CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 163

_id c7e9
authors Maver, T.W.
year 2002
title Predicting the Past, Remembering the Future
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 2-3
summary Charlas Magistrales 2There never has been such an exciting moment in time in the extraordinary 30 year history of our subject area, as NOW,when the philosophical theoretical and practical issues of virtuality are taking centre stage.The PastThere have, of course, been other defining moments during these exciting 30 years:• the first algorithms for generating building layouts (circa 1965).• the first use of Computer graphics for building appraisal (circa 1966).• the first integrated package for building performance appraisal (circa 1972).• the first computer generated perspective drawings (circa 1973).• the first robust drafting systems (circa 1975).• the first dynamic energy models (circa 1982).• the first photorealistic colour imaging (circa 1986).• the first animations (circa 1988)• the first multimedia systems (circa 1995), and• the first convincing demonstrations of virtual reality (circa 1996).Whereas the CAAD community has been hugely inventive in the development of ICT applications to building design, it hasbeen woefully remiss in its attempts to evaluate the contribution of those developments to the quality of the built environmentor to the efficiency of the design process. In the absence of any real evidence, one can only conjecture regarding the realbenefits which fall, it is suggested, under the following headings:• Verisimilitude: The extraordinary quality of still and animated images of the formal qualities of the interiors and exteriorsof individual buildings and of whole neighborhoods must surely give great comfort to practitioners and their clients thatwhat is intended, formally, is what will be delivered, i.e. WYSIWYG - what you see is what you get.• Sustainability: The power of «first-principle» models of the dynamic energetic behaviour of buildings in response tochanging diurnal and seasonal conditions has the potential to save millions of dollars and dramatically to reduce thedamaging environmental pollution created by badly designed and managed buildings.• Productivity: CAD is now a multi-billion dollar business which offers design decision support systems which operate,effectively, across continents, time-zones, professions and companies.• Communication: Multi-media technology - cheap to deliver but high in value - is changing the way in which we canexplain and understand the past and, envisage and anticipate the future; virtual past and virtual future!MacromyopiaThe late John Lansdown offered the view, in his wonderfully prophetic way, that ...”the future will be just like the past, onlymore so...”So what can we expect the extraordinary trajectory of our subject area to be?To have any chance of being accurate we have to have an understanding of the phenomenon of macromyopia: thephenomenon exhibitted by society of greatly exaggerating the immediate short-term impact of new technologies (particularlythe information technologies) but, more importantly, seriously underestimating their sustained long-term impacts - socially,economically and intellectually . Examples of flawed predictions regarding the the future application of information technologiesinclude:• The British Government in 1880 declined to support the idea of a national telephonic system, backed by the argumentthat there were sufficient small boys in the countryside to run with messages.• Alexander Bell was modest enough to say that: «I am not boasting or exaggerating but I believe, one day, there will bea telephone in every American city».• Tom Watson, in 1943 said: «I think there is a world market for about 5 computers».• In 1977, Ken Olssop of Digital said: «There is no reason for any individuals to have a computer in their home».The FutureJust as the ascent of woman/man-kind can be attributed to her/his capacity to discover amplifiers of the modest humancapability, so we shall discover how best to exploit our most important amplifier - that of the intellect. The more we know themore we can figure; the more we can figure the more we understand; the more we understand the more we can appraise;the more we can appraise the more we can decide; the more we can decide the more we can act; the more we can act themore we can shape; and the more we can shape, the better the chance that we can leave for future generations a trulysustainable built environment which is fit-for-purpose, cost-beneficial, environmentally friendly and culturally significactCentral to this aspiration will be our understanding of the relationship between real and virtual worlds and how to moveeffortlessly between them. We need to be able to design, from within the virtual world, environments which may be real ormay remain virtual or, perhaps, be part real and part virtual.What is certain is that the next 30 years will be every bit as exciting and challenging as the first 30 years.
series SIGRADI
email
last changed 2016/03/10 09:55

_id 45b7
authors Oxman, R.E.
year 1988
title Expert System for Generation and Evaluation in Architectural Design
source Technion, Faculty of Architecture and Town Planing, Haifa
summary The research field, focuses on a new research area of Knowledge Based Systems for Architectural Design. The research deals with concepts and tools emerging from Artificial Intelligence, Knowledge Based Systems and Expert Systems. The research is involved with the construction of a theoretical basis for the development of approaches and methods for the representation and control of design knowledge as a reasoning process. Key questions which attempt to reconsider representation and control in design are formulated. The following questions serve as a research framework out of which new approaches, methods and tools were developed. (1.)What are the existing ideas, methods and tools in Expert Systems? (2.) What are the performance characteristics of Expert Systems in Architectural Design ? (3.) What are the desired operative characteristics and interactions for Expert Systems in design ? (4.) How is it possible to formulate and apply the diverse forms of Architectural Knowledge in Expert Systems for design? (5.) What are the problems of implementation in the development of Expert Systems for design ? The state of the art in knowledge based systems is surveyed, while emphasizing the differences between conventional systems and knowledge based systems. Representation and control methods and the components of expert systems are reviewed. Expert systems for diagnosis, interpretation, planning and design are analysed with respect to their performance characteristics. Techniques and technologies of existing tools are defined. An expert system for the generation and evaluation of ill defined architectural design problems is develped. A formalization of the concept of 'design interpretation' is proposed and developed. It is applied in the process of defining and classifying the performance characteristics of expert systems for design. This concept is based upon two sets of reasoning processes: those which enable a mapping between design requirements and solution descriptions in the generation stage of design and those between solution descriptions and performance evaluation in the evaluation stage of design. On the basis of the formalization of this concept, an expert system capable of integrating various modes of performance is proposed and developed. The system functions as a 'design generator', a 'design critic', or a' design critic-generator'. These modes, which integrate generation and evaluation in the same system, operate by employing both forward chaining and backward chaining inference mechanisms. As a result of the examination of desired forms of interactions, a new approach for dual direction interpretation between graphic and verbal modes is developed. This approach reflects the importance of both graphical and verbal expression in design. The approach is based upon a simultaneous mapping between symbolic-verbal interpretation and graphic interpretation. The work presents the mapping process through the concept of design interpretation, employing geometrical knowledge, typological knowledge and evaluation knowledge. A tool which provides communication between an expert system and a graphic system was developed and is presented. The importance of such a tool in expert systems for design resides in the provision of free choice to the user for interacting with the system either graphically or verbally during the design process. An additional component in the development of knowledge-based systems for design is related to the important question of knowledge definition and the representational schemata of design knowledge. A new representational scheme for complex architectural knowledge, termed 'The generation and refinement scheme of a design prototype' is proposed and developed. Its operation as part of a total integrated design system is demonstrated. The scheme is based upon the structures of knowledge of design precedents which constitute typical situations and solutions in architectural design. This scheme provides an appropriate representation for the two types of knowledge which operate in a refinement process of a design prototype. Generative knowledge describes the solution space by predefined refinement stages; interpretive knowledge enables their selection. The examination of representational methods for the proposed scheme indicated that employing a single representational method lacked enough generalization and expressive power for the needs of the design knowledge structures. It was found that a way to represent complex structures is through the integration of multiple methods of representation, each one according to the knowledge characteristics. In order to represent the proposed scheme of design knowledge, a unique method was developed which integrates both rules and frames. The method consists of a rules-frames-rules structure for the representation of a design prototype. An approach is developed for the implementation of these concepts in an expert system for design. PRODS: A prototype based expert system shell for design is developed and demonstrated. The system consists of three basic components: a rule-based expert system shell, a frame system, and a knowledge base interface. All system interactions are controlled by the inference engine. It passes control between the rule-base and the frame-base inference engines, and provides communications between the rule-based and frame-based representations. It is suggested that expert system can interface with external CAD systems including graphics, communicating through a central representation. These concepts and developments are demonstrated in two implementations. The PREDIKT system for the preliminary design of the residential kitchen; the PROUST system for the selection and refinement of dwelling types. PREDIKT demonstrates the integration of rules and a graphical-verbal interpreter; in addition, PROUST demonstrates the significance of hybrid representation in the generation and refinement processes. The results and conlusions are summarized. Future research agenda within the field of knowledge-based systems for design is discussed, and potential research areas are defined.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id c7f4
authors Bancroft, Pamela J. (ed.)
year 1988
title Computing in Design Education [ACADIA Conference Proceedings]
doi https://doi.org/10.52842/conf.acadia.1988
source ACADIA ‘88 Conference Proceedings /Ann Arbor (Michigan / USA) 28-30 October 1988, 311 p.
summary Progress is being made towards integrating computing into architectural design. This progress is not being made in a coordinated and systematic manner, which is actually a positive factor. Architects will never be scientists or engineers, who hold the distinguishing characteristic of being masters of the scientific method. We have never been so incumbered, although we certainly have given it our best effort.

Architects are creative problem solvers, primarily driven by intuition, while coming from a sense of the past and the logic of the present. Our initial attempts at integrating computing into the studio, as evidenced by this collection of papers, is very diverse, based on differing pedagogical assumptions, and the achieving of significantly different results. This would appear to be evidence of a revolutionary approach to the problem rather than a scientific evolutionary approach. Terrific! This is when we as architects are at our best. Although we reach a great number of emphatically dead ends, the successes and discoveries achieved along the way are significant.

The diversity and quality of papers submitted suggest that we are indeed pursuing the task of integration in our typical, individual, intuitive, logical manner. I commend all of the authors who submitted proposals and thank them for expanding the envelope of integration into their personal exploration.

series ACADIA
last changed 2022/06/07 07:49

_id 887e
authors Belajcic, N. D.
year 1988
title Computer Implementation of Shape Grammars
source Department of Architectural Science, University of Sydney
summary An approach is taken that shape grammars can be used as a possible vehicle for automated design generation. Historical background of shape grammars is discussed with emphasis on vocabulary/syntax aspect of the design process and significance of class solutions to problems. Similarities with expert system mechanics and structure is highlighted and advantages and disadvantages of rule-based and frame-based systems are considered. These concepts are implemented in a computer program written in LISP employing icon driven graphic interface with tools for creating shapes and rules. Finally, problems associated with adopted reasoning strategies are reported and areas of further development and improvement suggested. [UNPUBLISHED. CADLINE has abstract only]
keywords Shape Grammars, Design Process
series thesis:MSc
last changed 2002/12/14 19:10

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id a19d
authors Brown, G.Z. and Novitski, Barbara-Jo
year 1988
title A Macintosh Design Studio
doi https://doi.org/10.52842/conf.acadia.1988.151
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 151-162
summary During the past year at the University of Oregon, we have conducted an experimental design studio in which each student had an Apple Macintosh SE microcomputer on his or her studio desk. Each term we experimented with a variety of software, furniture arrangements, and pedagogical approaches to integrating computers in design teaching. Like most others who have conducted such experiments, we encountered problems in trying to use hardware and software which is fundamentally inappropriate for the intuitive, graphic, and creative processes characteristic of preliminary design. However, we solved many of these problems and have produced useful techniques that may form the beginnings of a new approach to the use of computers in architecture schools.

Our results fall in three major categories: 1) pedagogical discoveries about learning to design with a computer, which is greater than the sum of learning to design and learning about computers; 2) design exercises based on the Macintosh environment, exploiting the unique graphic qualities of the machine while simultaneously developing the ideas and drawing skills needed in the preliminary stages of design; 3) descriptions of the studio environment, including hardware, software, workstation layouts, security solutions, and other practical information that might be useful to others who are contemplating a similar project.

series ACADIA
email
last changed 2022/06/07 07:54

_id 5f4b
authors Coyne, R.D.
year 1988
title Logic Models of Design
source Pitman, London
summary This monograph places design in a theoretical context which applies developments in knowledge-based systems, logic programming and planning to design. It addresses two important design issues: the interpretation of designs, which concerns the discovery of implicit design attributes, a key activity in design evaluation that can be modelled by deductive inference in logic programming; and the process of generation, whereby a design description is produced which exhibits these implicit design attributes. Implicit attributes can be seen as analogous to the semantic content of natural language utterances. The work presented here is mainly concerned with design generation, and an operational model of design is investigated in which operations on processes are treated in a similar way to operations on form. It is argued that there are advantages in representing control knowledge as rules in a design system, and that logic is an effective medium for this purpose. This is demonstrated by means of programs developed in Prolog and C using the example of spatial layout in buildings. Primarily, this book is directed at those in artificial intelligence (AI) involved in logic programming, planning and expert systems. However, since AI techniques are finding widespread application in industry, the use of an architectural design example makes this work relevant to architects, designers, engineers and developers of intelligent architectural design software.
series other
email
last changed 2003/04/23 15:14

_id 68c8
authors Flemming, U., Coyne, R. and Fenves, S. (et al.)
year 1994
title SEED: A Software Environment to Support the Early Phases in Building Design
source Proceeding of IKM '94, Weimar, Germany, pp. 5-10
summary The SEED project intends to develop a software environment that supports the early phases in building design (Flemming et al., 1993). The goal is to provide support, in principle, for the preliminary design of buildings in all aspects that can gain from computer support. This includes using the computer not only for analysis and evaluation, but also more actively for the generation of designs, or more accurately, for the rapid generation of design representations. A major motivation for the development of SEED is to bring the results of two multi-generational research efforts focusing on `generative' design systems closer to practice: 1. LOOS/ABLOOS, a generative system for the synthesis of layouts of rectangles (Flemming et al., 1988; Flemming, 1989; Coyne and Flemming, 1990; Coyne, 1991); 2. GENESIS, a rule-based system that supports the generation of assemblies of 3-dimensional solids (Heisserman, 1991; Heisserman and Woodbury, 1993). The rapid generation of design representations can take advantage of special opportunities when it deals with a recurring building type, that is, a building type dealt with frequently by the users of the system. Design firms - from housing manufacturers to government agencies - accumulate considerable experience with recurring building types. But current CAD systems capture this experience and support its reuse only marginally. SEED intends to provide systematic support for the storing and retrieval of past solutions and their adaptation to similar problem situations. This motivation aligns aspects of SEED closely with current work in Artificial Intelligence that focuses on case-based design (see, for example, Kolodner, 1991; Domeshek and Kolodner, 1992; Hua et al., 1992).
series other
email
last changed 2003/04/23 15:14

_id 6745
authors Giraud, Christian and Hanrot, Stephane
year 1988
title Elements for Spatial Reasoning in Construction
source Robotics in Construction, International Symposium (5th : 1988 : Tokyo, Japan). pp. 105- 113 : ill. includes bibliography
summary According to AI techniques, spatial reasoning is seen in construction as generation and solving of goals involving a spatial representation model of buildings defining a rich taxonomy of parts and elements, and spatial relationships between these parts and elements. The authors define spatial representation model and spatial relationship from previous experiments in architect knowledge representation and automated surveying. The aim is to enable very abstract and short descriptions of building component assemblies, from designers at drawing-boards or from workers on sites, which can be processed and transformed in basic geometrical properties
keywords reasoning, representation, construction, automation
series CADline
last changed 2003/06/02 13:58

_id 0803
authors Jabri, Marwan A. and Skellern, David J.
year 1988
title Automatic Floorplan Design Using PIAF
source August, 1988. 36 p. : ill. tables
summary This paper presents PIAF (a Package for Intelligent and Algorithmic Floorplanning), developed at Sydney University Electrical Engineering (SUEE) for use in custom integrated circuit design. Floorplanning plays a crucial role in the design of custom integrated circuits. When design is approached in a top-down fashion, the function to be implemented on silicon is first decomposed in a conceptual phase into a Functional Block Diagram (FBD). This FBD has a 'blocks and buses' structure where blocks represent sub- functions and buses represent the interconnections that carry data and other information between blocks. The decomposition of the function into sub-functions is hierarchical and aims at reducing the complexity of the design problem. When the FBD is known, the floorplanning process may be performed. When this task is performed manually, the designer searches for a relative placement of the blocks and for an area and shape for each block to minimize the overall chip layout area while at the same time meeting design constraints such as design tool limitations, interconnection characteristics and technological design rules. PIAF is a knowledge-based system (KBS) that has been developed at SUEE during the last four years. It relies on a strategy that partitions the floorplanning task in a way that allows efficient use of heuristics and specialized design knowledge in the generation and pruning of the solution space. This paper presents the operation of PIAF and discusses several implementation issues including; KBS structure, knowledge representation, knowledge acquisition, current context memory design, design quality factors and explanation facility. This paper uses a running example to present the operation of each PIAF's KBS-based solving phases
keywords knowledge, representation, knowledge acquisition, electrical engineering, design, integrated circuits, knowledge base, systems, layout, synthesis
series CADline
last changed 2003/06/02 10:24

_id 0711
authors Kunnath, S.K., Reinhorn, A.M. and Abel, J.F.
year 1990
title A Computational Tool for Evaluation of Seismic Performance of RC Buildings
source February, 1990. [1] 15 p. : ill. graphs, tables. includes bibliography: p. 10-11
summary Recent events have demonstrated the damaging power of earthquakes on structural assemblages resulting in immense loss of life and property (Mexico City, 1985; Armenia, 1988; San Francisco, 1989). While the present state-of-the-art in inelastic seismic response analysis of structures is capable of estimating response quantities in terms of deformations, stresses, etc., it has not established a physical qualification of these end-results into measures of damage sustained by the structure wherein system vulnerability is ascertained in terms of serviceability, repairability, and/or collapse. An enhanced computational tool is presented in this paper for evaluation of reinforced concrete structures (such as buildings and bridges) subjected to seismic loading. The program performs a series of tasks to enable a complete evaluation of the structural system: (a) elastic collapse- mode analysis to determine the base shear capacity of the system; (b) step-by-step time history analysis using a macromodel approach in which the inelastic behavior of RC structural components is incorporated; (c) reduction of the response quantities to damage indices so that a physical interpretation of the response is possible. The program is built around two graphical interfaces: one for preprocessing of structural and loading data; and the other for visualization of structural damage following the seismic analysis. This program can serve as an invaluable tool in estimating the seismic performance of existing RC buildings and for designing new structures within acceptable levels of damage
keywords seismic, structures, applications, evaluation, civil engineering, CAD
series CADline
last changed 2003/06/02 14:41

_id 7e15
authors Kvan, Thomas
year 1997
title Chips, chunks and sauces
source International Journal of Design Computing, 1, 1997 (Editorial)
summary I am sure there is an art in balancing the chunks to use with your chips. Then there is the sauce that envelops them both. I like my chips chunky and not too saucy. Not that I am obsessed with food but I don't think you can consider design computing without chunks. It's the sauce I'm not sure about. The chunks of which I write are not of course those in your salsa picante but those postulated by Chase and Simon (1973) reflecting on good chess players; the chunks of knowledge with which an expert tackles a problem in their domain of expertise. The more knowledge an expert has of complex and large configurations of typical problem situations (configurations of chess pieces), the greater range of solutions the expert can bring a wider to a particular problem. Those with more chunks have more options and arrive at better solutions. In other words, good designs come from having plenty of big chunks available. There has been a wealth of research in the field of computer-supported collaborative work in the contexts of writing, office management, software design and policy bodies. It is typically divided between systems which support decision making (GDSS: group decision support systems) and those which facilitate joint work (CSCW: computer-based systems for co-operative work) (see Dennis et al. (1988) for a discussion of the distinctions and their likely convergence). Most implementations in the world of design have been on CSCW systems, few have looked at trying to make a group design decision support system (GDDSS?). Most of the work in CSCD has been grounded in the heritage of situated cognition - the assumption that collaborative design is an act that is intrinsically grounded in the context within which it is carried out, that is, the sauce in which we find ourselves swimming daily. By sauce, therefore, I am referring to anything that is not knowledge in the domain of expertise, such as modes of interaction, gestures, social behaviours.
series journal paper
email
last changed 2003/05/15 10:29

_id 4901
authors McIntosh, John F.
year 1988
title The ASU Strategic Plan For Computing Support
doi https://doi.org/10.52842/conf.acadia.1988.301
source Computing in Design Education [ACADIA Conference Proceedings] Ann Arbor (Michigan / USA) 28-30 October 1988, pp. 301-310
summary Our College has spent approximately one hundred thousand dollars per year on computing over the last five years. This paper, which developed out of a University-wide strategic planning exercise, speaks to the question: What are we getting for all that money?

The background to this large planning exercise is sketched, the goals of our computing support plan are stated, the strategies aimed at achieving these goals are explained, and the observed outcomes from implementing these strategies are listed.

In evaluating the plan, this paper argues the position that a computer culture must take hold within the College before computer-aided design will have a truly profound effect upon pedagogy. Operationally, this means that every faculty member must have a personal computer and that every student must have free access to a microcomputer facility. Only then does the whole College adopt the new culture.

The fiscal commitment is high, but there are payoffs in of fice automation that justify the investment even in the short-term. Trivial as it seems, wordprocessing is the first step in seeding this culture. These short term payoffs help make the case for investing in the promise of long-term payoffs in superior design through computer aids.

series ACADIA
email
last changed 2022/06/07 07:58

_id 404e
authors Oksala , T.
year 1988
title Logical Models for Rule-based CAAD
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 107-116
summary The aim of this paper is to present the basic results of a theoretic approach to represent architectural individual forms in CAD systems. From the point of view of design methodology and problem solving these descriptions might be conceived' as parts of possible environments satisfying the laws of some design theory in logical sense. This paper describes results in a series of logical studies towards rule and knowledge based systems for design automation. The effective use of programming languages and computers as design aids in architecture presupposes certain capabilities to articulate built environment logically. The use of graphic languages in the description of environmental items e.g. buildings might be theoretically mastered by formal production systems including linguistic, geometric, and spatio-material generation. The combination of the power of formal mechanisms and logical individual calculus offers suitable framework to generate arbitrary e.g. free spatial compositions as types or unique solutions. In this frame it is natural to represent in a coherent way very complex hierarchical parsing of buildings in explicit form as needed in computer implementations. In order to simulate real design work the individual configurations of possible built forms should be designed to satisfy known rules. In the preliminary stage partial solutions to design problems may be discussed in mathematical terms using frameworks like lattices, graphs, or group theoretical considerations of structural, functional, and visual organization of buildings. The capability to produce mathematically sophisticated geometric structures allows us to generalize the approach further. The theoretical design knowhow in architecture can be partly translated in to some logic and represented in a knowledge base. These rules are used as selection criteria for geometric design candidates in the sense of logical model theory and mathematical optimization. The economy of the system can be developed by using suitable conduct mechanisms familiar e.g. from logic programming. The semantics of logic offers a frame to consider computer assisted and formal generation in design. A number of semantic and pragmatic problems, however, remain to be solved. In any case conceptual analyses based on logic are applicable in order to rationally reconstruct architectural goals contributing to the quality of environmental design, which should be the main goal in the development of design systems in near future.
series CAAD Futures
last changed 1999/04/03 17:58

_id 252a
authors Reich, Yoram
year 1988
title Machine Learning for Expert Systems : Motivation and Techniques
source i-iii, 51 p. : some ill Pittsburgh, PA: Engineering Design Research Center, CMU, June, 1988. EDRC 12-27-88. includes bibliography. First generation expert systems suffer from two major problems: they are brittle and their development is a long, effortful process. Few successful expert systems for real world problems have been demonstrated. In this paper, learning, the key to intelligent behavior and expertise, is described as the answer to both expert systems deficiencies. Machine learning techniques are described, with their applicability to expert systems. A framework to organize machine learning techniques is provided. The description is followed by examples taken from the structural design domain. AI / learning / expert systems / structures / techniques. 37. Requicha, Aristides A. G. 'Mathematical Models of Rigid Solid Objects -- Production Automation Project.' Rochester, NY: College of Engineering & Applied Science, University of Rochester, November, 1977. [3], 37 p. : ill.
summary Computational models of solid objects are potentially useful in a variety of scientific and engineering fields, and in particular in the field of design and manufacturing automation for the mechanical industries. In recent years a multitude of modelling systems have been implemented both by research laboratories and commercial vendors, but little attention has been paid to the fundamental theoretical issues in geometric modelling. This has led to severe difficulties in assessing current and proposed systems, and in distinguishing essential capabilities and limitations from user conveniences and efficiency considerations. This paper seeks a sharp mathematical characterization of 'rigid solids' in a manner that is suitable for studies in design and production automation. It draws heavily on established results in modern geometry and topology. Relevant results scattered throughout the mathematical literature are placed in a coherent framework and presented in a form accessible to engineers and computer scientists. A companion paper is devoted to a discussion of representational issues in the context set forth by this paper
keywords solid modeling, geometric modeling
series CADline
last changed 1999/02/12 15:09

_id e757
authors Schijf, R.
year 1988
title Strategies For CAAD Education - The Singapore Way
source CAAD futures ‘87 [Conference Proceedings / ISBN 0-444-42916-6] Eindhoven (The Netherlands), 20-22 May 1987, pp. 23-46
summary For over one year (1985/86) the author was as senior lecturer instrumental in developing and initiating a CAAD-curriculum at the Singapore School of Architecture. The paper describes the circumstances surrounding the acquisition of the Schools' large CAD-system, the CAAD-curriculum proposals, and the first pilot courses. On the basis of this preliminary experience some observations for CAAD-teaching are made, which are related to more universal strategies for CAAD-education.
series CAAD Futures
last changed 1999/04/03 17:58

_id avocaad_2001_09
id avocaad_2001_09
authors Yu-Tung Liu, Yung-Ching Yeh, Sheng-Cheng Shih
year 2001
title Digital Architecture in CAD studio and Internet-based competition
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Architectural design has been changing because of the vast and creative use of computer in different ways. From the viewpoint of designing itself, computer has been used as drawing tools in the latter phase of design (Mitchell 1977; Coyne et al. 1990), presentation and simulation tools in the middle phase (Liu and Bai 2000), and even critical media which triggers creative thinking in the very early phase (Maher et al. 2000; Liu 1999; Won 1999). All the various roles that computer can play have been adopted in a number of professional design corporations and so-called computer-aided design (CAD) studio in schools worldwide (Kvan 1997, 2000; Cheng 1998). The processes and outcomes of design have been continuously developing to capture the movement of the computer age. However, from the viewpoint of social-cultural theories of architecture, the evolvement of design cannot be achieved solely by designers or design processes. Any new idea of design can be accepted socially, culturally and historically only under one condition: The design outcomes could be reviewed and appreciated by critics in the field at the time of its production (Csikszentmihalyi 1986, 1988; Schon and Wiggins 1992; Liu 2000). In other words, aspects of design production (by designers in different design processes) are as critical as those of design appreciation (by critics in different review processes) in the observation of the future trends of architecture.Nevertheless, in the field of architectural design with computer and Internet, that is, so-called computer-aided design computer-mediated design, or internet-based design, most existing studies pay more attentions to producing design in design processes as mentioned above. Relatively few studies focus on how critics act and how they interact with designers in the review processes. Therefore, this study intends to investigate some evolving phenomena of the interaction between design production and appreciation in the environment of computer and Internet.This paper takes a CAD studio and an Internet-based competition as examples. The CAD studio includes 7 master's students and 2 critics, all from the same countries. The Internet-based competition, held in year 2000, includes 206 designers from 43 counties and 26 critics from 11 countries. 3 students and the 2 critics in the CAD studio are the competition participating designers and critics respectively. The methodological steps are as follows: 1. A qualitative analysis: observation and interview of the 3 participants and 2 reviewers who join both the CAD studio and the competition. The 4 analytical criteria are the kinds of presenting media, the kinds of supportive media (such as verbal and gesture/facial data), stages of the review processes, and interaction between the designer and critics. The behavioral data are acquired by recording the design presentation and dialogue within 3 months. 2. A quantitative analysis: statistical analysis of the detailed reviewing data in the CAD studio and the competition. The four 4 analytical factors are the reviewing time, the number of reviewing of the same project, the comparison between different projects, and grades/comments. 3. Both the qualitative and quantitative data are cross analyzed and discussed, based on the theories of design thinking, design production/appreciation, and the appreciative system (Goodman 1978, 1984).The result of this study indicates that the interaction between design production and appreciation during the review processes could differ significantly. The review processes could be either linear or cyclic due to the influences from the kinds of media, the environmental discrepancies between studio and Internet, as well as cognitive thinking/memory capacity. The design production and appreciation seem to be more linear in CAD studio whereas more cyclic in the Internet environment. This distinction coincides with the complementary observations of designing as a linear process (Jones 1970; Simon 1981) or a cyclic movement (Schon and Wiggins 1992). Some phenomena during the two processes are also illustrated in detail in this paper.This study is merely a starting point of the research in design production and appreciation in the computer and network age. The future direction of investigation is to establish a theoretical model for the interaction between design production and appreciation based on current findings. The model is expected to conduct using revised protocol analysis and interviews. The other future research is to explore how design computing creativity emerge from the process of producing and appreciating.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 450c
authors Akin, Ömer
year 1990
title Computational Design Instruction: Toward a Pedagogy
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 302-316
summary The computer offers enormous potential both in and out of the classroom that is realized only in limited ways through the applications available to us today. In the early days of the computer it was generally argued that it would replace the architect. When this idea became obsolete, the prevailing opinion of proponents and opponents alike shifted to the notion of the computer as merely adding to present design capabilities. This idea is so ingrained in our thinking that we still speak of "aiding" design with computers. It is clear to those who grasp the real potential of this still new technology - as in the case of many other major technological innovations - that it continues to change the way we design, rather than to merely augment or replace human designers. In the classroom the computer has the potential to radically change three fundamental ingredients: student, instruction, and instructor. It is obvious that changes of this kind spell out a commensurate change in design pedagogy. If the computer is going to be more than a passive instrument in the design studio, then design pedagogy will have to be changed, fundamentally. While the practice of computing in the studio continues to be a significant I aspect of architectural education, articulation of viable pedagogy for use in the design studio is truly rare. In this paper the question of pedagogy in the CAD studio will be considered first. Then one particular design studio taught during Fall 1988 at Carnegie Mellon University will be presented. Finally, we shall return to issues of change in the student, instruction, and instructor, as highlighted by this particular experience.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
doi https://doi.org/10.52842/conf.acadia.1994.039
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id 0697
authors Balachandran, M.B. and Gero, John S.
year 1988
title Development of a Knowledge-Based System for Structural Optimization
source Dordrecht: Kluwer, 1988. pp. 17-24
summary Optimization is a useful and challenging activity in structural design. It provides designers with tools for better designs while saving time in the design process. The features of conventional optimization tools are presented and their limitations are outlined. The impact and role of knowledge-based methodologies in structural optimization processes is discussed. Structural optimization involves a number of tasks which require human expertise, and are traditionally assisted by human designers. These include design optimization formulation, problem recognition and the selection of appropriate algorithm(s). In this representation and processing of constraints are crucial tasks. This paper presents a framework for developing a knowledge-based system to accomplish these tasks. Based on the needs and the nature of the optimization process, a conceptual architecture of an integrated knowledge-based system is presented. The structure and functions of various components of the system are described
keywords knowledge base, systems, integration, optimization, structures, engineering
series CADline
email
last changed 2003/06/02 13:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 8HOMELOGIN (you are user _anon_25246 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002