CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 204

_id 315caadria2004
id 315caadria2004
authors Kuo-Chung Wen, Wei-Lung Chen
year 2004
title Application of Genetic Algorithms to Establish Flooding Evacuation Path Model in Metropolitan Area
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 557-570
doi https://doi.org/10.52842/conf.caadria.2004.557
summary This research has shown the difficulties associated with the GIS and the flooding evacuation path search through the huge searching space generated during the network analysis process. This research also presents an approach to these problems by utilizing a search process whose concept is derived from natural genetics. Genetic algorithms (GAs) have been introduced in the optimization problem solving area by Holland (1975) and Goldberg (1989) and have shown their usefulness through numerous applications. We apply GA and GIS to choice flooding evacuation path in metropolitan area in this study. We take the region of Shiji city in Taiwan for case. That could be divided into four parts. First, is to set the population of GA operation. Second, is to choose crossover and mutation. Third, is to calculate the fitness function of each generation and to select the better gene arrangement. Fourth, is to reproduce, after evolution, we can establish Flooding Evacuation Path that more reflect really human action and choice when flood takes place. However we can apply GA to calculate different evacuation path in different time series. Final, we compare and establish real model of evacuation path model to choosing flooding evacuation path.
series CAADRIA
email
last changed 2022/06/07 07:52

_id ddss2004_d-63
id ddss2004_d-63
authors Wen, K.-C. and W.-L. Chen
year 2004
title Applying Genetic Algorithms to Establish Disaster Decision Support System for Flooding Evacuation Path of Hsichih Area in Taiwan
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Developments in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN 90-6814-155-4, p. 63-75
summary Because of the special geography features and subtropics weather in Taiwan, we need to provide correct information to help people making decision when they are in disaster. So the disaster decision support system must offer proper information of evacuation path to people. This research has shown the difficulties associated with the GIS and the flooding evacuation path search through the huge searching space generated during the network analysis process. This research also presents an approach to these problems by utilizing a search process whose concept is derived from natural genetics. Genetic algorithms (GAs) have been introduced in the optimization problem solving area by Holland (1975) and Goldberg (1989) and have shown their usefulness through numerous applications. We apply GA and GIS to choice flooding evacuation path in metropolitan area in this study. We take the region of Shiji city in Taiwan for case. Firstly, we establish the node relationship of GA calculation, the level of the weight is the standard of the date that is exported by Disaster Database. Secondly, we apply GA to calculate different evacuation path in different time series. Finally, we build the model of choosing flooding evacuation path.
keywords Genetic Algorithms, Decision Support System, GIS, Evacuation Path
series DDSS
last changed 2004/07/03 22:13

_id 1920
authors Riesbeck, C. and Schank, R.C.
year 1989
title Inside Case-based Reasoning
source Lawrence Erlbaum Associates, Hillsdale, NJ
summary Case-based reasoning, broadly construed, is the process of solving new problems based on the solutions of similar past problems. An auto mechanic who fixes an engine by recalling another car that exhibited similar symptoms is using case-based reasoning. A lawyer who advocates a particular outcome in a trial based on legal precedents is using case-based reasoning. It has been argued that case-based reasoning is not only a powerful method for computer reasoning, but also a pervasive behavior in everyday human problem solving. Case-based reasoning (CBR) has been formalized as a four-step process:N 1. Retrieve: Given a target problem, retrieve cases from memory that are relevant to solving it. A case consists of a problem, its solution, and, typically, annotations about how the solution was derived. For example, suppose Fred wants to prepare blueberry pancakes. Being a novice cook, the most relevant experience he can recall is one in which he successfully made plain pancakes. The procedure he followed for making the plain pancakes, together with justifications for decisions made along the way, constitutes Fred's retrieved case. 2. Reuse: Map the solution from the previous case to the target problem. This may involve adapting the solution as needed to fit the new situation. In the pancake example, Fred must adapt his retrieved solution to include the addition of blueberries. 3. Revise: Having mapped the previous solution to the target situation, test the new solution in the real world (or a simulation) and, if necessary, revise. Suppose Fred adapted his pancake solution by adding blueberries to the batter. After mixing, he discovers that the batter has turned blue -- an undesired effect. This suggests the following revision: delay the addition of blueberries until after the batter has been ladled into the pan. 4. Retain: After the solution has been successfully adapted to the target problem, store the resulting experience as a new case in memory. Fred, accordingly, records his newfound procedure for making blueberry pancakes, thereby enriching his set of stored experiences, and better preparing him for future pancake-making demands. At first glance, CBR may seem similar to the rule-induction algorithmsP of machine learning.N Like a rule-induction algorithm, CBR starts with a set of cases or training examples; it forms generalizations of these examples, albeit implicit ones, by identifying commonalities between a retrieved case and the target problem. For instance, when Fred mapped his procedure for plain pancakes to blueberry pancakes, he decided to use the same basic batter and frying method, thus implicitly generalizing the set of situations under which the batter and frying method can be used. The key difference, however, between the implicit generalization in CBR and the generalization in rule induction lies in when the generalization is made. A rule-induction algorithm draws its generalizations from a set of training examples before the target problem is even known; that is, it performs eager generalization. For instance, if a rule-induction algorithm were given recipes for plain pancakes, Dutch apple pancakes, and banana pancakes as its training examples, it would have to derive, at training time, a set of general rules for making all types of pancakes. It would not be until testing time that it would be given, say, the task of cooking blueberry pancakes. The difficulty for the rule-induction algorithm is in anticipating the different directions in which it should attempt to generalize its training examples. This is in contrast to CBR, which delays (implicit) generalization of its cases until testing time -- a strategy of lazy generalization. In the pancake example, CBR has already been given the target problem of cooking blueberry pancakes; thus it can generalize its cases exactly as needed to cover this situation. CBR therefore tends to be a good approach for rich, complex domains in which there are myriad ways to generalize a case.
series other
last changed 2003/04/23 15:14

_id 4bf3
authors Blinn, James F.
year 1989
title Optimal Tubes
source IEEE Computer Graphics and Applications. September, 1989. vol. 9: pp. 8-13 : ill. (some col.)
summary The author discusses how to cut down the number of polygons required to model and render the Voyager spacecraft. The geometric problem is to find the tangent lines from a point to a circle. There are two ways to go about solving this, one using garden-variety analytical geometry and the other using high tech homogeneous coordinates. The author in this column discusses the simple way
keywords programming, geometry, algorithms, computer graphics, techniques
series CADline
last changed 2003/06/02 13:58

_id 8bdf
authors Crocker, Gary A. and Reinke, William F.
year 1989
title Boundary Evaluation in a Non-Manifold Environment
source November, 1989. 30 p., [16] p. of ill. includes bibliography
summary The recent availability of Non-Manifold Topology (NMT) enables the coexistence of wireframe geometry, surfaces, and solids in a single representation with complete topological resolution. This in turn allows a new approach to boundary evaluation. This new approach merges a set of primitives into a single Boundary REPresentation (B-rep), and selects the desired Boolean results without destroying any B-rep entities. The results of the Boolean operations are displayed by drawing only selected entities. The B-rep resulting from the merge contains a complete description of the input primitives. While traditional algorithms allow incremental addition of primitives, this new approach also allows incremental deletion of primitives from the merged B-rep. Changes in Boolean operators and/or their order of evaluation can be reflected in the B-rep simply by changing the criteria of the selection process. Constructive Solid Geometry (CSG) editing operations can be mirrored in the B-rep incrementally, i.e. without performing complete reevaluation of the B-rep from its constituent primitive definitions. In addition, the domain of boundary evaluation has been extended to include Boolean operations between wireframe geometry, surfaces, and solids. This new approach has been successfully implemented and tested to boundary evaluation. Test results have shown an order of magnitude reduction in the cost associated with reflecting CSG editing operations on existing B-reps, with only minimal additional cost for initial construction. Also shown are examples of Boolean operations between solids, surfaces, and wires
keywords computational geometry, boolean operations, solid modeling, B-rep, CSG, representation, topology, curved surfaces, intersection, curves,
series CADline
last changed 2003/06/02 13:58

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id f4fb
authors Karasick, Michael
year 1989
title On the Representation and Manipulation of Rigid Solids
source McGill University, Department of Computer Science, Montreal
summary Solid modeling studies how to represent geometric properties of solids by computer. A fundamental operation is the construction of representations of solids. Algorithms for set operations construct boundary representations of solids from boundary representations of other solids. A correct and efficient intersection algorithm for polyhedral solids that uses boundary representations is described. A finite-precision implementation of the algorithm uses incidence tests that use symbolic inference in order to limit errors due to finite-precision approximations. The incidence tests are described and experimental evidence is presented to show that the incidence tests are both empirically reliable and practical. The intersection algorithm uses a new boundary representation called the Star-Edge representation. A complementation algorithm for solids that uses the new representation is given, and an algorithm is given that uses the new representation to determine if two boundary representations describe the same solid. A canonical boundary representation for solids is described and used to prove a lower bound for the same-object problem.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id ed07
authors Love, James
year 1990
title A Case Study in Knowledge-Based System Development : Envelope Design for Reduction of Traffic Noise Transmission
source February, 1990. 19 p. : some ill. and table. includes a bibliography
summary Researchers have demonstrated the value of replication of research and explicit testing of concepts in artificial intelligence (Ritchie and Hanna 1989). In this study, a rule- based system was implemented as an exercise in the application of the theory and practice of knowledge-based systems development to architectural design analysis. The test domain was the selection of wall and window assemblies to provide adequate noise reduction given a set of traffic and building site conditions. This domain was chosen for two reasons: (1) considerable detailed heuristic information was available; and (2) it avoided large solutions spaces, 'errorful' and time-dependent data, and unreliable knowledge. Development of the system in conjunction with an extensive literature review revealed that publications on construction and performance of rule-based systems provided insufficient detail on key aspects of system architecture. Topics suffering from neglect or insufficiently rigorous treatment included algorithms used in automated inference, methods for selection of inference procedures, the integration of numerical and symbolic processing, the formulation of explanation mechanisms to deal with integrated numerical and symbolic processing, testing methods, and software standardization. Improving the quality and scope of knowledge in these areas is essential if expert systems are to be applied effectively in architectural design
keywords CAD, expert systems, acoustics, applications, knowledge base, design, architecture, AI, analysis
series CADline
last changed 1999/02/12 15:09

_id 7812
authors Straber, W. and Seidel, H.-P. (eds.)
year 1989
title Theory and Practice of Geometric Modeling
source Springer-Verlag
summary This book originates from the lectures given at the international conference "Theory and Practice of Geometric Modeling", Blaubeuren, FRG, October 3-7, 1988, that brought together leading experts from universities, system developers, and system users, to discuss new concepts and future trends in geometric modeling. The book covers a variety of topics on an advanced level and is organized as follows. Part A contains new algorithms and techniques for modeling objects that are bounded by free form surfaces. Part B focuses on surface/surface intersections, new types of blending surfaces and speed ups for ray tracing. Part C contains some new geometric tools. Part D discusses different representation schemes in solid modeling, conversions between these different schemes, and some applications. Part E covers some issues of product modeling, automatic tolerancing, high level specification of solid models (constraints, features) and the need for better user interfaces.
series other
last changed 2003/04/23 15:14

_id 2786
authors Woodwark, J.R.
year 1989
title Splitting Set-Theoretic Solid Models into Connected Components
source 10 p. : ill. Winchester: IBM UK Scientific Center, IBM United Kingdom Laboratories Limited, June, 1989. IBM UKSC 210. includes bibliography In general, there is no way to tell how many pieces (connected components) a set-theoretic (CSG) solid model represents, except via conversion to a boundary model. Recent work on the elimination of redundant primitives has been linked with techniques for identifying connected components in quad-trees and oct-trees into a strategy to attack this problem. Some success has been achieved, and an experimental Prolog program, working in two dimensions, that finds connected components and determines the set-theoretic representation of each component, is reported, and further developments proposed. CSG / quadtree / octree / primitives / algorithms. 43. Woodwark, J. R. and Quinlan K. M. 'Reducing the Effect of Complexity on Volume Model Evaluation.' Computer Aided Design. April, 1982. pp. 89-95 : ill. includes bibliography.
summary A major problem with volume modelling systems is that processing times may increase with model complexity in a worse than linear fashion. The authors have addressed this problem, for picture generation, by repeatedly dividing the space occupied by a model, and evaluating the sub-models created only when they meet a criterion of simplicity. Hidden surface elimination has been integrated with evaluation, in such a way that major portions of the model which are not visible are never evaluated. An example demonstrates a better than linear relationship between model complexity and computation time, and also shows the effect of picture complexity on the performance of the process
keywords CAD, computational geometry, solid modeling, geometric modeling, algorithms, hidden surfaces, CSG
series CADline
last changed 2003/06/02 13:58

_id 235d
authors Catalano, Fernando
year 1990
title The Computerized Design Firm
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 317-332
summary This paper is not just about the future of computerized design practice. It is about what to do today in contemplation of tomorrow-the issues of computercentered practice and the courses of action open to us can be discerned by the careful observer. The realities of computerized design practice are different from the issues on which design education still fixes its attention. To educators, the present paper recommends further clinical research on computerized design firms and suggests that case studies on the matter be developed and utilized as teaching material. Research conducted by the author of this paper indicates that a new form of design firm is emerging-the computerized design firm-totally supported and augmented by the new information technology. The present paper proceeds by introducing an abridged case study of an actual totally electronic, computerized design practice. Then, the paper concentrates on modelling the computerized design firm as an intelligent system, indicating non-trivial changes in its structure and strategy brought about by the introduction of the new information technology into its operations - among other considerations, different strategies and diverse conceptions of management and workgroup roles are highlighted. In particular, this paper points out that these structural and strategic changes reflect back on the technology of information with pressures to redirect present emphasis on the individual designer, working alone in an isolated workstation, to a more realistic conception of the designer as a member of an electronic workgroup. Finally, the paper underlines that this non-trivial conception demands that new hardware and software be developed to meet the needs of the electronic workgroup - which raises issues of human-machine interface. Further, it raises the key issues of how to represent and expose knowledge to users in intelligent information - sharing systems, designed to include not only good user interfaces for supporting problem-solving activities of individuals, but also good organizational interfaces for supporting the problem-solving activities of groups. The paper closes by charting promising directions for further research and with a few remarks about the computerized design firm's (near) future.
series CAAD Futures
last changed 1999/04/03 17:58

_id maver_065
id maver_065
authors Clarke, J. and Maver, T.W.
year 1989
title Advanced Design Tools for Energy Conscious Design
source Paper to Royal Society
summary This paper is concerned with building energy simulation and the prospects for the delivery of a new generation of simulation based, valid and easy to use design tools to the building construction industry. The issues relating to design tools development and use are discussed and the present state-of-the-art is described. Some medium to long term developments are then identified, including an intelligent front end and the notion of an advanced machine environment for the construction and maintenance of future models concerned with building energy and environment. The mechanisms for technology transfer are identified and experiences recounted of the first two years operation of an innovatory energy design advisory service. The paper finishes with a look to the future of the information technologies in building design.
series other
email
last changed 2003/09/03 15:01

_id ee16
authors Coyne, R.D., Newton, S. and Sudweeks, F.
year 1989
title Modeling the Emergence of Schemas in Design Reasoning
source Design Computing Unit, Department of Architectural and Design Science, University of Sydney, 1989. pp. 173-205. CADLINE has abstract only
summary The authors explore how neural networks can be used to model important aspects of design reasoning: the way design involves memory; and a 'holistic' kind of reasoning by which designs appear to emerge from that memory. A simple neural network is constructed to demonstrate how information about schemas (in this case, room types) is stored implicitly after exposure to a number of examples of specific rooms. We then demonstrate how new room types emerge from this information. The paper includes a discussion of design, a discussion of schemas from a psycholinguistic perspective, a technical explanation of neural networks and the demonstration of an implemented examples
keywords neural networks, modeling, design, reasoning, learning, knowledge acquisition, experimentation
series CADline
email
last changed 2003/05/17 10:13

_id e303
authors Coyne, Richard D. and Newton, S.
year 1989
title A Tutorial on Neural Networks and Expert Systems for Design
source University of Sydney, 1989. pp. 321-337. CADLINE has abstract only
summary This paper presents an overview of neural network (connectionist) systems and their potential contribution to computer-aided design. The authors discuss the appeal of neural networks and some of the problems. The major contribution to design is in the representation and manipulation of schemas. A neural network system can be 'taught' various examples (such as room descriptions). The system then apparently recognizes schemas (room types) and can produce novel but sensible combinations of descriptions constituting new types. A simple handworked example is presented, and the learning and reasoning mechanism is explained
keywords representation, CAD, expert systems, design, neural networks
series CADline
email
last changed 2003/05/17 10:13

_id 4104
authors Ervin, Stephen McTee
year 1989
title The structure and function of diagrams in environmental design :a computational inquiry
source Massachusetts Institute of Technology
summary The design process often begins with a graphical description of the proposed device or system and sketching is the physical expression of the design engineer's thinking process. Computer Aided Design is a technique in which man and machine are blended into a problem solving team, intimately coupling the best characteristics of each. Solid modelling is developed to act as the common medium between man and the computer. At present it is achieved mainly by designing with volumes and hence does not leave much room for sketching input, the traditional physical expression of the thinking process of the design engineer. This thesis describes a method of accepting isometric free hand sketching as the input to a solid model. The design engineer is allowed to make a sketch on top of a digitizer indicating (i) visible lines; (ii) hidden lines; (iii) construction lines; (iv) centre lines; (v) erased lines; and (vi) redundant lines as the input. The computer then processes this sketch by identifying the line segments, fitting the best possible lines, removing the erased lines, ignoring the redundant lines and finally merging the hidden lines and visible lines to form the lines in the solid in an interactive manner. The program then uses these lines and the information about the three dimensional origin of the object and produces three dimensional information such as the faces, loops, holes, rings, edges and vertices which are sufficient to build a solid model. This is achieved in the following manner. The points in the sketch are first written into a file. The computer than reads this file, breaks the group of points into sub-groups belonging to individual line segments, fits the best lines and identify the vertices in two dimensions. These improved lines in two dimensions are then merged to form the lines and vertices in the solid. These lines are then used together with the three dimensional origin (or any other point) to produce the wireframe model in three dimensions. The loops in the wireframe models are then identified and surface equations are fitted to these loops. Finally all the necessary inputs to build a B-rep solid model are produced.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 8cff
authors Fridqvist, Sverker
year 1989
title Computers as a Creative Tool in Architecture
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 9.6.1-9.6.4
doi https://doi.org/10.52842/conf.ecaade.1989.x.k1l
summary The School of Architecture at Lund Institute of Technology was augmented by the establishment of the Computer Studio in 1987. As a result the school now has a device for teaching and research in the architects' use of computers. We are now conducting several research projects as well as courses and an education project. The third and fourth years of the education at the school of architecture are arranged as education projects instead of traditional lecturing. The students choose from projects that are organised by different departments at the School of Architecture. The issue is that the students will ask for instruction when felt needed, and that learning will therefore be more efficient. The Computer Studio has conducted such a project during the first half of 1989. We have tried to encourage the students to use our different computers and programs in new and creative ways. One of the issues of the computer project is to teach the students how computers are used at the architects offices today as well as expected future developments. The students shall be acquainted well enough with present and future possibilities to make good choices when deciding upon buying computers for architectural use. Another issue is to develop new ways of making and presenting architecture by using computers. As a group the teachers at the school of architecture have a very restrictive attitude towards the use of computers. We hope that our project will open their minds for the possibilities of computers, and to engage them in the development of new ways to use computers creatively in architecture. An interesting question is if the use of computers will yield different outcomes of he students' work than traditional methods. An object for research is whether the added possibilities of considering different aspects of he design by using a computer will make for higher quality of the results.

series eCAADe
email
more http://www.caad.lth.se/
last changed 2022/06/07 07:50

_id ecaade03_433_208_froehlich
id ecaade03_433_208_froehlich
authors Fröhlich, C., Hirschberg, U., Frühwirth, M. and Wondra, W.
year 2003
title no_LAb__in_feld - Is common- ground a word or just a sound? (Lou Reed, 1989)
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 433-436
doi https://doi.org/10.52842/conf.ecaade.2003.433
summary This paper describes the concept and the current state of development of a new laboratory for digital experimentation in architectural education and research. The novel forms of collaboration and learning for which it is intended and the quick pace of innovation in digital technology on which it depends both require an appropriately flexible spatial and technological framework. And it requires a particular mindset. The no_LAb__in_feld is not just another laboratory. It is a place, a community, a high-tech construction site, a permanent work in progress. It is the prototype of a next generation design studio.
keywords Design studio education: creative collaboration; digital playground; hybridinteractive installations; augmented reality
series eCAADe
email
more http://ikg.tugraz.at/
last changed 2022/06/07 07:50

_id e832
authors Galle, Per
year 1989
title Branch & Sample : A Simple Strategy for Constraints Satisfaction
source March, 1989. 29: pp. 395-408 : ill. includes bibliography
summary Many constraint satisfaction problems have too many solutions for exhaustive generation. Optimization techniques may help in selecting a small number of solutions for consideration, but a reasonable measure of optimality is not always at hand. A simple algorithm called Branch & Sample is suggested as an alternative to optimization. Combining breath-first and depth- first search Branch & Sample finds solution distributed over the search tree. The aim is to obtain a limited set of solutions that corresponds well to the intuitive motion of a representative, uniformly scattered sample. A precise definition of this notion is discussed in relation to the algorithm whose effect is illustrated by two geometric design problems. The performance of the algorithm is evaluated and it is concluded that Branch & Sample is applicable to certain types of problems, and refinements can extend the scope of application
keywords automation, design, constraints, backtracking
series CADline
last changed 1999/02/12 15:08

_id 4f00
authors Gero, John S. and Sudweeks, F. (editors)
year 1989
title Expert Systems in Engineering, Architecture and Construction
source 360 p University of Sydney: 1989. CADLINE has abstract only.
summary Engineering involves both cognitive and calculational processes. It involves judgement as well as numeracy. Cognitive processes and judgement are better served by expert systems than other existing technologies. Expert systems are not designed to replace technologies currently used in engineering, rather they are and will continue to augment them. Clearly, better tools are needed and further education of engineers is needed. This conference aims to provide a forum for the presentation of developments and applications of expert systems in engineering, primarily in Australasia. The 20 papers accepted for presentation span the spectrum of engineering applications of expert systems from analysis and diagnosis, through simulation and modeling, learning, to design and synthesis
keywords expert systems, knowledge base, design process, architecture, structures, engineering, construction, analysis, simulation, modeling, learning, synthesis
series CADline
email
last changed 2003/06/02 13:58

_id c0a3
authors Harfmann, Anton C. and Chen, Stuart S.
year 1989
title Component Based Computer Aided Learning for Students of Architecture and Civil Engineering
source New Ideas and Directions for the 1990’s [ACADIA Conference Proceedings] Gainsville (Florida - USA) 27-29 October 1989, pp. 193-208
doi https://doi.org/10.52842/conf.acadia.1989.193
summary The paper describes the methodology and the current efforts to develop an interdisciplinary computer aided learning system for architects and civil engineers. The system being developed incorporates a component oriented relational database with an existing interactive 3-dimensional modeling system developed in the School of Architecture and Planning at SUNY Buffalo. The software will be used in existing courses in architecture and civil engineering as a teaching aid to help students understand the complex 3-dimensional interrelationships of structural components. Initial implementation has focused on the modeling of the components and assemblies for a lowrise steel frame structure. Current implementation efforts are focusing on the capability to view connections in various ways including the ability to "explode" a connection to better understand the sequence of construction and load paths. Appropriate codes, limit states of failure and specific data will be linked to each specific component in an expert system shell so that the system can offer feedback about a student generated connection and perhaps offer other possible connections a library of standard connections. Future expansion of the system will include adding other "systems" of a building, such as mechanical, electrical, plumbing, enclosure etc., to help students visualize the integration of the various parts.
series ACADIA
email
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 10HOMELOGIN (you are user _anon_481635 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002