CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 206

_id 1920
authors Riesbeck, C. and Schank, R.C.
year 1989
title Inside Case-based Reasoning
source Lawrence Erlbaum Associates, Hillsdale, NJ
summary Case-based reasoning, broadly construed, is the process of solving new problems based on the solutions of similar past problems. An auto mechanic who fixes an engine by recalling another car that exhibited similar symptoms is using case-based reasoning. A lawyer who advocates a particular outcome in a trial based on legal precedents is using case-based reasoning. It has been argued that case-based reasoning is not only a powerful method for computer reasoning, but also a pervasive behavior in everyday human problem solving. Case-based reasoning (CBR) has been formalized as a four-step process:N 1. Retrieve: Given a target problem, retrieve cases from memory that are relevant to solving it. A case consists of a problem, its solution, and, typically, annotations about how the solution was derived. For example, suppose Fred wants to prepare blueberry pancakes. Being a novice cook, the most relevant experience he can recall is one in which he successfully made plain pancakes. The procedure he followed for making the plain pancakes, together with justifications for decisions made along the way, constitutes Fred's retrieved case. 2. Reuse: Map the solution from the previous case to the target problem. This may involve adapting the solution as needed to fit the new situation. In the pancake example, Fred must adapt his retrieved solution to include the addition of blueberries. 3. Revise: Having mapped the previous solution to the target situation, test the new solution in the real world (or a simulation) and, if necessary, revise. Suppose Fred adapted his pancake solution by adding blueberries to the batter. After mixing, he discovers that the batter has turned blue -- an undesired effect. This suggests the following revision: delay the addition of blueberries until after the batter has been ladled into the pan. 4. Retain: After the solution has been successfully adapted to the target problem, store the resulting experience as a new case in memory. Fred, accordingly, records his newfound procedure for making blueberry pancakes, thereby enriching his set of stored experiences, and better preparing him for future pancake-making demands. At first glance, CBR may seem similar to the rule-induction algorithmsP of machine learning.N Like a rule-induction algorithm, CBR starts with a set of cases or training examples; it forms generalizations of these examples, albeit implicit ones, by identifying commonalities between a retrieved case and the target problem. For instance, when Fred mapped his procedure for plain pancakes to blueberry pancakes, he decided to use the same basic batter and frying method, thus implicitly generalizing the set of situations under which the batter and frying method can be used. The key difference, however, between the implicit generalization in CBR and the generalization in rule induction lies in when the generalization is made. A rule-induction algorithm draws its generalizations from a set of training examples before the target problem is even known; that is, it performs eager generalization. For instance, if a rule-induction algorithm were given recipes for plain pancakes, Dutch apple pancakes, and banana pancakes as its training examples, it would have to derive, at training time, a set of general rules for making all types of pancakes. It would not be until testing time that it would be given, say, the task of cooking blueberry pancakes. The difficulty for the rule-induction algorithm is in anticipating the different directions in which it should attempt to generalize its training examples. This is in contrast to CBR, which delays (implicit) generalization of its cases until testing time -- a strategy of lazy generalization. In the pancake example, CBR has already been given the target problem of cooking blueberry pancakes; thus it can generalize its cases exactly as needed to cover this situation. CBR therefore tends to be a good approach for rich, complex domains in which there are myriad ways to generalize a case.
series other
last changed 2003/04/23 15:14

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 2b8f
authors Colajanni, Benedetto and De Grassi, Mario
year 1989
title Inferential Mechanisms to be Employed in CAAD: The Castorp System
doi https://doi.org/10.52842/conf.ecaade.1989.x.c7m
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 7.1.1-7.1.9
summary The paper presents an approach to the problems of architectural design aided by Artificial Intelligence techniques that can solve the difficulties related to combinatorial explosion, often encountered in the past. Three expert systems, dubbed "reasoners", capable of some elementary design work and a hypothesis for their interaction have been developed. Reasoner A has an "analogical" view of space. A notion of conflict, managed by means of fuzzy logic, has been introduced. It corresponds, in an intuitive and straightforward fashion, to the common notion of conflict or contradiction in real space as a consequence of improper overlapping of actual physical objects or of their functional pertinence. Reasoner B works on formalized models of building objects. It designs new patterns from given patterns taken as defaults. Reasoner C picks up from an archive of patterns the one which best suits a list of given goals. Design is the result of interaction between the three reasoners. Finally, the proposed schema raises questions about formal structures ("images") and about the nature of culturally-linked options ("memory") on which some preliminary considerations are made. Prototypes of the reasoners are operating at the Instituto di Edilizia of the University of Ancona, Italy.
series eCAADe
last changed 2022/06/07 07:50

_id e3b0
authors Cottone, Antonio and Buscemi, Maria Rosa
year 1989
title And if We Take a Bacxward Step...
doi https://doi.org/10.52842/conf.ecaade.1989.x.f6i
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 9.15.1.9.15.8
summary In these years the researches on the computer science applied to the building have had a considerable development. The applications concern the whole design process, from the programming to the design and from the execution control to the programmed maintenance with a great deal of problems solved using expert systems. It doesn't seem that the same care of men and means has been dedicated to the architectural design theory, to its deep roots which motivate it and to its peculiarity in comparison with other fields in which now the design, with the aid of the computer, is the only one possible. The designer of architectural objects has been always helped by design assistants: it is enough to think that the sixteenth century treatises are a group of rules, descriptions, solutions to design problems and that they represent the "knowledge" of the age. As the knowledge increased those treatises amplified to the encyclopaedic dimensions of the nineteenth-century handbooks and of those of the first years of this century, while new professional figures rose, the teaching developed and the building art became more and more complex.

series eCAADe
last changed 2022/06/07 07:50

_id e303
authors Coyne, Richard D. and Newton, S.
year 1989
title A Tutorial on Neural Networks and Expert Systems for Design
source University of Sydney, 1989. pp. 321-337. CADLINE has abstract only
summary This paper presents an overview of neural network (connectionist) systems and their potential contribution to computer-aided design. The authors discuss the appeal of neural networks and some of the problems. The major contribution to design is in the representation and manipulation of schemas. A neural network system can be 'taught' various examples (such as room descriptions). The system then apparently recognizes schemas (room types) and can produce novel but sensible combinations of descriptions constituting new types. A simple handworked example is presented, and the learning and reasoning mechanism is explained
keywords representation, CAD, expert systems, design, neural networks
series CADline
email
last changed 2003/05/17 10:13

_id a9b9
authors Galle, Per
year 1989
title Computer Methods in Architectural Problem Solving : Critique and Proposals
source Journal of Architectural and Planning Research. Spring, 1989. vol. 6: pp. 34-54 : ill. includes bibliography
summary While the development of modelling and drafting tools for computer-aided design has reached a state of considerable maturity, computerized decision support in architectural sketch design is still in its infancy after more than 20 years. The paper analyzes the difficulties of developing computer tools for architectural problem solving in the early stages of design where decisions of majors importance are made. The potentials of computer methods are discussed in relation to design as a static system of information, and to design as a creative process. Two key problems are identified, and on this background current computer methods intended for use in architectural sketch design are critically reviewed. As a result some guidelines are suggested for future research into computer-aided architectural problem solving. The purpose of the paper is twofold: (1) to encourage research that will take this field into a state of maturity and acceptance by practitioners, and (2) to provoke further debate on the question of how to do it
keywords architecture, CAD, design process, information, problem solving
series CADline
last changed 1999/02/12 15:08

_id e3c7
authors Galle, Per
year 1989
title Computer Methods in Architectural Problem Solving: Critique and Proposals
doi https://doi.org/10.52842/conf.ecaade.1989.x.t9u
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 6.4.1-6.4.21
summary While the development of modeling and drafting tools for computer-aided design has reached a state of considerable maturity, computerized decision support in architectural sketch design is still in its infancy after more than 20 years. The paper analyzes the difficulties of developing computer tools for architectural problem solving in the early stages of design where decisions of major importance are made. The potentials of computer methods are discussed in relation to design as a static system of information and to design as a dynamic creative process. Two key problems are identified, and on this background current computer methods intended for use in architectural sketch design are critically reviewed. As a result some guidelines are suggested for future research into computer- aided architectural problem solving. The purpose of the paper is twofold: (1) to encourage research that will take this field into a state of maturity and acceptance by practitioners, and (2) to provoke further debate on the question of how to do it.

series eCAADe
last changed 2022/06/07 07:50

_id e832
authors Galle, Per
year 1989
title Branch & Sample : A Simple Strategy for Constraints Satisfaction
source March, 1989. 29: pp. 395-408 : ill. includes bibliography
summary Many constraint satisfaction problems have too many solutions for exhaustive generation. Optimization techniques may help in selecting a small number of solutions for consideration, but a reasonable measure of optimality is not always at hand. A simple algorithm called Branch & Sample is suggested as an alternative to optimization. Combining breath-first and depth- first search Branch & Sample finds solution distributed over the search tree. The aim is to obtain a limited set of solutions that corresponds well to the intuitive motion of a representative, uniformly scattered sample. A precise definition of this notion is discussed in relation to the algorithm whose effect is illustrated by two geometric design problems. The performance of the algorithm is evaluated and it is concluded that Branch & Sample is applicable to certain types of problems, and refinements can extend the scope of application
keywords automation, design, constraints, backtracking
series CADline
last changed 1999/02/12 15:08

_id e378
authors Gerken, H.
year 1989
title Performance and Problems of Software Surveys
doi https://doi.org/10.52842/conf.ecaade.1989.x.h3l
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 6.3.1-6.3.4
summary The general purpose of surveys of products and services is to give a first information on a special market segment to the potential buyer. Therefore such surveys have an important transmitting and at the same time objectifying task. There is a lot of software surveys in West Germany and German-speaking neighboring countries, for instance the well known Nomina Reports. Besides these general, many application fields and computer classes comprising surveys there are special ones which are sometimes part of a larger publication. In the field of architecture there are two special software surveys available: the survey of the Swiss engineers and architects association (SIA) and the survey of the Institute of Architecture and Planning Theory (IAP) of the University of Hannover.
series eCAADe
last changed 2022/06/07 07:50

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id 315caadria2004
id 315caadria2004
authors Kuo-Chung Wen, Wei-Lung Chen
year 2004
title Application of Genetic Algorithms to Establish Flooding Evacuation Path Model in Metropolitan Area
doi https://doi.org/10.52842/conf.caadria.2004.557
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 557-570
summary This research has shown the difficulties associated with the GIS and the flooding evacuation path search through the huge searching space generated during the network analysis process. This research also presents an approach to these problems by utilizing a search process whose concept is derived from natural genetics. Genetic algorithms (GAs) have been introduced in the optimization problem solving area by Holland (1975) and Goldberg (1989) and have shown their usefulness through numerous applications. We apply GA and GIS to choice flooding evacuation path in metropolitan area in this study. We take the region of Shiji city in Taiwan for case. That could be divided into four parts. First, is to set the population of GA operation. Second, is to choose crossover and mutation. Third, is to calculate the fitness function of each generation and to select the better gene arrangement. Fourth, is to reproduce, after evolution, we can establish Flooding Evacuation Path that more reflect really human action and choice when flood takes place. However we can apply GA to calculate different evacuation path in different time series. Final, we compare and establish real model of evacuation path model to choosing flooding evacuation path.
series CAADRIA
email
last changed 2022/06/07 07:52

_id cbdd
authors Lawson, Bryan and Scott, Peter
year 1989
title An Intelligent Tutoring System for Teaching CAD
doi https://doi.org/10.52842/conf.ecaade.1989.x.r4f
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 3.1.1-3.1.13
summary The paper raises some general problems concerning the teaching of CAAD both in schools of architecture and in practice. A new, less 'system-oriented' approach is suggested and some ideas for the design of a computer based intelligent tutoring system are advanced. Some prototype elements of the tutor will be described.
series eCAADe
last changed 2022/06/07 07:50

_id ec09
authors Lemma, Massimo and Fornarelli, Andrea
year 1989
title Decisional Problems in the Building Process. Contextual Evaluation of Performance and Cost Parameters: “Reasoner C" in the Castorp System
doi https://doi.org/10.52842/conf.ecaade.1989.x.r8n
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 7.4.1-7.4.8
summary The study contains the provisional results of investigations currently in progress on the application of CAD and Design Management techniques to building design. The research aims at showing the feasibility of decisional procedures and economic analyses in current design practice, even referring to rather complex buildings, by exploring the possibility to know in full detail the technical and economic feasibility of a project already at its early stages.

series eCAADe
last changed 2022/06/07 07:50

_id 21b5
authors Müller, Volker
year 1993
title Introducing CAD to a Big Corporation
source CAAD Futures ‘93 [Conference Proceedings / ISBN 0-444-89922-7] (Pittsburgh / USA), 1993, pp. 497-512
summary The report presents the ongoing activity of introducing CAD to the entire range of facilities planning and management of the Frankfurt Airport Corporation. It addresses issues of organizing the shift from conventional to computer supported planning and facilities management,- the problems of training professionals with various background in the use of new tools; aspects of data validity; regulation of data exchange; and customization of software to the needs of special tasks within the corporation. The report is based on about four years of project runtime. The preparation of the project started in fall 1988. The project proper started in June 1989. It is entering its last year. Up to now about 120 persons have been trained to use CAD.
keywords CAD Introduction, Corporation Setting, Adult Education, Data Integrity, Data Security, Data Exchange, Linkage Between Geometric and Alphanumeric Data, Customized Systems
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 0565
authors Oxman, Robert and Oxman, Rivka
year 1990
title The Computability of Architectural Knowledge
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 171-185
summary In an important contribution to the theoretical foundation of design computing, Mitchell noted "an increasingly urgent need to establish a demonstrably sound, comprehensive, rigorously formalized theoretical foundation upon which to base practical software development efforts" (Mitchell, 1986). In this paper we propose such a theoretical framework. A basic assumption of this work is that the advancement of design computing is dependent upon the emergence of a rigorous formulation of knowledge in design. We present a model of knowledge in architectural design which suggests a promising conceptual basis for dealing with knowledge in computer-aided design systems. We require models which can represent the formal knowledge and manipulative operations of the designer in all of their complexity-that is formal models rather than just geometric models. Shape Grammars (Stiny,1980) represent an example of such models, and constitute a relatively high level of design knowledge as compared to, for example, use of symmetry operations to generate simple formal configurations. Building upon an understanding of the classes of design knowledge as the conceptual basis for formal modeling systems may contribute a new realization of the potential of the medium for design. This will require a comprehensive approach to the definition of architectural and design knowledge. We consider here the implications of a well-defined body of architectural and design knowledge for design education and the potential mutual interaction-in a knowledge-rich environment-of design learning and CAAD learning. The computational factors connected with the representation of design knowledge and its integration in design systems are among the key problems of CAAD. Mitchell's model of knowledge in design incorporates formal knowledge in a comprehensive, multi-level, hierarchical structure in which types of knowledge are correlated with computational concepts. In the main focus of this paper we present a structured, multi-level model of design knowledge which we discuss with respect to current architectural theoretical considerations. Finally, we analyze the computational and educational relevance of such models.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id ce38
authors Paoluzzi, Alberto and Sansoni, Claudio
year 1989
title A Programming Language for Architectural Symbolic Modeling
doi https://doi.org/10.52842/conf.ecaade.1989.x.r3e
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 8.4.1-8.4.16
summary In this paper a software project supporting architectural design is outlined. Such a project aims to develop the new design language PLASM (a Programming Language for Architectural Symbolic Modeling), which is planned to be a very high-level, user-oriented language, belonging to the class of constraint languages. The language PLASM will support a small set of abstract data types which are significant in various outstanding problems of architectural design, and will offer both procedural features and non-procedural constraints satisfaction. It will allow the designer to make use of a large set of computing tools in any phase of architectural design, in order to explore a wider set of design solutions. Customizable evaluation functions will be available in the language. The execution of a PLASM program may result either in generating or in updating a semantic network over a set of data objects solving the geometric problem under consideration. The proposed language will support both abstract data types significant in the design domain, and tools performing automatized data generation and transformations between different data types. The modification of any object in such a system, both performed by editing a daemon program and/or by interactively modifying a data object, will result in the immediate propagation of changes into the problem network, by activating a message passing mechanism.

series eCAADe
email
last changed 2022/06/07 07:50

_id 6dc2
authors Rahman, Shama
year 1989
title The Realities of Introducing IT/CAD in Architectural and Interior Design Education: A Case Study at the Polytechnic of North London
doi https://doi.org/10.52842/conf.ecaade.1989.x.j5h
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 4.1.1.-4.1.9
summary This paper is an attempt to illustrate the realities of introducing Information Technology at a school of Architecture and Interior Design. The department, under the auspicies of the Polytechnic of North London, comprises of 520 full/part time students working towards various professional and postgraduate degrees and diplomas in Architecture and Interior Design. For the last 18 months, the department has undertaken a rapid IT/CAD implementation programme. This has involved developing a strategy, formulating resource needs and implementing teaching. The strategy is based on the concept of application of IT as a tool for design and a medium for representation, management, use and exchange of design information. A course outline has been developed suggesting what could be taught and who could be taught what, how, when and for how long. At the same time, different types of teaching methods are being experimented upon. On the basis of these factors, attempts are being made to meet resource needs for software, hardware, teaching and technical support. Various issues and problems have been brought to light e.g. overcoming cost of hardware and software, lack of teaching and technical support, finding time slots in overloaded curriculums, changing existing attitudes towards IT,etc. We have approached these problems in various ways. We liaise closely with architects' offices, and try to use student skills and expertise within the polytechnic. We try to overcome time-slot problems by joint teaching and assessment with other subjects and try to integrate IT/CAD with studio-based design projects by locating computlng facilities inside studios. This paper is a story of how we have set for ourselves a path to follow. This path is by no means rigid and will continuously change with new experiences and the demands of a volatile industry. We have only just begun.

series eCAADe
last changed 2022/06/07 07:50

_id avocaad_2001_20
id avocaad_2001_20
authors Shen-Kai Tang
year 2001
title Toward a procedure of computer simulation in the restoration of historical architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the field of architectural design, “visualization¨ generally refers to some media, communicating and representing the idea of designers, such as ordinary drafts, maps, perspectives, photos and physical models, etc. (Rahman, 1992; Susan, 2000). The main reason why we adopt visualization is that it enables us to understand clearly and to control complicated procedures (Gombrich, 1990). Secondly, the way we get design knowledge is more from the published visualized images and less from personal experiences (Evans, 1989). Thus the importance of the representation of visualization is manifested.Due to the developments of computer technology in recent years, various computer aided design system are invented and used in a great amount, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and collaboration, etc. (Lawson, 1995; Liu, 1996). The conventional media are greatly replaced by computer media, and the visualization is further brought into the computerized stage. The procedure of visual impact analysis and assessment (VIAA), addressed by Rahman (1992), is renewed and amended for the intervention of computer (Liu, 2000). Based on the procedures above, a great amount of applied researches are proceeded. Therefore it is evident that the computer visualization is helpful to the discussion and evaluation during the design process (Hall, 1988, 1990, 1992, 1995, 1996, 1997, 1998; Liu, 1997; Sasada, 1986, 1988, 1990, 1993, 1997, 1998). In addition to the process of architectural design, the computer visualization is also applied to the subject of construction, which is repeatedly amended and corrected by the images of computer simulation (Liu, 2000). Potier (2000) probes into the contextual research and restoration of historical architecture by the technology of computer simulation before the practical restoration is constructed. In this way he established a communicative mode among archeologists, architects via computer media.In the research of restoration and preservation of historical architecture in Taiwan, many scholars have been devoted into the studies of historical contextual criticism (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000). Clues that accompany the historical contextual criticism (such as oral information, writings, photographs, pictures, etc.) help to explore the construction and the procedure of restoration (Hung, 1995), and serve as an aid to the studies of the usage and durability of the materials in the restoration of historical architecture (Dasser, 1990; Wang, 1998). Many clues are lost, because historical architecture is often age-old (Hung, 1995). Under the circumstance, restoration of historical architecture can only be proceeded by restricted pictures, written data and oral information (Shi, 1989). Therefore, computer simulation is employed by scholars to simulate the condition of historical architecture with restricted information after restoration (Potier, 2000). Yet this is only the early stage of computer-aid restoration. The focus of the paper aims at exploring that whether visual simulation of computer can help to investigate the practice of restoration and the estimation and evaluation after restoration.By exploring the restoration of historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example), this study aims to establish a complete work on computer visualization, including the concept of restoration, the practice of restoration, and the estimation and evaluation of restoration.This research is to simulate the process of restoration by computer simulation based on visualized media (restricted pictures, restricted written data and restricted oral information) and the specialized experience of historical architects (Potier, 2000). During the process of practicing, communicates with craftsmen repeatedly with some simulated alternatives, and makes the result as the foundation of evaluating and adjusting the simulating process and outcome. In this way we address a suitable and complete process of computer visualization for historical architecture.The significance of this paper is that we are able to control every detail more exactly, and then prevent possible problems during the process of restoration of historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ecaade2015_38
id ecaade2015_38
authors Stavrakantonaki, Marina
year 2015
title A Framework for Input Data Processing During Building Energy Model Calibration. A Case Study
doi https://doi.org/10.52842/conf.ecaade.2015.1.625
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 625-634
wos WOS:000372317300068
summary Key parameter of a reasoning process supporting real time performance is the use of active heuristics that facilitate the achievement of goals in a timely manner (Dodiawala et al. 1989). A real time approach should incorporate speed, timeliness and adaptation during the execution of tasks. Speed and efficient knowledge processing are addressed for the solution of complex building engineering problems, such as the calibration of Building Energy Models (BEM) to the actual performance data. During retrofit projects, calibrated BEM models aid the design process, and provide a solid base for performative assessments. Despite the demand for building performance evaluations, BEM calibration remains a work-intensive task (Lam et al. 2014). This study proposes a time efficient framework for BEM calibration input data management based on the methodology of a blackboard artificial intelligence knowledge processing system. The resulting model was used for sequential data mining for the energy assessment during the renovation of a commercial building.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e440bdd6-7021-11e5-bdb0-00190f04dc4c
last changed 2022/06/07 07:56

_id 8a0c
authors Tan, Milton
year 1990
title Saying What It Is by What It Is Like - Describing Shapes Using Line Relationships
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 201-213
summary Shapes - taken as well-defined collections of lines - are fundamental building blocks in architectural drawings. From doodles to shop drawings, shapes are used to denote ideas and represent elements of design, many of which ultimately translate into actual objects. But because designs evolve, the shapes representing a design are seldom static - instead, they are perpetually open to transformations. And since transformations involve relationships, conventional methods of describing shapes as sets of discrete endpoints may not provide an appropriate foundation for schematic design. This paper begins with a review of the perception of shapes and its significance in design. In particular, it argues that juxtapositions and inter-relationships of shapes are important seedbeds for creative development of designs. It is clear that conventional representation of shapes as sets of discrete lines does not cope with these -emergent" subshapes; the most basic of which arise out of intersecting and colinear lines. Attempts to redress this by using ‘reduction rules’ based on traditional point-and-line data structures are encumbered by computational problems of precision and shape specification. Basically, this means that some ‘close’ cases of sub-shapes may escape detection and their specifications are difficult to use in substitution operations. The paper presents the findings of a computer project - Emergence II - which explored a 'relational' description of shapes based on the concept of construction lines. It builds on the notion that architectural shapes are constructed in a graphic context and that, at a basic compositional level, the context can be set by construction lines. Accordingly, the interface enables the delineation of line segments with reference to pre-established construction lines. This results in a simple data structure where the knowledge of shapes is centralized in a lookup table of all its construction lines rather than dispersed in the specifications of line segments. Taking this approach, the prototype software shows the ease and efficiency of applying ‘reduction rules’ for intersection and colinear conditions, and for finding emergent sub-shapes by simply tracking the construction lines delimiting the ends of line segments.
series CAAD Futures
email
last changed 2003/05/16 20:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 10HOMELOGIN (you are user _anon_771142 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002