional studio chores -- it is not difficult on a computer. The manipulation of color can be a simple task if one is given reasonable software and a good graphic computer. Once introduced to students, the techniques for coloring elements on a computer find acceptance as a design tool. Methods can be quickly found for modifying the perception of space and form through the use of colon

Modern architecture is rooted in the study of color as a generator of form. This idea permeated the teachings of its founders. Yet modernist concern for color has over time evolved into a pedagogy of space and form at the exclusion of color, so much so that the modern movement today stands accused by its detractors as being formed in many shades of grey.

Modern architecture is not grey! This paper will illustrate how, using the modern graphic computer, color may be introduced to the studio and discovered as an element of design and as the substance of architectural form giving.

series ACADIA
email
last changed 2022/06/07 07:58

_id cb88
authors Novak, Marcos J.
year 1988
title Computational Composition in Architecture
doi https://doi.org/10.52842/conf.acadia.1988.005
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 5-30
summary The impact of computers on architectural design, manifested through the creation of architectural designs that equal or surpass in quality and sophistication architecture generated using traditional means, has yet to be demonstrated. Computer-aided design is conspicuously absent from theoretical discussions of architectural design per se, and there exist no major built or published buildings that have been designed using the computer in a true design capacity. Most prominent architects continue to ignore computer-aided design. This paper argues that the issues of architectural theory and composition must be addressed directly by the computer-aided design field, and that until this occurs computer-aided architectural design will necessarily be peripheral to architecture because it does not address the central problems of architecture as an expressive medium. To this end, it proposes a shift to the paradigm of computational composition, and discusses recent work in this direction.

The paper is divided into four parts. Part I identifies fundamental theoretical problems, contrasts the application of computation to architecture and to music, and draws upon several different areas for insight into the nature of making; Part II reviews particular architectural implications of these considerations, introduces the concept of computational composition in architecture, and presents a brief overview of important precedents; Part III proposes new goals for computer-aided architectural design and presents a framework for computational composition; finally, Part IV presents recent work directly related to the ideas presented in the previous parts and leads to the Conclusion. The appendices contain a pseudo-Prolog expression of Alvar Aalto's architectural language and notes on features of the PADL-2 solid modeler that are architecturally interesting.

series ACADIA
email
last changed 2022/06/07 08:00

_id 11cb
id 11cb
authors Oguzhan Özcan
year 2004
title MATHEMATICS AND DESIGN EDUCATION
source Proceedings of the Fourth International Conference of Mathematics & Design, Special Edition of the Journal of Mathematics & Design, Volume 4, No.1, pp. 199-203.
summary Many people believe that mathematical thought is an essential element of creativity. The origin of this idea in art dates back to Plato. Asserting that aesthetics is based on logical and mathematical rules, Plato had noticed that geometrical forms were “forms of beauty” in his late years. Unlike his contemporaries, he had stressed that the use of geometrical forms such as lines, circles, planes, cubes in a composition would aid to form an aesthetics. The rational forms of Plato and the rules of geometry have formed the basis of antique Greek art, sculpture and architecture and have influenced art and design throughout history in varying degrees. This emphasis on geometry has continued in modern design, reflected prominently by Kandinsky’s geometric classifications .

Mathematics and especially geometry have found increasing application in the computer-based design environment of our day. The computer has become the central tool in the modern design environment, replacing the brush, the paints, the pens and pencils of the artist. However, if the artist does not master the internal working of this new tool thoroughly, he can neither develop nor express his creativity. If the designer merely learns how to use a computer-based tool, he risks producing designs that appear to be created by a computer. From this perspective, many design schools have included computer courses, which teach not only the use of application programs but also programming to modify and create computer-based tools.

In the current academic educational structure, different techniques are used to show the interrelationship of design and programming to students. One of the best examples in this area is an application program that attempts to teach the programming logic to design students in a simple way. One of the earliest examples of such programs is the Topdown Programming Shell developed by Mitchell, Liggett and Tan in 1988 . The Topdown system is an educational CAD tool for architectural applications, where students program in Pascal to create architectural objects. Different examples of such educational programs have appeared since then. A recent fine example of these is the book and program called “Design by Number” by John Maeda . In that book, students are led to learn programming by coding in a simple programming language to create various graphical primitives.

However, visual programming is based largely on geometry and one cannot master the use of computer-based tools without a through understanding of the mathematical principles involved. Therefore, in a model for design education, computer-based application and creativity classes should be supported by "mathematics for design" courses. The definition of such a course and its application in the multimedia design program is the subject of this article.

series other
type normal paper
email
last changed 2005/04/07 15:36

_id 404e
authors Oksala , T.
year 1988
title Logical Models for Rule-based CAAD
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 107-116
summary The aim of this paper is to present the basic results of a theoretic approach to represent architectural individual forms in CAD systems. From the point of view of design methodology and problem solving these descriptions might be conceived' as parts of possible environments satisfying the laws of some design theory in logical sense. This paper describes results in a series of logical studies towards rule and knowledge based systems for design automation. The effective use of programming languages and computers as design aids in architecture presupposes certain capabilities to articulate built environment logically. The use of graphic languages in the description of environmental items e.g. buildings might be theoretically mastered by formal production systems including linguistic, geometric, and spatio-material generation. The combination of the power of formal mechanisms and logical individual calculus offers suitable framework to generate arbitrary e.g. free spatial compositions as types or unique solutions. In this frame it is natural to represent in a coherent way very complex hierarchical parsing of buildings in explicit form as needed in computer implementations. In order to simulate real design work the individual configurations of possible built forms should be designed to satisfy known rules. In the preliminary stage partial solutions to design problems may be discussed in mathematical terms using frameworks like lattices, graphs, or group theoretical considerations of structural, functional, and visual organization of buildings. The capability to produce mathematically sophisticated geometric structures allows us to generalize the approach further. The theoretical design knowhow in architecture can be partly translated in to some logic and represented in a knowledge base. These rules are used as selection criteria for geometric design candidates in the sense of logical model theory and mathematical optimization. The economy of the system can be developed by using suitable conduct mechanisms familiar e.g. from logic programming. The semantics of logic offers a frame to consider computer assisted and formal generation in design. A number of semantic and pragmatic problems, however, remain to be solved. In any case conceptual analyses based on logic are applicable in order to rationally reconstruct architectural goals contributing to the quality of environmental design, which should be the main goal in the development of design systems in near future.
series CAAD Futures
last changed 1999/04/03 17:58

_id 45b7
authors Oxman, R.E.
year 1988
title Expert System for Generation and Evaluation in Architectural Design
source Technion, Faculty of Architecture and Town Planing, Haifa
summary The research field, focuses on a new research area of Knowledge Based Systems for Architectural Design. The research deals with concepts and tools emerging from Artificial Intelligence, Knowledge Based Systems and Expert Systems. The research is involved with the construction of a theoretical basis for the development of approaches and methods for the representation and control of design knowledge as a reasoning process. Key questions which attempt to reconsider representation and control in design are formulated. The following questions serve as a research framework out of which new approaches, methods and tools were developed. (1.)What are the existing ideas, methods and tools in Expert Systems? (2.) What are the performance characteristics of Expert Systems in Architectural Design ? (3.) What are the desired operative characteristics and interactions for Expert Systems in design ? (4.) How is it possible to formulate and apply the diverse forms of Architectural Knowledge in Expert Systems for design? (5.) What are the problems of implementation in the development of Expert Systems for design ? The state of the art in knowledge based systems is surveyed, while emphasizing the differences between conventional systems and knowledge based systems. Representation and control methods and the components of expert systems are reviewed. Expert systems for diagnosis, interpretation, planning and design are analysed with respect to their performance characteristics. Techniques and technologies of existing tools are defined. An expert system for the generation and evaluation of ill defined architectural design problems is develped. A formalization of the concept of 'design interpretation' is proposed and developed. It is applied in the process of defining and classifying the performance characteristics of expert systems for design. This concept is based upon two sets of reasoning processes: those which enable a mapping between design requirements and solution descriptions in the generation stage of design and those between solution descriptions and performance evaluation in the evaluation stage of design. On the basis of the formalization of this concept, an expert system capable of integrating various modes of performance is proposed and developed. The system functions as a 'design generator', a 'design critic', or a' design critic-generator'. These modes, which integrate generation and evaluation in the same system, operate by employing both forward chaining and backward chaining inference mechanisms. As a result of the examination of desired forms of interactions, a new approach for dual direction interpretation between graphic and verbal modes is developed. This approach reflects the importance of both graphical and verbal expression in design. The approach is based upon a simultaneous mapping between symbolic-verbal interpretation and graphic interpretation. The work presents the mapping process through the concept of design interpretation, employing geometrical knowledge, typological knowledge and evaluation knowledge. A tool which provides communication between an expert system and a graphic system was developed and is presented. The importance of such a tool in expert systems for design resides in the provision of free choice to the user for interacting with the system either graphically or verbally during the design process. An additional component in the development of knowledge-based systems for design is related to the important question of knowledge definition and the representational schemata of design knowledge. A new representational scheme for complex architectural knowledge, termed 'The generation and refinement scheme of a design prototype' is proposed and developed. Its operation as part of a total integrated design system is demonstrated. The scheme is based upon the structures of knowledge of design precedents which constitute typical situations and solutions in architectural design. This scheme provides an appropriate representation for the two types of knowledge which operate in a refinement process of a design prototype. Generative knowledge describes the solution space by predefined refinement stages; interpretive knowledge enables their selection. The examination of representational methods for the proposed scheme indicated that employing a single representational method lacked enough generalization and expressive power for the needs of the design knowledge structures. It was found that a way to represent complex structures is through the integration of multiple methods of representation, each one according to the knowledge characteristics. In order to represent the proposed scheme of design knowledge, a unique method was developed which integrates both rules and frames. The method consists of a rules-frames-rules structure for the representation of a design prototype. An approach is developed for the implementation of these concepts in an expert system for design. PRODS: A prototype based expert system shell for design is developed and demonstrated. The system consists of three basic components: a rule-based expert system shell, a frame system, and a knowledge base interface. All system interactions are controlled by the inference engine. It passes control between the rule-base and the frame-base inference engines, and provides communications between the rule-based and frame-based representations. It is suggested that expert system can interface with external CAD systems including graphics, communicating through a central representation. These concepts and developments are demonstrated in two implementations. The PREDIKT system for the preliminary design of the residential kitchen; the PROUST system for the selection and refinement of dwelling types. PREDIKT demonstrates the integration of rules and a graphical-verbal interpreter; in addition, PROUST demonstrates the significance of hybrid representation in the generation and refinement processes. The results and conlusions are summarized. Future research agenda within the field of knowledge-based systems for design is discussed, and potential research areas are defined.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 2d82
authors Radford, Anthony D., Oxman, Robert and Oxman, Rivka
year 1988
title Design Teaching: The Language of Architectural Plans
doi https://doi.org/10.52842/conf.acadia.1988.099
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 99-110
summary The aims, operation and student reaction to a design studio course for beginning architecture students on the syntax of architectural plans are described. The course is highly structured and draws from computer graphics templates and a teaching manual which set up a series of exercises. The process of learning comes from execution of the exercises and from associated reading, discussion and debate on architectural planning issues.

series ACADIA
email
last changed 2022/06/07 08:00

_id caadria2005_b_4a_b
id caadria2005_b_4a_b
authors Ruchi Choudhary, Jeremy Michalek
year 2005
title Design Optimization in Computer-Aided Architectural Design
doi https://doi.org/10.52842/conf.caadria.2005.149
source CAADRIA 2005 [Proceedings of the 10th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] New Delhi (India) 28-30 April 2005, vol. 2, pp. 149-159
summary The proposition of using design optimization to formalize and add rigor to the decision-making process in building and construction was earlier compiled by Radford et al. in 1988, providing an in-depth demonstration of techniques available at the time. Much has changed since, both in the available solution methods and the nature of the problems themselves. This paper provides an updated insight into past and current trends of using this engineering design paradigm to solve architectural design problems, with an emphasis on continuous nonlinear formulations of simulation-based problems. The paper demonstrates different problem formulations and current techniques for solving them. Examples from recent research are used to demonstrate significant achievements and existing challenges associated with formalizing and solving decision-making tasks in architecture.
series CAADRIA
email
last changed 2022/06/07 07:56

_id e05e
authors Schon, Donald A. and Wigging, Glenn
year 1988
title Kinds of Seeing and Their Functions in Designing
source November, 1988. 31 p. : ill
summary Architectural designing is described as a kind of experimentation that consists in reflective 'conversation' with the materials of a design situation. A designer sees, moves and sees again. Working in some visual medium -- drawing, in the article examples -- the designer sees what is 'there' in some representation of a site, draws in relation to it, and sees what has been drawn, thereby informing further designing. In all this 'seeing' the designer not only visually registers information but also constructs its meaning -- identifies patterns and gives them meaningsÔ h) 0*0*0*°° ÔŒ beyond themselves. Words like 'recognize,' 'detect,' 'discover' and 'appreciate' denote variants of seeing, as do such terms as 'seeing that,' 'seeing as' and 'seeing in.' The purpose here is to explore the kinds of seeing involved in designing and to describe their various functions. At local and global levels, and in many different ways, designing is an interaction of making and seeing, doing and discovering. On the basis of a few minuscule examples, the authors suggest some of the ways in which this sort of interaction works. Some conditions that enable it to work are described. And some of its consequences for design education and for the development of computer environments useful to designers are drawn
keywords design methods, education, architecture, cognition, perception, design process, semantics, protocol analysis
series CADline
last changed 2003/06/02 13:58

_id 0dff
authors Woodbury, Robert F., Fenves, Stephen J. and Baker, Nelson C. (et al)
year 1988
title Geometric Reasoning in Computer Integrated Building Construction
source Robotics in Construction, International Symposium (5th : 1988 : Tokyo, Japan). pp. 115-124 : ill. includes bibliography
summary Geometric reasoning, the integration of geometric representation and inference in advanced computer systems, is presented as an issue at the forefront of research in construction automation. The unique demands that construction automation poses on such reasoning are discussed. An architecture that provides a structure for geometric reasoning is presented and results from a prototype implementation are shown. A project to develop geometric reasoning in the construction domain of panelized building systems is introduced. Within this project, two exemplary applications, structural/architectural design and construction sequence planning, each supported by the same geometric reasoning facility, are being demonstrated
keywords geometry, reasoning, representation, inference, construction, automation, applications, architecture, engineering
series CADline
email
last changed 2003/06/02 13:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 8HOMELOGIN (you are user _anon_418391 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002