CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 163

_id 0ee1
authors Veness, R. E.
year 1988
title Bridge Builder: An Expert System for the Design of Non-Equipment Military Bridging
source Department of Architectural Science, University of Sydney
summary This thesis describes an expert system for the selection, design and documentation of non-equipment military bridges. The expert system uses the expert system shell BUILD. Extensive use has been made of interfacing between BUILD and Prolog and then by using Prolog's foreign language interface with Pascal procedures and the graphics interface. The expert system, which consists of rules, Pascal procedures and a graphics package, aims at: (a) the determination of the suitable bridging structure; (b) designing a bridge using material constraints; (c) producing a consistent and sound structural design for the bridge and the necessary support structures; (d) producing the necessary working drawings and a bill of materials for the solution. The graphics interface is used to display and manipulate a three dimensional model of the solution and the hardcopy output. [Unpublished. -- CADLINE has abstract only.]
keywords Military Engineering, Expert Systems, Structures, User Interface, Applications
series thesis:MSc
last changed 2002/12/14 19:13

_id 252a
authors Reich, Yoram
year 1988
title Machine Learning for Expert Systems : Motivation and Techniques
source i-iii, 51 p. : some ill Pittsburgh, PA: Engineering Design Research Center, CMU, June, 1988. EDRC 12-27-88. includes bibliography. First generation expert systems suffer from two major problems: they are brittle and their development is a long, effortful process. Few successful expert systems for real world problems have been demonstrated. In this paper, learning, the key to intelligent behavior and expertise, is described as the answer to both expert systems deficiencies. Machine learning techniques are described, with their applicability to expert systems. A framework to organize machine learning techniques is provided. The description is followed by examples taken from the structural design domain. AI / learning / expert systems / structures / techniques. 37. Requicha, Aristides A. G. 'Mathematical Models of Rigid Solid Objects -- Production Automation Project.' Rochester, NY: College of Engineering & Applied Science, University of Rochester, November, 1977. [3], 37 p. : ill.
summary Computational models of solid objects are potentially useful in a variety of scientific and engineering fields, and in particular in the field of design and manufacturing automation for the mechanical industries. In recent years a multitude of modelling systems have been implemented both by research laboratories and commercial vendors, but little attention has been paid to the fundamental theoretical issues in geometric modelling. This has led to severe difficulties in assessing current and proposed systems, and in distinguishing essential capabilities and limitations from user conveniences and efficiency considerations. This paper seeks a sharp mathematical characterization of 'rigid solids' in a manner that is suitable for studies in design and production automation. It draws heavily on established results in modern geometry and topology. Relevant results scattered throughout the mathematical literature are placed in a coherent framework and presented in a form accessible to engineers and computer scientists. A companion paper is devoted to a discussion of representational issues in the context set forth by this paper
keywords solid modeling, geometric modeling
series CADline
last changed 1999/02/12 15:09

_id aef1
authors Rosenman, M.A., Gero, J.S. and Coyne, R.D. (et al)
year 1987
title SOLAREXPERT : A Prototype Expert System for Passive Solar Energy Design in Housing
source Canberra: Aust NZ Solar Energy Society, 1987. vol.II: pp. 361-370. Also published in People and Technology - Sun, Climate and Building, edited by V. Szokolay, Univ. of Queensland, Brisbane, 1988
summary Passive solar energy design is not an exact science in which a set of analytical procedures can be followed to produce results. Rather it depends heavily on subjective parameters and experience collected over time which is heuristic by nature. At present this knowledge is available in books but while this knowledge is comprehensive, it is unstructured and not always easy to make use of. A computer-based system allows for flexible interactive dialogue and for the incorporation of analytical procedures which may be required. This paper describes work on SOLAREXPERT, a prototype expert system to aid designers in passive solar energy design for single dwellings. The system operates at a strategic level to provide basic advice on the form of construction and types of passive solar systems and at a spatial zone level to provide more detailed advice on sizes and materials. It allows for modification of the information entered so that users may explore several possibilities
keywords applications, experience, housing, expert systems, energy, design, architecture
series CADline
email
last changed 2003/05/17 10:17

_id 0697
authors Balachandran, M.B. and Gero, John S.
year 1988
title Development of a Knowledge-Based System for Structural Optimization
source Dordrecht: Kluwer, 1988. pp. 17-24
summary Optimization is a useful and challenging activity in structural design. It provides designers with tools for better designs while saving time in the design process. The features of conventional optimization tools are presented and their limitations are outlined. The impact and role of knowledge-based methodologies in structural optimization processes is discussed. Structural optimization involves a number of tasks which require human expertise, and are traditionally assisted by human designers. These include design optimization formulation, problem recognition and the selection of appropriate algorithm(s). In this representation and processing of constraints are crucial tasks. This paper presents a framework for developing a knowledge-based system to accomplish these tasks. Based on the needs and the nature of the optimization process, a conceptual architecture of an integrated knowledge-based system is presented. The structure and functions of various components of the system are described
keywords knowledge base, systems, integration, optimization, structures, engineering
series CADline
email
last changed 2003/06/02 13:58

_id c568
authors Balachandran, M.B. and John S. Gero
year 1987
title A Model for Knowledge Based Graphical Interfaces
source AI '87: Proceedings of the Australian Joint Artificial Intelligence Conference. 1987. pp. 505-521. Also published in Artificial Intelligence Developments and Applications edited by J. S. Gero and R Stanton, North-Holland Pub. 1988. -- CADLINE has abstract only.
summary This paper describes a model for knowledge-based graphical interface which incorporates a variety of knowledge of the domain of application. The key issues considered include graphics interpretation, extraction of features of graphics objects and identification of prototype objects. The role of such knowledge-based interfaces in computer-aided design is discussed. A prototype system developed in Prolog and C is described and its application in the domain of structural engineering is demonstrated
keywords user interface, computer graphics, knowledge base, systems, civil engineering, structures
series CADline
email
last changed 2003/06/02 13:58

_id c6d5
authors Balachandran, M.B.
year 1988
title A Model for Knowledge-Based Design Optimization [PhD dissertation]
source Dept. of Architectural Science, University of Sydney
summary Unpublished. CADLINE has abstract only. This dissertation is concerned with developments in design decision methodologies applied to computer-aided design. The major aim of this research was to design and develop a knowledge-based computer-aided optimization system that has the ability to emulate some of the human performances in design decision processes. The issues and problems involved in developing a knowledge-based system for design optimization are addressed. A knowledge-based methodology to aid design optimization formulation is investigated. The major issues considered include representation of design description, the variety of knowledge required for the formulation process, recognizing optimization formulations, and selection of appropriate algorithms. It is demonstrated that the knowledge-based control of numerical processes leads to efficient and improved decisions in design. In developing knowledge-based systems for computer-aided decision applications an effective human-machine interface is essential. A model for knowledge-based graphical interfaces is proposed. This model incorporates knowledge for graphics interpretation, extraction of features of graphics objects and identification of prototypical objects. An experimental system developed in Prolog and C is demonstrated in the domain of structural design. The system shows one way of combining knowledge-based systems technology with computer graphics and indicates how knowledge-based interfaces improve the system's interactive capabilities. Finally, the system, OPTIMA, is presented. The system is designed as an integrated knowledge-based decision system using frames, rule bases, menu inputs, algebraic computation and optimization algorithms. The system has been written in LISP, Prolog and C and implemented on SUN Microsystems workstations. The performance of the system is demonstrated using two example problems from the domains of structural and architectural design respectively. The knowledge-based approach to design optimization is shown to be considerably easier and more efficient than those using conventional programs.
keywords Knowledge Base, Systems, CAD, Representation, Design, Frames, Computer Graphics, User Interface, Decision Making
series CADline
last changed 2003/06/02 13:58

_id 887e
authors Belajcic, N. D.
year 1988
title Computer Implementation of Shape Grammars
source Department of Architectural Science, University of Sydney
summary An approach is taken that shape grammars can be used as a possible vehicle for automated design generation. Historical background of shape grammars is discussed with emphasis on vocabulary/syntax aspect of the design process and significance of class solutions to problems. Similarities with expert system mechanics and structure is highlighted and advantages and disadvantages of rule-based and frame-based systems are considered. These concepts are implemented in a computer program written in LISP employing icon driven graphic interface with tools for creating shapes and rules. Finally, problems associated with adopted reasoning strategies are reported and areas of further development and improvement suggested. [UNPUBLISHED. CADLINE has abstract only]
keywords Shape Grammars, Design Process
series thesis:MSc
last changed 2002/12/14 19:10

_id c9e4
authors Birmingham, William P. and Siewiorek, Daniel P.
year 1988
title Automated knowledge Acquisition for a Computer Hardware Synthesis System
source 19 p. : ill. Engineering Design Research Center, CMU, June, 1988. EDRC 18-06-88. includes bibliography
summary The MICON Synthesizer Version 1 (M1) is a rule-based system which produces a complete small computer design from a set of abstract specifications. The ability of M1 to produce designs depends on the encoding of large amounts of domain knowledge. An automated knowledge acquisition tool, CGEN, works symbiotically with M1 by gathering the knowledge required by M1. CGEN acquires knowledge about how to build and when to use various computer structures. This paper overviews the operation of CGEN by providing an example of the types of knowledge acquired and the mechanisms employed. A novel knowledge-intensive generalization scheme is presented. Generalization is a pragmatic necessity for knowledge acquisition in this domain. A series of experiments to test CGEN's capabilities are explained. A description of the architecture and knowledge-base of M1 is also provided
keywords electrical engineering, automation, knowledge acquisition, knowledge base, systems
series CADline
last changed 2003/06/02 13:58

_id 8d41
authors Bourque, Paul N.
year 1988
title Computer-Aided Learning of Structural Behavior
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 135-146
doi https://doi.org/10.52842/conf.acadia.1988.135
summary Computer-aided learning of structural behavior can be very effective and motivating. Students are able to analyse structures in far less time than by traditional methods and address problems of much greater complexity. They do so without the burden of manual computation.

Computer programs exist that are well suited for this purpose, two of which are described. They offer a broad range of design capabilities, and are easy to master because of their intuitive and graphically oriented approach.

A number of examples are given to illustrate the potential of computer-aided learning as a complement to traditional methods either in the classroom or in coursework.

series ACADIA
last changed 2022/06/07 07:54

_id a1a1
authors Cornick, T. and Bull, S.
year 1988
title Expert Systems for Detail Design in Building
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 117-126
summary Computer-Aided Architectural Design (CAAD) requires detailed knowledge of the construction of building elements to be effective as a complete design aid. Knowledge-based systems provide the tools for both encapsulating the "rules" of construction - i.e. the knowledge of good construction practice gained from experience - and relating those rules to geometric representation of building spaces and elements. The "rules" of construction are based upon the production and performance implications of building elements and how these satisfy various functional criteria. These building elements in turn may be related to construction materials, components and component assemblies. This paper presents two prototype knowledge-based systems, one dealing with the external envelope and the other with the internal space division of buildings. Each is "component specific" and is based upon its own model of the overall construction. This paper argues that "CAAD requires component specific knowledge bases and that integration of these knowledge bases into a knowledge-based design system for complete buildings can only occur if every knowledge base relates to a single coordinated construction model".
series CAAD Futures
last changed 1999/04/03 17:58

_id 6f1b
authors De Floriani, Leila and Falcidieno, Bianca
year 1988
title A Hierarchical Boundary Model for Solid Object Representation
source ACM Transactions on Graphics. January, 1988. vol. 7: pp. 42-60 : ill. includes bibliography
summary A new hierarchical model for solid object representation is described. This model, called a Hierarchical Face Adjacency Hypergraph (HFAH), is based on a relational description of the object boundary, called a Face Adjacency Hypergraph (FAH), which considers faces as the primary topological entities defining the object boundary. The HFAH consists of a hierarchy of FAHs describing the decomposition of the boundary of an object into form features. In this paper the HFAH is described together with its internal encoding structure. Two basic transformations, called refinement and abstraction, are defined on the hierarchical model; these allow effective and efficient modifications of the hierarchical boundary model
keywords representation, computational geometry, solid modeling, algorithms, design, data structures, graphs, features, B-rep
series CADline
last changed 2003/06/02 13:58

_id 819d
authors Eiteljorg, H.
year 1988
title Computing Assisted Drafting and Design: new technologies for old problems
source Center for the study of architecture, Bryn Mawr, Pennsylvania
summary In past issues of the Newsletter, George Tressel and I have written about virtual reality and renderings. We have each discussed particular problems with the technology, and both of us mentioned how compelling computer visualizations can be. In my article ("Virtual Reality and Rendering," February, 1995, Vol. 7, no. 4), I indicated my concerns about the quality of the scholarship and the level of detail used in making renderings or virtual worlds. Mr. Tressel (in "Visualizing the Ancient World," November, 1996, Vol. IX, no. 3) wrote about the need to distinguish between real and hypothetical parts of a visualization, the need to differentiate materials, and the difficulties involved in creating the visualizations (some of which were included in the Newsletter in black-and-white and on the Web in color). I am returning to this topic now, in part because the quality of the images available to us is improving so fast and in part because it seems now that neither Mr. Tressel nor I treated all the issues raised by the use of high-quality visualizations. The quality may be illustrated by new images of the older propylon that were created by Mr. Tressel (Figs. 1 - 3); these images are significantly more realistic than the earlier ones, but they do not represent the ultimate in quality, since they were created on a personal computer.
series other
last changed 2003/04/23 15:50

_id c057
authors Ganter, John H.
year 1988
title Interactive Graphics : Linking the Human to the Model
source GIS/LIS'88 Proceeding accessing the world (3rd. : 1988 : San Antonio). December, 1988. Vol. 1: pp. 230-239 : ill. includes bibliography
summary Discovery and innovation, which have traditionally involved thinking visually and producing images, increasingly benefit from labor-saving devices like GIS and CAD. As new visualization technologies are implemented, it is particularly important to understand the human faculties which use pictures as tools in thinking. Science and engineering define problems, explain processes, and design solutions through observation, imagination and logic. This conceptual thought relies on a cognitive `database' of sensed verbal and non-verbal information, which is retained, managed, and updated within the short and long-term human memories. Research suggests that the individual must actively manipulate a phenomenon under study and its representations to enhance and maintain this database, and to produce abstractions and generalizations. Graphics are particularly important in this process of discovering correlations, contradictions and connections, and subsequent communication to others. Graphics offer high information density, simultaneity, variable detail and the capacity for showing multivariate relations. A `gestalt' property leads to the discovery of new relationships since the graphic whole always exceeds the sum of its parts. A cycle occurs in which the individual interacts with the phenomenon and produces explicit knowledge in the form of graphics and text, testing and refining each against knowledge and abstractions held in the mind
keywords information, computer graphics, perception, user interface, visualization, cognition, abstraction
series CADline
last changed 2003/06/02 13:58

_id 4cbb
authors Gero, John S. (editor)
year 1988
title Artificial Intelligence in Engineering : Design
source 465 p. Amsterdam: Elsevier/CMP, 1988. CADLINE has abstract only
summary This volume contains the papers in the design area from the Third International Conference on Artificial Intelligence in Engineering. Design is that most fundamental but least understood of engineering activities. Most current computer- aided design systems are primarily concerned with graphical representations of objects as they are being designed. The introduction of artificial intelligence into engineering has fostered the burgeoning interest in formal methods of engineering design. These methods treat design as being modelable using reasoning processes. The papers related to design can be grouped into two categories: those primarily concerned with design knowledge in its various forms and those primarily concerned with applications in specific domains. The papers in this volume are presented under the following headings: Design Knowledge and Representation; Integrated Circuit Design; Mechanical Engineering Design; Structural Engineering Design; Simultaneous Engineering Design; Architectural Design
keywords AI, design, engineering, knowledge, applications, architecture, CAD, CAE, integrated circuits, representation, structures, civil engineering
series CADline
email
last changed 2003/06/02 13:58

_id 82a7
authors Gero, John S., Maher, Mary Lou and Zhang, W.
year 1988
title Chunking Structural Design Knowledge as Prototypes
source Amsterdam: CMP, 1988. pp. 3-21. includes a short bibliography
summary The concept of a prototype as a conceptual schema for the representation of generalized design knowledge is proposed. A formal definition of prototypes is presented independent of their implementation. The paper elaborates this concept and demonstrates its applicability through an example in the domain of structural design. The example of prototype knowledge is presented for the design of rigid frames and the process of designing using prototypes is described. The advantages of this approach are presented
keywords design, prototypes, knowledge, representation, structures
series CADline
email
last changed 2003/06/02 13:58

_id 0833
authors Gero, John S.
year 1988
title Expert systems in Engineering Design : the Concept of Prototypes and their Application
source Symposium on Knowledge Based Systems in Civil Engineering. 1988. pp. 37-45
summary CADLINE has abstract only. This paper addresses the question of what sort of schemata do experts in engineering design use to allow the commencement and continuation of a design. It is suggested that a conceptual schema labelled prototype can be used to capture this expertise. Prototypes are generalizations at different levels of design experience and provide the bases of an approach to designing with computers. They structure design experience to make it applicable in similar situations. The paper elaborates the concept and briefly describes an application
keywords structures, engineering, expert systems, prototypes, design, knowledge
series CADline
email
last changed 2003/06/02 13:58

_id a4ce
authors Goldberg, D.
year 1988
title Genetic Algorithms in Search, Optimization and Machine Learning
source Addison-Wesley, Reading, Massachusetts
summary David Goldberg's Genetic Algorithms in Search, Optimization and Machine Learning is by far the bestselling introduction to genetic algorithms. Goldberg is one of the preeminent researchers in the field--he has published over 100 research articles on genetic algorithms and is a student of John Holland, the father of genetic algorithms--and his deep understanding of the material shines through. The book contains a complete listing of a simple genetic algorithm in Pascal, which C programmers can easily understand. The book covers all of the important topics in the field, including crossover, mutation, classifier systems, and fitness scaling, giving a novice with a computer science background enough information to implement a genetic algorithm and describe genetic algorithms to a friend.
series other
last changed 2003/04/23 15:14

_id diss_howe
id diss_howe
authors Howe, Alan Scott
year 1988
title A new paradigm for life-cycle management of kit-of-parts building systems
source UNIVERSITY OF MICHIGAN , PhD
summary The research described in this dissertation brings together various technologies in manufacturing and information management and suggests a new paradigm for the design, manufacture, and lifetime use of artifacts using kit-of-parts systems and rule-based assembly. The questions are asked: If architects, designers, and users were given direct online connection to real-time design information sources and fabrication processes, and have the ability to monitor and control the current state of designed objects throughout the objects' lifetime, how would the entire life-cycle of a product be affected, and how would design processes change? During the course of the research described in this dissertation, a series of simulations and experiments were conducted which produced a computer-based simulated design, manufacture, and use environment wherein these questions could begin to be answered. A kit-of-parts model building system was devised which could be used to design model buildings in virtual form by downloading virtual representations of the components from the Internet and assembling them into a desired form. The virtual model building could then be used to order the manufacture of real components online, and remotely controlled robots used to assemble the actual building on the site. Through the use of special hardware manufactured into the components, real-time remote monitoring and control of the current state of the finished model building was affected during the building's lifetime. The research establishes the feasibility of an online life-cycle environment where a virtual representation of an artifact is created and used to both manufacture a real-world counterpart and also monitor and control the current state of the real-world object. The state-of-the-art of pertinent technologies were explored through literature searches and experiments. Data representation, rule-based design techniques, robotics, and digital control were studied, and a series of design principles established which lend themselves toward a life-cycle management paradigm. Several case studies are cited which show how the design principles and life-cycle management environment can be applied to real buildings and other artifacts such as vehicles and marine structures. Ideas for expanded research on the life-cycle management paradigm are cited.  

series thesis:PhD
email
more http://wwwlib.umi.com/dissertations/fullcit/9909905
last changed 2003/11/20 19:57

_id 0711
authors Kunnath, S.K., Reinhorn, A.M. and Abel, J.F.
year 1990
title A Computational Tool for Evaluation of Seismic Performance of RC Buildings
source February, 1990. [1] 15 p. : ill. graphs, tables. includes bibliography: p. 10-11
summary Recent events have demonstrated the damaging power of earthquakes on structural assemblages resulting in immense loss of life and property (Mexico City, 1985; Armenia, 1988; San Francisco, 1989). While the present state-of-the-art in inelastic seismic response analysis of structures is capable of estimating response quantities in terms of deformations, stresses, etc., it has not established a physical qualification of these end-results into measures of damage sustained by the structure wherein system vulnerability is ascertained in terms of serviceability, repairability, and/or collapse. An enhanced computational tool is presented in this paper for evaluation of reinforced concrete structures (such as buildings and bridges) subjected to seismic loading. The program performs a series of tasks to enable a complete evaluation of the structural system: (a) elastic collapse- mode analysis to determine the base shear capacity of the system; (b) step-by-step time history analysis using a macromodel approach in which the inelastic behavior of RC structural components is incorporated; (c) reduction of the response quantities to damage indices so that a physical interpretation of the response is possible. The program is built around two graphical interfaces: one for preprocessing of structural and loading data; and the other for visualization of structural damage following the seismic analysis. This program can serve as an invaluable tool in estimating the seismic performance of existing RC buildings and for designing new structures within acceptable levels of damage
keywords seismic, structures, applications, evaluation, civil engineering, CAD
series CADline
last changed 2003/06/02 14:41

_id 4744
authors Livingstone, Margaret and Hubel, David
year 1988
title Segregation of Form, Color, Movement, and Depth : Anatomy, Physiology, and Perception
source Science. May, 1988. vol. 240: pp. 740-750 : ill. some col. includes bibliography
summary Anatomical and physiological observations in monkeys indicate that the primate visual system consists of several separate and independent subdivisions that analyze different aspects of the same retinal image: cells in cortical visual areas 1 and 2 and higher visual areas are segregated into three interdigitating subdivisions that differ in their selectivity for color, stereopsis, movement, and orientation. The pathways selective for form and color seem to be derived mainly from the parvocellular geniculate subdivisions, the depth- and movement-selective components from the magnocellular. At lower levels, in the retina and in the geniculate, cells in these two subdivisions differ in their color selectivity, contrast sensitivity, temporal properties, and spatial resolution. These major differences in the properties of cells at lower levels in each of the subdivisions led to the prediction that different visual functions, such as color, depth, movement, and form perception, should exhibit corresponding differences. Human perceptual experiments are remarkably consistent with these predictions. Moreover, perceptual experiments can be designed to ask which subdivisions of the system are responsible for particular visual abilities, such as figure/ground discrimination or perception of depth from perspective or relative movement-functions that might be difficult to deduce from single-cell response properties
keywords color, theory, perception
series CADline
last changed 2003/06/02 10:24

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 8HOMELOGIN (you are user _anon_153831 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002