CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 173

_id 6b83
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 1989
title Towards a New Generation of Computer Assistants for Architectural Design: An Existing Scenario
doi https://doi.org/10.52842/conf.ecaade.1989.x.f9h
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 8.3.1.8.3.10
summary The context in which designers operate is becoming more and more complex, owing to the large number of codes, new materials, technologies and professional figures; new instruments are needed, therefore, to support and verify design activity. The results obtained in the first years of 'computer era' were barely sufficient. The hardware and software available today is capable of producing a new generation of CAD systems which can aid the designer in the process of conceiving and defining building objects. At the CAD Laboratory in the Department of Building and Environmental Control Techniques at the 'La Sapienza' University of Rome, research is being carried out with the aim of defining a new kind of Knowledge-based assistant for architectural design. To this purpose a partnership has been established whit a private firm called CARTESIANA, whose partners are software houses, designing and building associations.
keywords Knowledge-Based Architectural Design
series eCAADe
last changed 2022/06/07 07:50

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id 0f73
authors Ervin, Stephen M.
year 1990
title Designing with Diagrams: A Role for Computing in Design Education and Exploration
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 107-122
summary Environmental designers, design educators and design students using computers are a constituency with a set of requirements for database structure and flexibility, for knowledge representation and inference mechanisms, and for both graphical and non-graphical operations, that are now articulatable and to-date largely unmet. This is especially so in the area called 'preliminary' or 'schematic' design, where our requirements are related to, but different from, those of our colleagues in mechanical and electrical engineering, whose needs have dominated the notable developments in this area. One manifestation of these needs is in the peculiar form of graphics called diagrams , and the ways in which environmental designers (architects, landscape architects., urban designers) use them. Our diagrams are both similar to and different from structural, circuit, or logical diagrams in important ways. These similarities and differences yield basic insights into designing and design knowledge, and provide guidance for some necessary steps in the development of the next generation of CAD systems. Diagrams as a form of knowledge representation have received little scrutiny in the literature of graphic representation and computer graphics. In the following sections I present an overview of the theoretical basis for distinguishing and using diagrams; examine some of the computational requirements for a system of computer-aided diagramming; describe a prototype implementation called CBD (Constraint Based Diagrammer) and illustrate one example of its use; and speculate on the implications and potential applications of these ideas in computer-aided design education.
series CAAD Futures
last changed 1999/04/03 17:58

_id 4104
authors Ervin, Stephen McTee
year 1989
title The structure and function of diagrams in environmental design :a computational inquiry
source Massachusetts Institute of Technology
summary The design process often begins with a graphical description of the proposed device or system and sketching is the physical expression of the design engineer's thinking process. Computer Aided Design is a technique in which man and machine are blended into a problem solving team, intimately coupling the best characteristics of each. Solid modelling is developed to act as the common medium between man and the computer. At present it is achieved mainly by designing with volumes and hence does not leave much room for sketching input, the traditional physical expression of the thinking process of the design engineer. This thesis describes a method of accepting isometric free hand sketching as the input to a solid model. The design engineer is allowed to make a sketch on top of a digitizer indicating (i) visible lines; (ii) hidden lines; (iii) construction lines; (iv) centre lines; (v) erased lines; and (vi) redundant lines as the input. The computer then processes this sketch by identifying the line segments, fitting the best possible lines, removing the erased lines, ignoring the redundant lines and finally merging the hidden lines and visible lines to form the lines in the solid in an interactive manner. The program then uses these lines and the information about the three dimensional origin of the object and produces three dimensional information such as the faces, loops, holes, rings, edges and vertices which are sufficient to build a solid model. This is achieved in the following manner. The points in the sketch are first written into a file. The computer than reads this file, breaks the group of points into sub-groups belonging to individual line segments, fits the best lines and identify the vertices in two dimensions. These improved lines in two dimensions are then merged to form the lines and vertices in the solid. These lines are then used together with the three dimensional origin (or any other point) to produce the wireframe model in three dimensions. The loops in the wireframe models are then identified and surface equations are fitted to these loops. Finally all the necessary inputs to build a B-rep solid model are produced.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 6152
authors Longhi, Domenico
year 1989
title A System for Building Design Information Management
doi https://doi.org/10.52842/conf.ecaade.1989.x.b7n
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 9.11.1-9.11.8
summary Computer assistants to building process management are not able nowadays to efficiently work out the problems generated by the increased complexity of designing. Actual difficulties depend, on one hand, on the fact D.B.M.S. that have been developed on other environments than CAAD, and on the other hand, on the fact that architectural design process is scarcely formalized. At the Department of T.E.C.A., at the University of Rome, a PhD research program is aimed to overcome difficulties, working out techniques of information management based on Knowledge Engineering and particularly on Knowledge Base Management Systems and Expert Database Systems. At present a prototype system is being developed, that can manage existing technical information, connected with buiIding process.
keywords Information Management, Data Base, Computer Assistants, BuiIding Process
series eCAADe
last changed 2022/06/07 07:50

_id 450c
authors Akin, Ömer
year 1990
title Computational Design Instruction: Toward a Pedagogy
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 302-316
summary The computer offers enormous potential both in and out of the classroom that is realized only in limited ways through the applications available to us today. In the early days of the computer it was generally argued that it would replace the architect. When this idea became obsolete, the prevailing opinion of proponents and opponents alike shifted to the notion of the computer as merely adding to present design capabilities. This idea is so ingrained in our thinking that we still speak of "aiding" design with computers. It is clear to those who grasp the real potential of this still new technology - as in the case of many other major technological innovations - that it continues to change the way we design, rather than to merely augment or replace human designers. In the classroom the computer has the potential to radically change three fundamental ingredients: student, instruction, and instructor. It is obvious that changes of this kind spell out a commensurate change in design pedagogy. If the computer is going to be more than a passive instrument in the design studio, then design pedagogy will have to be changed, fundamentally. While the practice of computing in the studio continues to be a significant I aspect of architectural education, articulation of viable pedagogy for use in the design studio is truly rare. In this paper the question of pedagogy in the CAD studio will be considered first. Then one particular design studio taught during Fall 1988 at Carnegie Mellon University will be presented. Finally, we shall return to issues of change in the student, instruction, and instructor, as highlighted by this particular experience.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id e33a
authors De Cola, S., De Cola, B. and Pentasuglia, Francesco
year 1990
title Messina 1908: The Invisible City
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 239-246
summary The initial purposes of this work were to build a 3D model of the old city of Messina and to reconstruct a walk through it; to understand the "Ghost city," the parts that form it, and the rules of its plan, which are explicit in some cases but hidden most of the time; to measure its space, appreciate the similarities to and differences from modern city plans, and use the information to improve the plans of tomorrow. It might seem a useless study of a nonexistent city, and yet during the months of detailed work, of patient reconstruction from the surveys and photographs of the city destroyed in 1908, we began to consider how it was still possible to obtain spatial values of and to project behaviors in the lost city, in other words, to practice tests on memory that are very interesting for people working in a context in which memory no longer exists. The work presented here is the first stage of a more complex research project still to be carried out on Messina as it was at the end of the nineteenth century. Here we constructed a 3D model of some parts of the city prior to the earthquake of 1908 and made a five-minute video, using cartoon techniques, of an "impossible" walk through the city. The fragments of the city were reconstructed from available documentary sources, primarily photographic images, which tended to be of the most important places in the city.
series CAAD Futures
last changed 1999/04/03 17:58

_id 0155
authors Sastre, R., Puigdomènech, J., Jorge, J. and Cusido, A.
year 1989
title A Comprehensive Approach to the Tensile Structures Design
doi https://doi.org/10.52842/conf.ecaade.1989.x.l6e
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 9.7.1-9.7.8
summary We present an integrated set of programs as CAD-tools for the design of shapes, evaluation of stress field and displacements of tensile membrane structures as well as a way to find out their surface patterns. In early times simulation of physical small models has been used to obtain a phenomenological view rather than quantitative information about these structures. A progressive way has been thought to make a comprehensive an practical approach to this kind of structure, characterized by its ability to offer displacements of long range. We propose like a first steep a rough simulation through elastic member models or elastic-surface models. An iterative process starts, based on visualizations through different peripheric devices (screened and plottered graphic outputs). This first steep ends by the formulation of an optimum geometric performances of the structure. The resulting geometry serves like a source structure for a more accurate calculus achieved by the Finite Element Method. Discretization of the continues structure is carried out in a network of tiny triangular elements. Finally, 3-D realism techniques has been used to represent the form adopted or stress field calculated or both at the same time, by an adequate use of the color attributes of the finite elements.

keywords Tensile structures, Finite Elements
series eCAADe
last changed 2022/06/07 07:50

_id 035e
authors Gero, John S.
year 1988
title Prototypes : A Basis for Knowledge-based Design
source Symposium on Knowledge Based Design in Architecture. 1988. pp. 3-8. Also published in Knowledge Based Systems in Architecture, Acta Polytechnica Scandinavica, Helsinki, edited by J. S. Gero and T. Oksala, 1989
summary A new conceptual schema called a prototype for the representation of generalized design knowledge is proposed. It contains knowledge necessary for the commencement and the continuation of a design. This paper briefly presents the schema and describes its use in designing. Its use in categorizing design processes is presented
keywords prototypes, representation, knowledge base, design
series CADline
email
last changed 2003/06/02 13:58

_id 62d0
authors Gero, John S.
year 1989
title Routine and Non-routine Design : A Prototype- based Approach
source Expert Systems in Engineering Applications International Conference Proceedings. 1989. China: Huazhong University of Science and Technology Press, pp. 369-371
summary CADLINE has abstract only. A new conceptual schema called a prototype for the representation of generalized design knowledge is proposed. It contains knowledge necessary for the commencement and the continuation of a design. This paper briefly presents the schema and describes its use in designing. Its use in categorizing design processes is presented
keywords design, prototypes, knowledge, representation
series CADline
email
last changed 2003/06/02 13:58

_id ab63
authors Gross, Mark D.
year 1990
title Relational Modeling: A Basis for Computer-Assisted Design
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 123-136
summary Today's computer assisted design (CAD) systems automate traditional ways of working with tracing paper and pencil, but they cannot represent the rules and relationships of a design. As hardware becomes faster and memory less expensive, more sophisticated fundamental software technologies will be adopted. This shift in the basis of CAD will provide powerful capabilities and offer new ways to think about designing. Recently parametric design, a technique for describing a large class of designs with a small description in code, has become a focus of attention in architectural computing. In parametric CAD systems, design features are identified and keyed to a number of input variables. Changes in the input values result in variations of the basic design. Based on conventional software technologies, parametric design has been successfully applied in many design domains including architecture and is supported by several commercial CAD packages. A weakness of parametric techniques is the need to predetermine which properties are input parameters to be varied and which are to be derived. Relational modeling is a simple and powerful extension of parametric design that overcomes this weakness. By viewing relations as reversible rather than one-way, any set of properties can be chosen as input parameters. For example, a relational model that calculates the shadow length of a given building can also be used to calculate the building height given a desired shadow length. In exercising a relational model the designer is not limited to a pre-selected set of input variables but can explore and experiment freely with changes in all parts of the model. Co is a relational modeling environment under development on the Macintosh-II computer, and Co-Draw, a prototype CAD program based on Co. Co's relationaI engine and object-oriented database provide a powerful basis for modeling design relations. Co-Draw's interactive graphics offer a flexible medium for design exploration. Co provides tools for viewing and editing design models in various representations, including spreadsheet cards, tree and graph structures, as well as plan and elevation graphics. Co's concepts and architecture are described and the implications for design education are discussed.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id a6a5
authors Mortola, Elena
year 1989
title The Interface for Designing
doi https://doi.org/10.52842/conf.ecaade.1989.x.a2q
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 8.5.1-8.5.15
summary A case which supports the use of computer graphics in design process is presented in this paper. The case is put forward in three stages: the first stage analyzes the relationship between drawing and design (design-by-drawing) and explores the transformations generated by the computer graphics. The second stage describes a didactic experience in the Faculty of Architecture of Rome. The third stage describes a project related to design interface.
keywords Design, Computer, Drawing, Methods
series eCAADe
email
last changed 2022/06/07 07:50

_id 0797
authors Purnomo, H.
year 1989
title SPACE - Generative Expert System: An Expert System for Designing a Layout of Single-Family Houses Using the Expansiva Building System
source Department of Architectural and Design Science, University of Sydney
summary This thesis describes an expert system for designing the layout of a single-family house using the Espansiva building system introduced by Jorn Utzon. The expert system uses two systems that are already available; the BUILD expert system shell as an automated reasoning system and the Eagle 3D modeler system for producing graphical output. Both programs run under the UNIX operating system on SUN microcomputers. The integration of BUILD, which is written in Prolog, with Eagle using one of the Eagle commands called 'weasel' is a major part of the implementation of the system. [Unpublished. -- CADLINE has abstract only.]
keywords Expert Systems, Floor Plans, Synthesis, Layout, Applications, Languages, PROLOG
series thesis:MSc
last changed 2002/12/14 19:12

_id 4825
authors Van Bakel, A.P.M. and Daru, R.
year 1993
title CAADidactics - An Instrument for Tuning CAAD Systems to Student Styles
doi https://doi.org/10.52842/conf.ecaade.1993.x.j4l
source [eCAADe Conference Proceedings] Eindhoven (The Netherlands) 11-13 November 1993
summary This paper discusses the features of an instrument for tuning CAAD systems to student styles implemented in the authoring shell Authorware Professional (1989). This application enables students and teachers to evaluate the design progress. It also makes it possible to assess their preferences with respect to their working styles (Subject style) and style preferences in terms of the product style (Object style) in different stages of the design curriculum. The availability of this information enables teachers to adapt their didactical approach to their students. The progress they make during design education can be evaluated by looking at the process documentation as well as by looking at the product documentation generated by the application. This makes the students conscious of their own preferences and affinities. It is up to the student and the teacher whether they want to enhance or compensate those preoccupations. The documented information of previous design sessions can also be used as a guide system for further development and adaptations in styles of design and designing. In the design studio this style knowledge can also be used to establish adequate and workable design teams. Some of the features discussed in this paper are already implemented in a small prototype application. The prototype application will be presented and discussed. Other features will be implemented in the near future.

series eCAADe
last changed 2022/06/07 07:50

_id 3964
authors Yoshikawa, H. and Gossard, D. (eds.)
year 1989
title Intelligent CAD
source North-Holland, Amsterdam, pp. vii-ix
summary In this research, design process knowledge is represented at two different levels, action level and object level, corresponding to the meta-knowledge to model design behaviors and the special knowledge to model the processes in designing particular objects. A design knowledge base and database modeling language - Integrated Data Description Language (IDDL) was developed at the University of Tokyo to model both design processes and design objects. This language combines logic programming functions and object oriented programming functions into an integrated environment. Using this language, an intelligent CAD system - Intelligent Integrated Interactive CAD (IIICAD) was developed at the University of Tokyo. Contradictions of knowledge base and database are resolved using circumscription and Assumption-based Truth Maintenance System (ATMS) in this system. Many advanced knowledge modeling techniques, including Qualitative Process Theory (QPT), modal logic, default reasoning, etc., have also been introduced in the IIICAD system. The knowledge base and database representation scheme of IDDL serves as the basis in the feature-based integrated concurrent design system. In the integrated concurrent design system, a new feature modeling language was introduced. In addition to the qualitative and quantitative data/relations that were introduced in IDDL, the composing element features, data dependency relations, constraints, 2D and 3D feature geometric descriptions have also been introduced for representing product life-cycle models and their relations. Optimization functions were added to the integrated concurrent design system to identify the optimal design considering relevant life-cycle aspects.
series other
last changed 2003/04/23 15:14

_id a74a
authors Asanowicz, Alexander
year 1989
title Four Easy Questions
doi https://doi.org/10.52842/conf.ecaade.1989.x.x8v
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 9.18.1-9.18.4
summary Should we teach CAAD? - yes, but why? Answer to this question is clear too. Question three - "when?" - on the 5, 6 and 7 term. Why so rate? - it is a compromise because "Architecture is an art" and students of architecture should know how to make a project without computers. How to teach CAAD? - we should teach haw to use professional computer programs and not programming. We must work out a new manual for architects. It should be constructed in such a way as to correspond to consecutive steps of the architectural design process.
keywords CAAD, Manuals, Architectural Design Process
series eCAADe
email
last changed 2022/06/07 07:50

_id 235d
authors Catalano, Fernando
year 1990
title The Computerized Design Firm
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 317-332
summary This paper is not just about the future of computerized design practice. It is about what to do today in contemplation of tomorrow-the issues of computercentered practice and the courses of action open to us can be discerned by the careful observer. The realities of computerized design practice are different from the issues on which design education still fixes its attention. To educators, the present paper recommends further clinical research on computerized design firms and suggests that case studies on the matter be developed and utilized as teaching material. Research conducted by the author of this paper indicates that a new form of design firm is emerging-the computerized design firm-totally supported and augmented by the new information technology. The present paper proceeds by introducing an abridged case study of an actual totally electronic, computerized design practice. Then, the paper concentrates on modelling the computerized design firm as an intelligent system, indicating non-trivial changes in its structure and strategy brought about by the introduction of the new information technology into its operations - among other considerations, different strategies and diverse conceptions of management and workgroup roles are highlighted. In particular, this paper points out that these structural and strategic changes reflect back on the technology of information with pressures to redirect present emphasis on the individual designer, working alone in an isolated workstation, to a more realistic conception of the designer as a member of an electronic workgroup. Finally, the paper underlines that this non-trivial conception demands that new hardware and software be developed to meet the needs of the electronic workgroup - which raises issues of human-machine interface. Further, it raises the key issues of how to represent and expose knowledge to users in intelligent information - sharing systems, designed to include not only good user interfaces for supporting problem-solving activities of individuals, but also good organizational interfaces for supporting the problem-solving activities of groups. The paper closes by charting promising directions for further research and with a few remarks about the computerized design firm's (near) future.
series CAAD Futures
last changed 1999/04/03 17:58

_id a8b7
authors De Grassi, Mario and Di Manzo, Mauro
year 1989
title The Design of Buildings as Changes of Known Solutions: A Model for “Reasoner B” ; Reasoner B" in the Castorp System
doi https://doi.org/10.52842/conf.ecaade.1989.x.u3h
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 7.3.1-7.3.9
summary The paper presents a study aimed at the modelization of a design operation of perturbation of an architectural framework in order to comply with a series of given design specifications. A formalized representation of the building object is assumed, Artificial Intelligence techniques are adopted to work on it. It is assumed that the computer carries out deformations starting from one of these structures in order to attain to a solution consistent with project specifications. A description of the structures employed for the representation of the building body (matroids) is firstly proposed. A planning theme is then assumed, as an example, whose main feature is to maintain the outer perimeter of a dwelling, to change its internal distribution in such a way as to resemble as closely as possible to the original and yet meaningfully alter its typology.
series eCAADe
type normal paper
last changed 2022/06/07 07:50

_id ef95
authors Fregier, Marius
year 1989
title Do You Need Weapons to Keep out of "Artichaud Melanie" - Or How to Teach Prolog Programming to CAD System Design Students
doi https://doi.org/10.52842/conf.ecaade.1989.x.u3g
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 8.1.1-8.1.9
summary A course aimed on the use of prolog for studying, prototyping and developing CAD systems is presented. This course is based on a practical training. Its objectives, topics, teaching method and applications are briefly introduced . Exercises focussed on interests and.capabilities of CAD designers are presented. These exercises follow a progression which integrate Step by step, different aspects of the application fields. At list these exercises lead to a single application concerned with intelligent graphics.
keywords Education in CAD System Construction, Graphical Extensions to Prolog, Experts Systems, Graphical Interactive Capture of Data, Intelligent Graphic
series eCAADe
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 8HOMELOGIN (you are user _anon_440561 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002