CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 76

_id ee16
authors Coyne, R.D., Newton, S. and Sudweeks, F.
year 1989
title Modeling the Emergence of Schemas in Design Reasoning
source Design Computing Unit, Department of Architectural and Design Science, University of Sydney, 1989. pp. 173-205. CADLINE has abstract only
summary The authors explore how neural networks can be used to model important aspects of design reasoning: the way design involves memory; and a 'holistic' kind of reasoning by which designs appear to emerge from that memory. A simple neural network is constructed to demonstrate how information about schemas (in this case, room types) is stored implicitly after exposure to a number of examples of specific rooms. We then demonstrate how new room types emerge from this information. The paper includes a discussion of design, a discussion of schemas from a psycholinguistic perspective, a technical explanation of neural networks and the demonstration of an implemented examples
keywords neural networks, modeling, design, reasoning, learning, knowledge acquisition, experimentation
series CADline
email
last changed 2003/05/17 10:13

_id 8cff
authors Fridqvist, Sverker
year 1989
title Computers as a Creative Tool in Architecture
doi https://doi.org/10.52842/conf.ecaade.1989.x.k1l
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 9.6.1-9.6.4
summary The School of Architecture at Lund Institute of Technology was augmented by the establishment of the Computer Studio in 1987. As a result the school now has a device for teaching and research in the architects' use of computers. We are now conducting several research projects as well as courses and an education project. The third and fourth years of the education at the school of architecture are arranged as education projects instead of traditional lecturing. The students choose from projects that are organised by different departments at the School of Architecture. The issue is that the students will ask for instruction when felt needed, and that learning will therefore be more efficient. The Computer Studio has conducted such a project during the first half of 1989. We have tried to encourage the students to use our different computers and programs in new and creative ways. One of the issues of the computer project is to teach the students how computers are used at the architects offices today as well as expected future developments. The students shall be acquainted well enough with present and future possibilities to make good choices when deciding upon buying computers for architectural use. Another issue is to develop new ways of making and presenting architecture by using computers. As a group the teachers at the school of architecture have a very restrictive attitude towards the use of computers. We hope that our project will open their minds for the possibilities of computers, and to engage them in the development of new ways to use computers creatively in architecture. An interesting question is if the use of computers will yield different outcomes of he students' work than traditional methods. An object for research is whether the added possibilities of considering different aspects of he design by using a computer will make for higher quality of the results.

series eCAADe
email
more http://www.caad.lth.se/
last changed 2022/06/07 07:50

_id 4f00
authors Gero, John S. and Sudweeks, F. (editors)
year 1989
title Expert Systems in Engineering, Architecture and Construction
source 360 p University of Sydney: 1989. CADLINE has abstract only.
summary Engineering involves both cognitive and calculational processes. It involves judgement as well as numeracy. Cognitive processes and judgement are better served by expert systems than other existing technologies. Expert systems are not designed to replace technologies currently used in engineering, rather they are and will continue to augment them. Clearly, better tools are needed and further education of engineers is needed. This conference aims to provide a forum for the presentation of developments and applications of expert systems in engineering, primarily in Australasia. The 20 papers accepted for presentation span the spectrum of engineering applications of expert systems from analysis and diagnosis, through simulation and modeling, learning, to design and synthesis
keywords expert systems, knowledge base, design process, architecture, structures, engineering, construction, analysis, simulation, modeling, learning, synthesis
series CADline
email
last changed 2003/06/02 13:58

_id 1920
authors Riesbeck, C. and Schank, R.C.
year 1989
title Inside Case-based Reasoning
source Lawrence Erlbaum Associates, Hillsdale, NJ
summary Case-based reasoning, broadly construed, is the process of solving new problems based on the solutions of similar past problems. An auto mechanic who fixes an engine by recalling another car that exhibited similar symptoms is using case-based reasoning. A lawyer who advocates a particular outcome in a trial based on legal precedents is using case-based reasoning. It has been argued that case-based reasoning is not only a powerful method for computer reasoning, but also a pervasive behavior in everyday human problem solving. Case-based reasoning (CBR) has been formalized as a four-step process:N 1. Retrieve: Given a target problem, retrieve cases from memory that are relevant to solving it. A case consists of a problem, its solution, and, typically, annotations about how the solution was derived. For example, suppose Fred wants to prepare blueberry pancakes. Being a novice cook, the most relevant experience he can recall is one in which he successfully made plain pancakes. The procedure he followed for making the plain pancakes, together with justifications for decisions made along the way, constitutes Fred's retrieved case. 2. Reuse: Map the solution from the previous case to the target problem. This may involve adapting the solution as needed to fit the new situation. In the pancake example, Fred must adapt his retrieved solution to include the addition of blueberries. 3. Revise: Having mapped the previous solution to the target situation, test the new solution in the real world (or a simulation) and, if necessary, revise. Suppose Fred adapted his pancake solution by adding blueberries to the batter. After mixing, he discovers that the batter has turned blue -- an undesired effect. This suggests the following revision: delay the addition of blueberries until after the batter has been ladled into the pan. 4. Retain: After the solution has been successfully adapted to the target problem, store the resulting experience as a new case in memory. Fred, accordingly, records his newfound procedure for making blueberry pancakes, thereby enriching his set of stored experiences, and better preparing him for future pancake-making demands. At first glance, CBR may seem similar to the rule-induction algorithmsP of machine learning.N Like a rule-induction algorithm, CBR starts with a set of cases or training examples; it forms generalizations of these examples, albeit implicit ones, by identifying commonalities between a retrieved case and the target problem. For instance, when Fred mapped his procedure for plain pancakes to blueberry pancakes, he decided to use the same basic batter and frying method, thus implicitly generalizing the set of situations under which the batter and frying method can be used. The key difference, however, between the implicit generalization in CBR and the generalization in rule induction lies in when the generalization is made. A rule-induction algorithm draws its generalizations from a set of training examples before the target problem is even known; that is, it performs eager generalization. For instance, if a rule-induction algorithm were given recipes for plain pancakes, Dutch apple pancakes, and banana pancakes as its training examples, it would have to derive, at training time, a set of general rules for making all types of pancakes. It would not be until testing time that it would be given, say, the task of cooking blueberry pancakes. The difficulty for the rule-induction algorithm is in anticipating the different directions in which it should attempt to generalize its training examples. This is in contrast to CBR, which delays (implicit) generalization of its cases until testing time -- a strategy of lazy generalization. In the pancake example, CBR has already been given the target problem of cooking blueberry pancakes; thus it can generalize its cases exactly as needed to cover this situation. CBR therefore tends to be a good approach for rich, complex domains in which there are myriad ways to generalize a case.
series other
last changed 2003/04/23 15:14

_id e303
authors Coyne, Richard D. and Newton, S.
year 1989
title A Tutorial on Neural Networks and Expert Systems for Design
source University of Sydney, 1989. pp. 321-337. CADLINE has abstract only
summary This paper presents an overview of neural network (connectionist) systems and their potential contribution to computer-aided design. The authors discuss the appeal of neural networks and some of the problems. The major contribution to design is in the representation and manipulation of schemas. A neural network system can be 'taught' various examples (such as room descriptions). The system then apparently recognizes schemas (room types) and can produce novel but sensible combinations of descriptions constituting new types. A simple handworked example is presented, and the learning and reasoning mechanism is explained
keywords representation, CAD, expert systems, design, neural networks
series CADline
email
last changed 2003/05/17 10:13

_id ecaade03_433_208_froehlich
id ecaade03_433_208_froehlich
authors Fröhlich, C., Hirschberg, U., Frühwirth, M. and Wondra, W.
year 2003
title no_LAb__in_feld - Is common- ground a word or just a sound? (Lou Reed, 1989)
doi https://doi.org/10.52842/conf.ecaade.2003.433
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 433-436
summary This paper describes the concept and the current state of development of a new laboratory for digital experimentation in architectural education and research. The novel forms of collaboration and learning for which it is intended and the quick pace of innovation in digital technology on which it depends both require an appropriately flexible spatial and technological framework. And it requires a particular mindset. The no_LAb__in_feld is not just another laboratory. It is a place, a community, a high-tech construction site, a permanent work in progress. It is the prototype of a next generation design studio.
keywords Design studio education: creative collaboration; digital playground; hybridinteractive installations; augmented reality
series eCAADe
email
more http://ikg.tugraz.at/
last changed 2022/06/07 07:50

_id 424b
authors Hammond, K.
year 1989
title Case-Based Planning: Viewing Planning as a Memory Task
source Boston, MA, Academic Press
summary A case-based planner learns by correctly indexing its planning experiences in memory. The main task of the learner is to figure out which features a piece of information should be indexed under. A case-based planner learns 1) new plans; 2) the features that predict failures; 3) past repairs to faulty plans that it can reuse. This learning is accomplished by saving the different results of the planner's own experiences.
series other
last changed 2003/04/23 15:14

_id c0a3
authors Harfmann, Anton C. and Chen, Stuart S.
year 1989
title Component Based Computer Aided Learning for Students of Architecture and Civil Engineering
doi https://doi.org/10.52842/conf.acadia.1989.193
source New Ideas and Directions for the 1990’s [ACADIA Conference Proceedings] Gainsville (Florida - USA) 27-29 October 1989, pp. 193-208
summary The paper describes the methodology and the current efforts to develop an interdisciplinary computer aided learning system for architects and civil engineers. The system being developed incorporates a component oriented relational database with an existing interactive 3-dimensional modeling system developed in the School of Architecture and Planning at SUNY Buffalo. The software will be used in existing courses in architecture and civil engineering as a teaching aid to help students understand the complex 3-dimensional interrelationships of structural components. Initial implementation has focused on the modeling of the components and assemblies for a lowrise steel frame structure. Current implementation efforts are focusing on the capability to view connections in various ways including the ability to "explode" a connection to better understand the sequence of construction and load paths. Appropriate codes, limit states of failure and specific data will be linked to each specific component in an expert system shell so that the system can offer feedback about a student generated connection and perhaps offer other possible connections a library of standard connections. Future expansion of the system will include adding other "systems" of a building, such as mechanical, electrical, plumbing, enclosure etc., to help students visualize the integration of the various parts.
series ACADIA
email
last changed 2022/06/07 07:49

_id 0565
authors Oxman, Robert and Oxman, Rivka
year 1990
title The Computability of Architectural Knowledge
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 171-185
summary In an important contribution to the theoretical foundation of design computing, Mitchell noted "an increasingly urgent need to establish a demonstrably sound, comprehensive, rigorously formalized theoretical foundation upon which to base practical software development efforts" (Mitchell, 1986). In this paper we propose such a theoretical framework. A basic assumption of this work is that the advancement of design computing is dependent upon the emergence of a rigorous formulation of knowledge in design. We present a model of knowledge in architectural design which suggests a promising conceptual basis for dealing with knowledge in computer-aided design systems. We require models which can represent the formal knowledge and manipulative operations of the designer in all of their complexity-that is formal models rather than just geometric models. Shape Grammars (Stiny,1980) represent an example of such models, and constitute a relatively high level of design knowledge as compared to, for example, use of symmetry operations to generate simple formal configurations. Building upon an understanding of the classes of design knowledge as the conceptual basis for formal modeling systems may contribute a new realization of the potential of the medium for design. This will require a comprehensive approach to the definition of architectural and design knowledge. We consider here the implications of a well-defined body of architectural and design knowledge for design education and the potential mutual interaction-in a knowledge-rich environment-of design learning and CAAD learning. The computational factors connected with the representation of design knowledge and its integration in design systems are among the key problems of CAAD. Mitchell's model of knowledge in design incorporates formal knowledge in a comprehensive, multi-level, hierarchical structure in which types of knowledge are correlated with computational concepts. In the main focus of this paper we present a structured, multi-level model of design knowledge which we discuss with respect to current architectural theoretical considerations. Finally, we analyze the computational and educational relevance of such models.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id afa9
authors Oxman, Robert, and Oxman, Rivka
year 1989
title The Joy of Syntax
doi https://doi.org/10.52842/conf.ecaade.1989.x.m1j
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 5.3.1-5.3.26
summary The article describes an approach to teaching syntactical aspects of design and architectural composition by means of exercises utilizing various computer graphics programs. The theoretical assumptions and the background of formal studies are reviewed as sources of this approach. A working definition of Architectural Knowledge and Design Knowledge is postulated as the theoretical foundation of Computer- Aided Learning. The term, Architectural Syntax, is proposed as the formalization of this knowledge. The pedagogical significance of computers as a medium of design education is analyzed, and the particular role of syntactical knowledge in design, the computation of design and in C A.L. in design is identified. An outline of the course, The Joy of Syntax, is described and future research and development in these fields discussed.
keywords Computer-Aided Learning (C.A.L.), Architectural Syntax, Design Theory
series eCAADe
email
last changed 2022/06/07 07:50

_id 8842
authors Van Zutphen, R.H.M.
year 1989
title Computer Aids in Education of CAAD
doi https://doi.org/10.52842/conf.ecaade.1989.x.v3i
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 5.2.1-5.2.7
summary This paper focuses on the first years of the CAAD curriculum of Calibre - Computer Application Laboratory in Building Research and Education - at the Eindhoven University of Technology. It describes the use of computer systems as a modern aid to learning and some aspects of the development of the educational program CALinCAD.
keywords CAL, CAAD, Courseware, Design
series eCAADe
email
last changed 2022/06/07 07:50

_id 29c9
authors Van Zutphen, Rob
year 1990
title CALinCAD: Computer-Aided Learning in CAAD
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 273-282
summary Calibre, Eindhoven University of Technology, ABACUS, University of Strathclyde, and LEMA, University of Liege, investigate whether it is possible to teach the architectural design process, using different CAAD techniques in a more integrated way. The research is funded by the EC in the European Comettproject.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 45e6
authors Agger, Kristian and Lentz, Uffe (Eds.)
year 1989
title CAAD: Education - Research and Practice [Conference Proceedings]
doi https://doi.org/10.52842/conf.ecaade.1989
source eCAADe Conference Proceedings / ISBN 87-982875-2-4 / Aarhus (Denmark) 21-23 September 1989
summary In the announcement of the sixth eCAADe Conference we stated that It is held at a time where CAAD is moving into practice very fast, with heavy influence on research and education. We stated that research is directed towards the early design phases, and that education is facing the problem of mass education.

In that situation much benefit can be obtained from collaboration with practice. We decided to give the conference the title “CAAD: Education - Research and Practice” to state the importance of practice as a test bench.

The conference papers cover education and research in depth in many important areas and give a good overview, whereas the practical theme is more or less missing, indicating, that experience here is still modest.

At the lecture material market and the exhibition the situation is opposite and shows state of art in practical use.

series eCAADe
email
last changed 2022/06/07 07:49

_id 4032
authors Barron, Christopher L.
year 1989
title 3-D Modelling
source architectural and Engineering Systems. April, 1989. [41] -56 unevenly numbered
summary From screen to structure, more and more AEs are finding design solutions in the third dimension. The author reviews current 3-D modeling systems, what are the expectations of the users and the developers goals
keywords architecture, practice, drafting, modeling, systems
series CADline
last changed 2003/06/02 13:58

_id 4bf3
authors Blinn, James F.
year 1989
title Optimal Tubes
source IEEE Computer Graphics and Applications. September, 1989. vol. 9: pp. 8-13 : ill. (some col.)
summary The author discusses how to cut down the number of polygons required to model and render the Voyager spacecraft. The geometric problem is to find the tangent lines from a point to a circle. There are two ways to go about solving this, one using garden-variety analytical geometry and the other using high tech homogeneous coordinates. The author in this column discusses the simple way
keywords programming, geometry, algorithms, computer graphics, techniques
series CADline
last changed 2003/06/02 13:58

_id 0105
authors Bossan, Mario and Ronchi, Alfredo M.
year 1989
title Presentazione Esperienza Didattica del Dipartimento di Ingegneria dei Sistemi Edilizi e Territoriali - Politecnico di Milano
doi https://doi.org/10.52842/conf.ecaade.1989.x.x4i
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 9.8.1-9.8.19
summary Didactic and research experience developed at the "Dipartimento di Ingegneria dei Sistemi Edilizi e Territoriali del Politecnico di Milano" in the environment of Computer Aided Architectural Design (CAAD). From the early part of the 1980's, using initially at an experimental level the resources available at the departmental centre of calculation various applications of CAD techniques in the building sector have been effected at DISET (Dipartimento di Ingegneria del Politecnico di Milano). During 1983, after a three year period of experimenting with these systems, it was decided to organise and activate a small computer aided design centre, within the department, the use of which was reserved for dissertation and research students.

series eCAADe
email
last changed 2022/06/07 07:50

_id 44b3
authors Cajati, Claudio
year 1989
title Towards A KB System / Image-Databases - Integrated Interface: A Tool For Architectural Education
doi https://doi.org/10.52842/conf.ecaade.1989.x.e2p
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 9.9.1-9.9.7
summary Focusing on the tasks of university architectural education, a special stress is first laid on the possibility of going beyond some limits of traditional CAAD. as coming out from the recent debate, and on the opportunities offered by knowledge based systems as metadesign supports in architectural domains. Particularly, with regard to image-databases, their importance for explaining and exemplifying the knowledge representation in KB Systems, and their integration via intelligent interface are discussed. At last, some possible uses of the whole as an educational tool in the daily university training are proposed.
keywords Architectural Education, KB System, Image-database, Interface
series eCAADe
email
last changed 2022/06/07 07:50

_id b4c4
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 2000
title A framework for an Architectural Collaborative Design
doi https://doi.org/10.52842/conf.ecaade.2000.057
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 57-60
summary The building industry involves a larger number of disciplines, operators and professionals than other industrial processes. Its peculiarity is that the products (building objects) have a number of parts (building elements) that does not differ much from the number of classes into which building objects can be conceptually subdivided. Another important characteristic is that the building industry produces unique products (de Vries and van Zutphen, 1992). This is not an isolated situation but indeed one that is spreading also in other industrial fields. For example, production niches have proved successful in the automotive and computer industries (Carrara, Fioravanti, & Novembri, 1989). Building design is a complex multi-disciplinary process, which demands a high degree of co-ordination and co-operation among separate teams, each having its own specific knowledge and its own set of specific design tools. Establishing an environment for design tool integration is a prerequisite for network-based distributed work. It was attempted to solve the problem of efficient, user-friendly, and fast information exchange among operators by treating it simply as an exchange of data. But the failure of IGES, CGM, PHIGS confirms that data have different meanings and importance in different contexts. The STandard for Exchange of Product data, ISO 10303 Part 106 BCCM, relating to AEC field (Wix, 1997), seems to be too complex to be applied to professional studios. Moreover its structure is too deep and the conceptual classifications based on it do not allow multi-inheritance (Ekholm, 1996). From now on we shall adopt the BCCM semantic that defines the actor as "a functional participant in building construction"; and we shall define designer as "every member of the class formed by designers" (architects, engineers, town-planners, construction managers, etc.).
keywords Architectural Design Process, Collaborative Design, Knowledge Engineering, Dynamic Object Oriented Programming
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id 235d
authors Catalano, Fernando
year 1990
title The Computerized Design Firm
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 317-332
summary This paper is not just about the future of computerized design practice. It is about what to do today in contemplation of tomorrow-the issues of computercentered practice and the courses of action open to us can be discerned by the careful observer. The realities of computerized design practice are different from the issues on which design education still fixes its attention. To educators, the present paper recommends further clinical research on computerized design firms and suggests that case studies on the matter be developed and utilized as teaching material. Research conducted by the author of this paper indicates that a new form of design firm is emerging-the computerized design firm-totally supported and augmented by the new information technology. The present paper proceeds by introducing an abridged case study of an actual totally electronic, computerized design practice. Then, the paper concentrates on modelling the computerized design firm as an intelligent system, indicating non-trivial changes in its structure and strategy brought about by the introduction of the new information technology into its operations - among other considerations, different strategies and diverse conceptions of management and workgroup roles are highlighted. In particular, this paper points out that these structural and strategic changes reflect back on the technology of information with pressures to redirect present emphasis on the individual designer, working alone in an isolated workstation, to a more realistic conception of the designer as a member of an electronic workgroup. Finally, the paper underlines that this non-trivial conception demands that new hardware and software be developed to meet the needs of the electronic workgroup - which raises issues of human-machine interface. Further, it raises the key issues of how to represent and expose knowledge to users in intelligent information - sharing systems, designed to include not only good user interfaces for supporting problem-solving activities of individuals, but also good organizational interfaces for supporting the problem-solving activities of groups. The paper closes by charting promising directions for further research and with a few remarks about the computerized design firm's (near) future.
series CAAD Futures
last changed 1999/04/03 17:58

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

For more results click below:

this is page 0show page 1show page 2show page 3HOMELOGIN (you are user _anon_812893 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002