CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 200

_id 0105
authors Bossan, Mario and Ronchi, Alfredo M.
year 1989
title Presentazione Esperienza Didattica del Dipartimento di Ingegneria dei Sistemi Edilizi e Territoriali - Politecnico di Milano
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 9.8.1-9.8.19
doi https://doi.org/10.52842/conf.ecaade.1989.x.x4i
summary Didactic and research experience developed at the "Dipartimento di Ingegneria dei Sistemi Edilizi e Territoriali del Politecnico di Milano" in the environment of Computer Aided Architectural Design (CAAD). From the early part of the 1980's, using initially at an experimental level the resources available at the departmental centre of calculation various applications of CAD techniques in the building sector have been effected at DISET (Dipartimento di Ingegneria del Politecnico di Milano). During 1983, after a three year period of experimenting with these systems, it was decided to organise and activate a small computer aided design centre, within the department, the use of which was reserved for dissertation and research students.

series eCAADe
email
last changed 2022/06/07 07:50

_id ascaad2014_002
id ascaad2014_002
authors Burry, Mark
year 2014
title BIM and the Building Site: Assimilating digital fabrication within craft traditions
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 27-36
summary This paper outlines a particular component of very well known project: Antoni Gaudí’s Sagrada Família Basilica in Barcelona (1882– on-going but scheduled for completion in 2026). At the time of writing the realisation of the project has proceeded for 87 years since Gaudí's death (1852-1926). As a building site it has been a living laboratory for the nexus between traditional construction offsite manufacturing and digital fabrication since the computers were first introduced to the project:CAD in 1989 closely followed by CAAD two years later. More remarkably CAD/CAM commenced its significant influence in 1991 with the take-up of sem robotised stone cutting and carving. The subject of this paper is an elevated auditorium space that is one of the relatively few ‘sketchy’ areas that Gaudí bequeathed the successors for the design of his magnum opus.
series ASCAAD
email
last changed 2016/02/15 13:09

_id 6b83
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 1989
title Towards a New Generation of Computer Assistants for Architectural Design: An Existing Scenario
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 8.3.1.8.3.10
doi https://doi.org/10.52842/conf.ecaade.1989.x.f9h
summary The context in which designers operate is becoming more and more complex, owing to the large number of codes, new materials, technologies and professional figures; new instruments are needed, therefore, to support and verify design activity. The results obtained in the first years of 'computer era' were barely sufficient. The hardware and software available today is capable of producing a new generation of CAD systems which can aid the designer in the process of conceiving and defining building objects. At the CAD Laboratory in the Department of Building and Environmental Control Techniques at the 'La Sapienza' University of Rome, research is being carried out with the aim of defining a new kind of Knowledge-based assistant for architectural design. To this purpose a partnership has been established whit a private firm called CARTESIANA, whose partners are software houses, designing and building associations.
keywords Knowledge-Based Architectural Design
series eCAADe
last changed 2022/06/07 07:50

_id b4c4
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 2000
title A framework for an Architectural Collaborative Design
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 57-60
doi https://doi.org/10.52842/conf.ecaade.2000.057
summary The building industry involves a larger number of disciplines, operators and professionals than other industrial processes. Its peculiarity is that the products (building objects) have a number of parts (building elements) that does not differ much from the number of classes into which building objects can be conceptually subdivided. Another important characteristic is that the building industry produces unique products (de Vries and van Zutphen, 1992). This is not an isolated situation but indeed one that is spreading also in other industrial fields. For example, production niches have proved successful in the automotive and computer industries (Carrara, Fioravanti, & Novembri, 1989). Building design is a complex multi-disciplinary process, which demands a high degree of co-ordination and co-operation among separate teams, each having its own specific knowledge and its own set of specific design tools. Establishing an environment for design tool integration is a prerequisite for network-based distributed work. It was attempted to solve the problem of efficient, user-friendly, and fast information exchange among operators by treating it simply as an exchange of data. But the failure of IGES, CGM, PHIGS confirms that data have different meanings and importance in different contexts. The STandard for Exchange of Product data, ISO 10303 Part 106 BCCM, relating to AEC field (Wix, 1997), seems to be too complex to be applied to professional studios. Moreover its structure is too deep and the conceptual classifications based on it do not allow multi-inheritance (Ekholm, 1996). From now on we shall adopt the BCCM semantic that defines the actor as "a functional participant in building construction"; and we shall define designer as "every member of the class formed by designers" (architects, engineers, town-planners, construction managers, etc.).
keywords Architectural Design Process, Collaborative Design, Knowledge Engineering, Dynamic Object Oriented Programming
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 2b8f
authors Colajanni, Benedetto and De Grassi, Mario
year 1989
title Inferential Mechanisms to be Employed in CAAD: The Castorp System
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 7.1.1-7.1.9
doi https://doi.org/10.52842/conf.ecaade.1989.x.c7m
summary The paper presents an approach to the problems of architectural design aided by Artificial Intelligence techniques that can solve the difficulties related to combinatorial explosion, often encountered in the past. Three expert systems, dubbed "reasoners", capable of some elementary design work and a hypothesis for their interaction have been developed. Reasoner A has an "analogical" view of space. A notion of conflict, managed by means of fuzzy logic, has been introduced. It corresponds, in an intuitive and straightforward fashion, to the common notion of conflict or contradiction in real space as a consequence of improper overlapping of actual physical objects or of their functional pertinence. Reasoner B works on formalized models of building objects. It designs new patterns from given patterns taken as defaults. Reasoner C picks up from an archive of patterns the one which best suits a list of given goals. Design is the result of interaction between the three reasoners. Finally, the proposed schema raises questions about formal structures ("images") and about the nature of culturally-linked options ("memory") on which some preliminary considerations are made. Prototypes of the reasoners are operating at the Instituto di Edilizia of the University of Ancona, Italy.
series eCAADe
last changed 2022/06/07 07:50

_id e3b0
authors Cottone, Antonio and Buscemi, Maria Rosa
year 1989
title And if We Take a Bacxward Step...
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 9.15.1.9.15.8
doi https://doi.org/10.52842/conf.ecaade.1989.x.f6i
summary In these years the researches on the computer science applied to the building have had a considerable development. The applications concern the whole design process, from the programming to the design and from the execution control to the programmed maintenance with a great deal of problems solved using expert systems. It doesn't seem that the same care of men and means has been dedicated to the architectural design theory, to its deep roots which motivate it and to its peculiarity in comparison with other fields in which now the design, with the aid of the computer, is the only one possible. The designer of architectural objects has been always helped by design assistants: it is enough to think that the sixteenth century treatises are a group of rules, descriptions, solutions to design problems and that they represent the "knowledge" of the age. As the knowledge increased those treatises amplified to the encyclopaedic dimensions of the nineteenth-century handbooks and of those of the first years of this century, while new professional figures rose, the teaching developed and the building art became more and more complex.

series eCAADe
last changed 2022/06/07 07:50

_id a8b7
authors De Grassi, Mario and Di Manzo, Mauro
year 1989
title The Design of Buildings as Changes of Known Solutions: A Model for “Reasoner B” ; Reasoner B" in the Castorp System
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 7.3.1-7.3.9
doi https://doi.org/10.52842/conf.ecaade.1989.x.u3h
summary The paper presents a study aimed at the modelization of a design operation of perturbation of an architectural framework in order to comply with a series of given design specifications. A formalized representation of the building object is assumed, Artificial Intelligence techniques are adopted to work on it. It is assumed that the computer carries out deformations starting from one of these structures in order to attain to a solution consistent with project specifications. A description of the structures employed for the representation of the building body (matroids) is firstly proposed. A planning theme is then assumed, as an example, whose main feature is to maintain the outer perimeter of a dwelling, to change its internal distribution in such a way as to resemble as closely as possible to the original and yet meaningfully alter its typology.
series eCAADe
type normal paper
last changed 2022/06/07 07:50

_id 09a5
authors Eastman, Charles M.
year 1989
title Building Modeling in Architectural Design
source [8] p. : ill. Design & Computation . Los Angeles: Graduate School of Architecture and Urban Planning, UCLA, 1989? includes bibliography
summary This paper reviews building modeling from the perspective of U.S. architectural practice. During the previous twenty years of computer-aided architectural design, the underlying paradigm has mimicked a paper-based technology. The future of design, however, is proposed to be in building modeling. A review of building modeling is provided and some prospects for architectural design, based on its concepts, are proposed
keywords CAD, building, modeling, architecture, design
series CADline
email
last changed 2003/05/17 10:15

_id ab63
authors Gross, Mark D.
year 1990
title Relational Modeling: A Basis for Computer-Assisted Design
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 123-136
summary Today's computer assisted design (CAD) systems automate traditional ways of working with tracing paper and pencil, but they cannot represent the rules and relationships of a design. As hardware becomes faster and memory less expensive, more sophisticated fundamental software technologies will be adopted. This shift in the basis of CAD will provide powerful capabilities and offer new ways to think about designing. Recently parametric design, a technique for describing a large class of designs with a small description in code, has become a focus of attention in architectural computing. In parametric CAD systems, design features are identified and keyed to a number of input variables. Changes in the input values result in variations of the basic design. Based on conventional software technologies, parametric design has been successfully applied in many design domains including architecture and is supported by several commercial CAD packages. A weakness of parametric techniques is the need to predetermine which properties are input parameters to be varied and which are to be derived. Relational modeling is a simple and powerful extension of parametric design that overcomes this weakness. By viewing relations as reversible rather than one-way, any set of properties can be chosen as input parameters. For example, a relational model that calculates the shadow length of a given building can also be used to calculate the building height given a desired shadow length. In exercising a relational model the designer is not limited to a pre-selected set of input variables but can explore and experiment freely with changes in all parts of the model. Co is a relational modeling environment under development on the Macintosh-II computer, and Co-Draw, a prototype CAD program based on Co. Co's relationaI engine and object-oriented database provide a powerful basis for modeling design relations. Co-Draw's interactive graphics offer a flexible medium for design exploration. Co provides tools for viewing and editing design models in various representations, including spreadsheet cards, tree and graph structures, as well as plan and elevation graphics. Co's concepts and architecture are described and the implications for design education are discussed.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id a2b7
authors Jalali, Yousef and Moore, Anne
year 1989
title Design Development & 3-D Applications
source Architectural and Engineering Systems
summary September, 1989. vol. 5: pp. 29;32. In design, 3-D modeling is a pleasant but non-essential amenity. In building architecture, it is vital. CAD frees architects to do what they do best: to think about design and how to perfect it. 3-D models delight the client and expedite construction. Some implementation in the author's office is discussed
keywords practice, drafting, systems, modeling, CAD, architecture
series CADline
last changed 2003/06/02 13:58

_id 88d7
authors Kulcke, Richard
year 1995
title CAAD in the Architectural Education of the Fachhochschulen in Germany
source CAD Space [Proceedings of the III International Conference Computer in Architectural Design] Bialystock 27-29 April 1995, pp. 7-13
summary Like the most teachers of Computer Aided Architectural Design at the Fachhochschulen I am an architect not a computer specialist. I studied architecture in the sixties at the universities of Stuttgart and Berlin, In 1973 I became a lecturer at the Fachhochschule Nordostniedersachsen. My subjects are building economics, urban planning and computer aided architectural design (CAAD). My report wants to show what is going on at the Fachhochschulen. This report is based on the paper presented at the eCAADe conference 1989 in Aarhus, Denmark
series plCAD
last changed 2000/01/24 10:08

_id a920
authors Kulcke, Richard
year 1989
title CAAD in the Architectural Education of the Fachhochschulen in the Federal Republic of Germany
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 4.3.1
doi https://doi.org/10.52842/conf.ecaade.1989.x.w7a
summary For over 10 years the author has been a teacher in the field of "computer application in architecture" at the Fachhochschule. Since 1985 he regularly has been taking part in the conferences of A.I.I.D.A. (Arbeitskreis INFORMATIK IN DER ARCHlTEKTENAUSBILDUNG). All the faculties of architecture at the Fachhochschulen (about 10) can send their representatives of CAAD to the conferences. A.I.I.D.A. has been having 2 conferences a year since 1985. At the last conference in Wiesbaden a paper with statements of A.I.I.D.A. for the further education in CAAD was finished. The author presents and explains this paper. On the other hand he shows the actual education program of CAAD of his faculty. The education in CAAD started in 1972 with basic information without practical elements. Now the practical work with the workstation is talking most of the time . The computer application is available for subjects like Building Economics, Building and Structure Design and others. With his assistant the author developed programs of the field of Building Economics. In 1986 he started introduce CAD with AutoCAD in the education program. Now also other colleagues start to integrate CAAD into their subjects.

series eCAADe
last changed 2022/06/07 07:50

_id acadia06_079
id acadia06_079
authors Kumar, Shilpi
year 2006
title Architecture and Industrial Design A Convergent Process for Design
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 79-94
doi https://doi.org/10.52842/conf.acadia.2006.079
summary The use of technology has grown with the way design professions have evolved over time. Changing needs, desires of comfort, and perceptions of the consumers have led to a distinct improvement in the design of both product and architecture. The use of the digital media and emerging technologies has brought a dramatic change to the design process allowing us to view, feel, and mould a virtual object at every stage of design, development, and engineering. Change is often quick and easy since a virtual product does not inherently carry the biases of its physical counterpart. In order to communicate ideas across the team, digital processes are also used to bring together opinions, experiences, and perspectives. These methods encourage decision making based on information rather than prejudice or instinct. Thus, digital exchanges (technology) impact firm strategies at three levels: product, process, and administrative or support activities (Adler 1989).Digital tools for design exchange in Industrial Design (ID) began much earlier than many other professions. The profession of Architecture is also slowly moving to a similar model with digital exchange finding increasing prevalence in drawing, modeling, performance simulation, design collaboration, construction management, and building fabrication. The biggest problem is the disintegrated use of technology in the architectural profession without a strategy toward streamlining the design process from conception to fabrication. In this paper we investigate how the use of technology has evolved in the professions of Industrial Design and Architecture comparatively in their product, process, and support activities. Further, we will present a set of guidelines that will help architects in the convergence of design process, helping in a more efficient work flow with a strategic use of digital technology.
series ACADIA
email
last changed 2022/06/07 07:52

_id ed07
authors Love, James
year 1990
title A Case Study in Knowledge-Based System Development : Envelope Design for Reduction of Traffic Noise Transmission
source February, 1990. 19 p. : some ill. and table. includes a bibliography
summary Researchers have demonstrated the value of replication of research and explicit testing of concepts in artificial intelligence (Ritchie and Hanna 1989). In this study, a rule- based system was implemented as an exercise in the application of the theory and practice of knowledge-based systems development to architectural design analysis. The test domain was the selection of wall and window assemblies to provide adequate noise reduction given a set of traffic and building site conditions. This domain was chosen for two reasons: (1) considerable detailed heuristic information was available; and (2) it avoided large solutions spaces, 'errorful' and time-dependent data, and unreliable knowledge. Development of the system in conjunction with an extensive literature review revealed that publications on construction and performance of rule-based systems provided insufficient detail on key aspects of system architecture. Topics suffering from neglect or insufficiently rigorous treatment included algorithms used in automated inference, methods for selection of inference procedures, the integration of numerical and symbolic processing, the formulation of explanation mechanisms to deal with integrated numerical and symbolic processing, testing methods, and software standardization. Improving the quality and scope of knowledge in these areas is essential if expert systems are to be applied effectively in architectural design
keywords CAD, expert systems, acoustics, applications, knowledge base, design, architecture, AI, analysis
series CADline
last changed 1999/02/12 15:09

_id c903
authors Mark, Earl
year 1990
title Case Studies in Moviemaking and Computer-Aided Design
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 393-412
summary A movie which is developed from site location video, sync sound, and computer graphics animation can provide a highly convincing simulation of reality. A movie that conveys a sense of the space, materials and juxtaposition of objects of a proposed architectural design provides a special kind of realism, where the representation may be of a proposed building that exists only within the mind of an architect. For an experienced architect, however, the movie may not provide a good surrogate experience for what it feels like to actually be within the architectural space. In these case studies, a few projects that combine moviemaking and computer-aided design technologies are examined. These projects were completed using a combination of resources at the MIT School of Architecture and Planning and the Harvard Graduate School of Design. The integrated use of these media is presented as conceptualized with the Electronic Design Studio, a research project that has been supported over the past five years by Project Athena at MIT. The impact of movies and computer-aided design on the perception of architectural space is also reported- based on a pilot study of twenty architectural students.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 49a8
authors McCall, R., Fischer, G. and Morch, A.
year 1990
title Supporting Reflection-in-Action in the Janus Design Environment
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 247-259
summary We have developed a computer-based design aid called Janus, which is based on a model of computer-supported design that we think has significance for the future of architectural education. Janus utilizes a knowledge-based approach to link a graphic construction system to hypertext. This allows the computer to make useful comments on the solutions that students construct in a CAD-like environment. These comments contain information intended to make students think more carefully about what they are doing while they are doing it. In other words, Janus promotes what Donald Schon has called "reflection-inaction" (Schon, 1983). The Janus design environment is named for the Roman god with a pair of faces looking in opposite directions. In our case the faces correspond to complementary design activities we call construction and argumentation. Construction is the activity of graphically creating the form of the solution e.g., a building. Traditionally this has been done with tracing paper, pencils, and pens. Argumentation is the activity of reasoning about the problem and its solution. This includes such things as considering what to do next, what alternative courses of action are available, and which course of action to choose. Argumentation is mostly verbal but partly graphical.
series CAAD Futures
last changed 1999/04/03 17:58

_id 0565
authors Oxman, Robert and Oxman, Rivka
year 1990
title The Computability of Architectural Knowledge
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 171-185
summary In an important contribution to the theoretical foundation of design computing, Mitchell noted "an increasingly urgent need to establish a demonstrably sound, comprehensive, rigorously formalized theoretical foundation upon which to base practical software development efforts" (Mitchell, 1986). In this paper we propose such a theoretical framework. A basic assumption of this work is that the advancement of design computing is dependent upon the emergence of a rigorous formulation of knowledge in design. We present a model of knowledge in architectural design which suggests a promising conceptual basis for dealing with knowledge in computer-aided design systems. We require models which can represent the formal knowledge and manipulative operations of the designer in all of their complexity-that is formal models rather than just geometric models. Shape Grammars (Stiny,1980) represent an example of such models, and constitute a relatively high level of design knowledge as compared to, for example, use of symmetry operations to generate simple formal configurations. Building upon an understanding of the classes of design knowledge as the conceptual basis for formal modeling systems may contribute a new realization of the potential of the medium for design. This will require a comprehensive approach to the definition of architectural and design knowledge. We consider here the implications of a well-defined body of architectural and design knowledge for design education and the potential mutual interaction-in a knowledge-rich environment-of design learning and CAAD learning. The computational factors connected with the representation of design knowledge and its integration in design systems are among the key problems of CAAD. Mitchell's model of knowledge in design incorporates formal knowledge in a comprehensive, multi-level, hierarchical structure in which types of knowledge are correlated with computational concepts. In the main focus of this paper we present a structured, multi-level model of design knowledge which we discuss with respect to current architectural theoretical considerations. Finally, we analyze the computational and educational relevance of such models.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 0797
authors Purnomo, H.
year 1989
title SPACE - Generative Expert System: An Expert System for Designing a Layout of Single-Family Houses Using the Expansiva Building System
source Department of Architectural and Design Science, University of Sydney
summary This thesis describes an expert system for designing the layout of a single-family house using the Espansiva building system introduced by Jorn Utzon. The expert system uses two systems that are already available; the BUILD expert system shell as an automated reasoning system and the Eagle 3D modeler system for producing graphical output. Both programs run under the UNIX operating system on SUN microcomputers. The integration of BUILD, which is written in Prolog, with Eagle using one of the Eagle commands called 'weasel' is a major part of the implementation of the system. [Unpublished. -- CADLINE has abstract only.]
keywords Expert Systems, Floor Plans, Synthesis, Layout, Applications, Languages, PROLOG
series thesis:MSc
last changed 2002/12/14 19:12

_id 6743
authors Retik, A
year 1989
title Computer-Aided Design of Precast Building System
source Proceedings of the International Conference on CAD/CAM and AMT. December, 1989. pp. 1-5 : some ill. includes bibliography
summary The paper describes an expert system for computerized design of precast building components for a given architectural solution. The system receives the layouts and evaluations of the building as input, indicates the location of structural supports, breaks down the floors and walls into the elements to be prefabricated, and finally generates detailed production drawings for each element. Design stages are governed by the specific features of the prefabrications system to be employed. Design alternatives are also evaluated in the course of the process. The paper reviews the principles of the system and the particular features of the computer program employed for this purpose
keywords building, layout, floor plans, structures, construction, design, details, expert systems, prefabrication
series CADline
last changed 1999/02/12 15:09

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 9HOMELOGIN (you are user _anon_676697 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002