CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 198

_id 44b3
authors Cajati, Claudio
year 1989
title Towards A KB System / Image-Databases - Integrated Interface: A Tool For Architectural Education
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 9.9.1-9.9.7
doi https://doi.org/10.52842/conf.ecaade.1989.x.e2p
summary Focusing on the tasks of university architectural education, a special stress is first laid on the possibility of going beyond some limits of traditional CAAD. as coming out from the recent debate, and on the opportunities offered by knowledge based systems as metadesign supports in architectural domains. Particularly, with regard to image-databases, their importance for explaining and exemplifying the knowledge representation in KB Systems, and their integration via intelligent interface are discussed. At last, some possible uses of the whole as an educational tool in the daily university training are proposed.
keywords Architectural Education, KB System, Image-database, Interface
series eCAADe
email
last changed 2022/06/07 07:50

_id 0f73
authors Ervin, Stephen M.
year 1990
title Designing with Diagrams: A Role for Computing in Design Education and Exploration
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 107-122
summary Environmental designers, design educators and design students using computers are a constituency with a set of requirements for database structure and flexibility, for knowledge representation and inference mechanisms, and for both graphical and non-graphical operations, that are now articulatable and to-date largely unmet. This is especially so in the area called 'preliminary' or 'schematic' design, where our requirements are related to, but different from, those of our colleagues in mechanical and electrical engineering, whose needs have dominated the notable developments in this area. One manifestation of these needs is in the peculiar form of graphics called diagrams , and the ways in which environmental designers (architects, landscape architects., urban designers) use them. Our diagrams are both similar to and different from structural, circuit, or logical diagrams in important ways. These similarities and differences yield basic insights into designing and design knowledge, and provide guidance for some necessary steps in the development of the next generation of CAD systems. Diagrams as a form of knowledge representation have received little scrutiny in the literature of graphic representation and computer graphics. In the following sections I present an overview of the theoretical basis for distinguishing and using diagrams; examine some of the computational requirements for a system of computer-aided diagramming; describe a prototype implementation called CBD (Constraint Based Diagrammer) and illustrate one example of its use; and speculate on the implications and potential applications of these ideas in computer-aided design education.
series CAAD Futures
last changed 1999/04/03 17:58

_id ed07
authors Love, James
year 1990
title A Case Study in Knowledge-Based System Development : Envelope Design for Reduction of Traffic Noise Transmission
source February, 1990. 19 p. : some ill. and table. includes a bibliography
summary Researchers have demonstrated the value of replication of research and explicit testing of concepts in artificial intelligence (Ritchie and Hanna 1989). In this study, a rule- based system was implemented as an exercise in the application of the theory and practice of knowledge-based systems development to architectural design analysis. The test domain was the selection of wall and window assemblies to provide adequate noise reduction given a set of traffic and building site conditions. This domain was chosen for two reasons: (1) considerable detailed heuristic information was available; and (2) it avoided large solutions spaces, 'errorful' and time-dependent data, and unreliable knowledge. Development of the system in conjunction with an extensive literature review revealed that publications on construction and performance of rule-based systems provided insufficient detail on key aspects of system architecture. Topics suffering from neglect or insufficiently rigorous treatment included algorithms used in automated inference, methods for selection of inference procedures, the integration of numerical and symbolic processing, the formulation of explanation mechanisms to deal with integrated numerical and symbolic processing, testing methods, and software standardization. Improving the quality and scope of knowledge in these areas is essential if expert systems are to be applied effectively in architectural design
keywords CAD, expert systems, acoustics, applications, knowledge base, design, architecture, AI, analysis
series CADline
last changed 1999/02/12 15:09

_id e91f
authors Mitchell, W.J., Liggett, R.S. and Tan, M.
year 1990
title Top-Down Knowledge-Based Design
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 137-148
summary Traditional computer drafting systems and three- dimensional geometric modeling systems work in bottom-up fashion. They provide a range of graphic primitives, such as vectors, arcs, and splines, together with operators for inserting, deleting, combining, and transforming instances of these. Thus they are conceptually very similar to word processors, with the difference that they operate on two- dimensional or three-dimensional patterns of graphic primitives rather than one-dimensional strings of characters. This sort of system is effective for input and editing of drawings or models that represent existing designs, but provides little more help than a pencil when you want to construct from scratch a drawing of some complex object such as a human figure, an automobile, or a classical column: you must depend on your own knowledge of what the pieces are and how to shape them and put them together. If you already know how to draw something then a computer drafting system will help you to do so efficiently, but if you do not know how to begin, or how to develop and refine the drawing, then the efficiency that you gain is of little practical consequence. And accelerated performance, flashier color graphics, or futuristic three-dimensional modes of interaction will not help with this problem at all. By contrast, experienced expert graphic artists and designers usually work in top-down fashion-beginning with a very schematic sketch of the whole object, then refining this, in step-by-step fashion, till the requisite level of precision and completeness is reached. For example, a figure drawing might begin as a "stick figure" schema showing lengths and angles of limbs, then be developed to show the general blocking of masses, and finally be resolved down to the finest details of contour and surface. Similarly, an architectural drawing might begin as a parti showing just a skeleton of construction lines, then be developed into a single-line floor plan, then a plan showing accurate wall thicknesses and openings, and finally a fully developed and detailed drawing.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 2a8b
authors Purcell, Patrick and Applebaum Dan
year 1990
title Light Table: An Interface To Visual Information Systems
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 229-238
summary A primary aim of the Light Table project was to see if a combination of the optical laser disc, local area networks, and interactive videographic workstation technology could bring a major visual collection, (such as the Rotch Visual Collections of the Massachusetts Institute of Technology), to a campuswide population of undergraduate users. VIS (Visual Information System) is the name being given to the new genre of information technology. Much research and development effort is currently being applied to areas where the image has a special significance, for example in architecture and planning, in graphic and fine arts, in biology, in medicine, and in photography. One particular advance in the technology of VIS has been the facility to access visual information across a distributed computer system via LAN (Local Area Networks) and video delivery systems, (such as campus TV cable). This advance allows users to retrieve images from both local and remote sources, dispatching the image search through the LAN, and receiving the images back at their workstation via dedicated channels on the campus TV cable. Light Table is the title of a system that acts as a computer-based interactive videographic interface to a variety of visual information systems described in the body of this paper. It takes its name from the traditional, back- lit, translucent light table that lecturers use to assemble and view collections of slides for talks and seminars. The component of Light Table which is being reported in greatest detail here, a software outcome called Galatea, is a versatile and robust system capable of controlling video devices in a networked environment.
series CAAD Futures
last changed 1999/04/03 17:58

_id 235d
authors Catalano, Fernando
year 1990
title The Computerized Design Firm
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 317-332
summary This paper is not just about the future of computerized design practice. It is about what to do today in contemplation of tomorrow-the issues of computercentered practice and the courses of action open to us can be discerned by the careful observer. The realities of computerized design practice are different from the issues on which design education still fixes its attention. To educators, the present paper recommends further clinical research on computerized design firms and suggests that case studies on the matter be developed and utilized as teaching material. Research conducted by the author of this paper indicates that a new form of design firm is emerging-the computerized design firm-totally supported and augmented by the new information technology. The present paper proceeds by introducing an abridged case study of an actual totally electronic, computerized design practice. Then, the paper concentrates on modelling the computerized design firm as an intelligent system, indicating non-trivial changes in its structure and strategy brought about by the introduction of the new information technology into its operations - among other considerations, different strategies and diverse conceptions of management and workgroup roles are highlighted. In particular, this paper points out that these structural and strategic changes reflect back on the technology of information with pressures to redirect present emphasis on the individual designer, working alone in an isolated workstation, to a more realistic conception of the designer as a member of an electronic workgroup. Finally, the paper underlines that this non-trivial conception demands that new hardware and software be developed to meet the needs of the electronic workgroup - which raises issues of human-machine interface. Further, it raises the key issues of how to represent and expose knowledge to users in intelligent information - sharing systems, designed to include not only good user interfaces for supporting problem-solving activities of individuals, but also good organizational interfaces for supporting the problem-solving activities of groups. The paper closes by charting promising directions for further research and with a few remarks about the computerized design firm's (near) future.
series CAAD Futures
last changed 1999/04/03 17:58

_id c3ec
authors Coyne, Richard D. and Radford, Antony D.
year 1989
title Knowledge-based Design Systems in Architecture : a Linguistic Perspective
source Knowledge Based Systems in Architecture. Helsinki: Acta Polytechnica Scandinavica, 1989. pp. 27-36
summary The separation of syntax and semantics in systems for the production of architectural designs is discussed. In producing designs we are less interested in mapping between buildings and their meaning than in mapping between an intended meaning and a design description of a kind that can be constructed, a mapping between semantic and syntactic realms. The thesis of this paper is that it is both feasible and operationally useful to separate the consideration of interpretation and syntactic generating in design. The authors first examine the possibility of operating in the syntactic realm, then the possibility of operating in the interpretative realm. Finally they examine how a design system might combine interpretative and syntactic systems
keywords reasoning, design, CAD, architecture, knowledge base, semantics
series CADline
email
last changed 2003/05/17 10:13

_id a235
authors Danahy, John W.
year 1990
title Irises in a Landscape: An Experiment in Dynamic Interaction and Teaching Design Studio
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 363-376
summary The capacity of most computer-aided design systems is inadequate to represent landscape architectural ideas and compute landscape scenes quickly. As part of our teaching agenda, we decided to write software for the Silicon Graphics Iris workstations to tackle this problem directly. This paper begins with a discussion of our concerns about the use of CAD tools in the representation of landscape architectural space. Secondly, we discuss the approach that Toronto takes to computing and teaching with particular emphasis on the use of computers to support an integrated representational work environment. Finally, a fourth-year design studio that used our software is reviewed. Static illustrations of the system are presented here, although there is a videotape that demonstrates the dynamic nature of the system.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 1a4e
authors Goel, Ashok Kumar
year 1989
title Integration of case-based reasoning and model-based reasoning for adaptive design problem solving
source Ohio State University
summary In the case-based approach to design, a novel problem is solved by adapting a design known to solve a related problem. Adapting a known design to solve a related problem by the commonly used methods of heuristic association and search, however, can be computationally expensive if the adaptation search space is not small. The adaptation space, then, needs to be decomposed into smaller and simpler spaces that can be searched more efficiently and effectively. The knowledge for decomposing the adaptation search space can be represented as a behavior-structure model that specifies how the structure of the known design results in its output behaviors. This research investigates the use of such behavior-structure models for adapting the designs of physical devices. Comprehension of how the output behaviors of a design arise from its structure is represented as a behavioral component-substance model for the design. The model explicitly specifies (i) the expected output behaviors of the design including its functions, (ii) the elementary structural and behavioral interactions between components and substances constituting the structure of the design, and (iii) the internal causal behaviors of the design that compose the elementary interactions into its output behaviors. The causal behaviors of the design, in this model, are indexed by the expected output behaviors for which they are responsible. The model aids case-based design in several ways. First, it identifies conceptual primitives for specifying the functions of designs, which are used to index the known designs stored in a case-based memory. Second, it identifies elementary types of behavior transformations and elementary types of structure modifications. Third, it provides knowledge for decomposition of the adaptation search space into smaller spaces so that the search for the needed structure modifications is localized. Fourth, it leads to a novel method for simulating the behavioral effects of structure modifications. The output and causal behaviors of the modified design, in this method, are derived by revising the output and causal behaviors of the known design. This integrative approach unifies case-based methods, associative methods, heuristic search methods, decomposition methods, and model-based methods into one architecture for adaptive design problem solving. Core portions of this approach have been implemented in an experimental design system called KRITIK.  
keywords Case Based Reasoning; Model Based Reasoning; Adaptive Design; Problem Solving
series thesis:PhD
last changed 2003/02/12 22:37

_id 8bf3
authors McCullough, M., Mitchell, W.J. and Purcell, P. (Eds.)
year 1990
title The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [Conference Proceedings]
source International Conference on Computer-Aided Architectural Design 1989/ ISBN 0-262-13254-0] (Massachusetts / USA), 1989, 505 p.
summary Design is the computation of shape information that is needed to guide fabrication or construction of artifacts. But it is not so straightforward as, say, the computation of numerical information required to balance a checkbook. This is partly because algebras of shapes are not as well understood and precisely formalized as algebras of numbers, partly because the rules for carrying out shape computations tend to be fluid and ill defined and partly because the predicates that must be satisfied to achieve successful termination are often complex and difficult to specify. For centuries architects have carried out shape computations by hand, using informal procedures and the simplest of tools. Over the last two decades though, they have made increasing use of more formal procedures executed by computers. It is still too early to be sure of the gains and losses that follow from this development, but there is no doubt that it raises some challenging questions of architectural theory and some perplexing issues for those concerned with the future of architectural education. This book frames those issues and provides a diversity of perspectives on them. Its contents were initially presented at the CAAD Futures 89 Conference-an international gathering of researchers and teachers in the field of computer-aided architectural design which was jointly sponsored by the Harvard Graduate School of Design and the MIT Department of Architecture and held in Cambridge, Massachusetts, in July 1989. There are four major sections: Theoretical Foundations, Knowledge-Based Design Tools, Information Delivery Systems, and Case Studies: Electronic Media in the Design Studio. In a representative collection of current views, over thirty extensively illustrated papers discuss the experiences of universities in the USA, Europe, Japan, Israel, Canada, and Australia, articulate present theoretical and practical concerns, provide criticism of media and methods, and suggest directions for the future. Architectural educators and architects concerned with the effect of computer technology on the design process will find here an indispensable reference and a rich source of ideas. This book was itself prepared in an electronic design studio. Composition and typography, most image collection and placement, and such editing as was practical within this publishing format, were all performed digitally using Macintosh computers at the Harvard Graduate School of Design during a period of a few weeks in 1989.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id e6f5
authors McLaughlin, S. and Gero, John S.
year 1989
title Requirements of a Reasoning System that Supports Creative and Innovative Design Activity
source Knowledge Based Systems. 1989. vol.2: pp. 62-71 : ill. includes bibliography
summary Innovative and creative design occurs when fragments of previous design episodes are retrieved and incorporated into the present design context. This paper presents an implementable approach to innovative and creative design based on notions of prototypes and instances within a dynamic memory model of episodic memory. Innovative and creative design are defined in terms of operators. The requirements of a reasoning system to support these classes of design activity are outlined. Examples of the processes are presented
keywords design, reasoning, creativity, prototypes, architecture
series CADline
email
last changed 2003/06/02 10:24

_id effd
authors Morozumi, M., Nakamura, H. and Kijima, Y.
year 1990
title A Primitive-Instancing Interactive 3-D Modeling System for Spatial Design Studies
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 457-468
summary The authors have developed a basic, interactive, primitive-instancing 3-D modeling system (CAADF), which is based on a high-speed 3-D color graphic workstation, and have tested its potential ability to support spatial design studies in an architectural design studio. After- a review of work performed by a student with the system, this paper concludes that this system provides an attractive environment for spatial design studies which conventional CAD systems have not achieved. The interactive process of 3-D modeling in perspective or isometric view images and the dynamic viewing utility are the most successful features of the system. In contrast to those advantages, the resolution of color graphic display is a limitation of the system. The authors conclude that if sufficiently many appropriate 3-D geometric primitives are supported by a CAD system, a primitive instancing method can significantly reduce the work entailed in object modeling.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 29b6
authors Oxman, Rivka
year 1990
title Architectural Knowledge Structures as "Design Shells": A Knowledge-Based View of Design and CAAD Education
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 187-199
summary The concept of a knowledge based design shell is proposed as a basis for teaching design. The significance of the concept of design shell is discussed with respect to formalization, implementation, application and operation. GPRS-a generative prototype refinement design shell-is proposed, defined and elaborated. A plan type is introduced as one significant kind of structure of knowledge in architectural design is introduced. A method for representing syntactic and the semantic content to be used in design refinement is proposed. The method exploits the characteristics of both rules and frames, and integrates them in a prototype-based design system. This is demonstrated in a system called PRODS. Finally, the significance of such an approach in teaching is discussed.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id e54f
authors Rosenman, Michael A., Balachandran, M.B. and John S. Gero
year 1989
title Prototype Based Expert Systems
source University of Sydney, 1989. pp. 179-199
summary Expert systems made use of rules systems to represent causal knowledge. They were criticized for the shallowness of their knowledge. Hybrid systems were built which combined the capabilities of frames (or semantic nets) to add some deeper conceptual knowledge. This paper proposes that a prototype- based expert system using prototype schemas to represent generalized experiential knowledge can better provide the deeper knowledge necessary. By providing such a central framework it is argued that this allows for the integration of syntactical systems, such as CAD systems, with interpretative knowledge bases or other procedures
keywords knowledge base, expert systems, prototypes
series CADline
email
last changed 2003/06/02 13:58

_id avocaad_2001_20
id avocaad_2001_20
authors Shen-Kai Tang
year 2001
title Toward a procedure of computer simulation in the restoration of historical architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the field of architectural design, “visualization¨ generally refers to some media, communicating and representing the idea of designers, such as ordinary drafts, maps, perspectives, photos and physical models, etc. (Rahman, 1992; Susan, 2000). The main reason why we adopt visualization is that it enables us to understand clearly and to control complicated procedures (Gombrich, 1990). Secondly, the way we get design knowledge is more from the published visualized images and less from personal experiences (Evans, 1989). Thus the importance of the representation of visualization is manifested.Due to the developments of computer technology in recent years, various computer aided design system are invented and used in a great amount, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and collaboration, etc. (Lawson, 1995; Liu, 1996). The conventional media are greatly replaced by computer media, and the visualization is further brought into the computerized stage. The procedure of visual impact analysis and assessment (VIAA), addressed by Rahman (1992), is renewed and amended for the intervention of computer (Liu, 2000). Based on the procedures above, a great amount of applied researches are proceeded. Therefore it is evident that the computer visualization is helpful to the discussion and evaluation during the design process (Hall, 1988, 1990, 1992, 1995, 1996, 1997, 1998; Liu, 1997; Sasada, 1986, 1988, 1990, 1993, 1997, 1998). In addition to the process of architectural design, the computer visualization is also applied to the subject of construction, which is repeatedly amended and corrected by the images of computer simulation (Liu, 2000). Potier (2000) probes into the contextual research and restoration of historical architecture by the technology of computer simulation before the practical restoration is constructed. In this way he established a communicative mode among archeologists, architects via computer media.In the research of restoration and preservation of historical architecture in Taiwan, many scholars have been devoted into the studies of historical contextual criticism (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000). Clues that accompany the historical contextual criticism (such as oral information, writings, photographs, pictures, etc.) help to explore the construction and the procedure of restoration (Hung, 1995), and serve as an aid to the studies of the usage and durability of the materials in the restoration of historical architecture (Dasser, 1990; Wang, 1998). Many clues are lost, because historical architecture is often age-old (Hung, 1995). Under the circumstance, restoration of historical architecture can only be proceeded by restricted pictures, written data and oral information (Shi, 1989). Therefore, computer simulation is employed by scholars to simulate the condition of historical architecture with restricted information after restoration (Potier, 2000). Yet this is only the early stage of computer-aid restoration. The focus of the paper aims at exploring that whether visual simulation of computer can help to investigate the practice of restoration and the estimation and evaluation after restoration.By exploring the restoration of historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example), this study aims to establish a complete work on computer visualization, including the concept of restoration, the practice of restoration, and the estimation and evaluation of restoration.This research is to simulate the process of restoration by computer simulation based on visualized media (restricted pictures, restricted written data and restricted oral information) and the specialized experience of historical architects (Potier, 2000). During the process of practicing, communicates with craftsmen repeatedly with some simulated alternatives, and makes the result as the foundation of evaluating and adjusting the simulating process and outcome. In this way we address a suitable and complete process of computer visualization for historical architecture.The significance of this paper is that we are able to control every detail more exactly, and then prevent possible problems during the process of restoration of historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 4825
authors Van Bakel, A.P.M. and Daru, R.
year 1993
title CAADidactics - An Instrument for Tuning CAAD Systems to Student Styles
source [eCAADe Conference Proceedings] Eindhoven (The Netherlands) 11-13 November 1993
doi https://doi.org/10.52842/conf.ecaade.1993.x.j4l
summary This paper discusses the features of an instrument for tuning CAAD systems to student styles implemented in the authoring shell Authorware Professional (1989). This application enables students and teachers to evaluate the design progress. It also makes it possible to assess their preferences with respect to their working styles (Subject style) and style preferences in terms of the product style (Object style) in different stages of the design curriculum. The availability of this information enables teachers to adapt their didactical approach to their students. The progress they make during design education can be evaluated by looking at the process documentation as well as by looking at the product documentation generated by the application. This makes the students conscious of their own preferences and affinities. It is up to the student and the teacher whether they want to enhance or compensate those preoccupations. The documented information of previous design sessions can also be used as a guide system for further development and adaptations in styles of design and designing. In the design studio this style knowledge can also be used to establish adequate and workable design teams. Some of the features discussed in this paper are already implemented in a small prototype application. The prototype application will be presented and discussed. Other features will be implemented in the near future.

series eCAADe
last changed 2022/06/07 07:50

_id 3964
authors Yoshikawa, H. and Gossard, D. (eds.)
year 1989
title Intelligent CAD
source North-Holland, Amsterdam, pp. vii-ix
summary In this research, design process knowledge is represented at two different levels, action level and object level, corresponding to the meta-knowledge to model design behaviors and the special knowledge to model the processes in designing particular objects. A design knowledge base and database modeling language - Integrated Data Description Language (IDDL) was developed at the University of Tokyo to model both design processes and design objects. This language combines logic programming functions and object oriented programming functions into an integrated environment. Using this language, an intelligent CAD system - Intelligent Integrated Interactive CAD (IIICAD) was developed at the University of Tokyo. Contradictions of knowledge base and database are resolved using circumscription and Assumption-based Truth Maintenance System (ATMS) in this system. Many advanced knowledge modeling techniques, including Qualitative Process Theory (QPT), modal logic, default reasoning, etc., have also been introduced in the IIICAD system. The knowledge base and database representation scheme of IDDL serves as the basis in the feature-based integrated concurrent design system. In the integrated concurrent design system, a new feature modeling language was introduced. In addition to the qualitative and quantitative data/relations that were introduced in IDDL, the composing element features, data dependency relations, constraints, 2D and 3D feature geometric descriptions have also been introduced for representing product life-cycle models and their relations. Optimization functions were added to the integrated concurrent design system to identify the optimal design considering relevant life-cycle aspects.
series other
last changed 2003/04/23 15:14

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id a718
authors Cuomo, Donna L. and Sharit, Joseph
year 1989
title A Study of Human Performance in Computer-Aided Architectural Design
source International Journal of Human-Computer Interaction. 1989. vol. 1: pp. 69-107 : ill. includes bibliography
summary This paper describes the development and application of a cognitively-based performance methodology for assessing human performance on computer-aided architectural design (CAAD) tasks. Two CAAD tasks were employed that were hypothesized to be different in terms of the underlying cognitive processes required for these tasks to be performed. Methods of manipulating task complexity within each of these tasks were then developed. Six architectural graduate students were trained on a commercially available CAAD system. Each student performed the two experimental design tasks at one of three levels of complexity. The data collected included protocols, video recordings of the computer screen, and an interactive script (time-stamped record of every command input and the computers textual response). Performance measures and methods of analysis were developed which reflected the cognitive processes used by the human during design (including problem- solving techniques, planning times, heuristics employed, etc.) and the role of the computer as a design aid. The analysis techniques used included graphical techniques, Markov process analysis, protocol analysis, and error classification and analysis. The results of the study indicated that some measures more directly reflected human design activity while others more directly reflected the efficiency of interaction between the computer and the human. The discussion of the results focuses primarily on the usefulness of the various measures comprising the performance methodology, the usefulness of the tasks employed including methods for manipulating task complexity, and the effectiveness of this system as well as CAAD systems in general for aiding human design processes
keywords protocol analysis, problem solving, planning, CAD, design process, performance, architecture
series CADline
last changed 2003/06/02 13:58

_id c0a3
authors Harfmann, Anton C. and Chen, Stuart S.
year 1989
title Component Based Computer Aided Learning for Students of Architecture and Civil Engineering
source New Ideas and Directions for the 1990’s [ACADIA Conference Proceedings] Gainsville (Florida - USA) 27-29 October 1989, pp. 193-208
doi https://doi.org/10.52842/conf.acadia.1989.193
summary The paper describes the methodology and the current efforts to develop an interdisciplinary computer aided learning system for architects and civil engineers. The system being developed incorporates a component oriented relational database with an existing interactive 3-dimensional modeling system developed in the School of Architecture and Planning at SUNY Buffalo. The software will be used in existing courses in architecture and civil engineering as a teaching aid to help students understand the complex 3-dimensional interrelationships of structural components. Initial implementation has focused on the modeling of the components and assemblies for a lowrise steel frame structure. Current implementation efforts are focusing on the capability to view connections in various ways including the ability to "explode" a connection to better understand the sequence of construction and load paths. Appropriate codes, limit states of failure and specific data will be linked to each specific component in an expert system shell so that the system can offer feedback about a student generated connection and perhaps offer other possible connections a library of standard connections. Future expansion of the system will include adding other "systems" of a building, such as mechanical, electrical, plumbing, enclosure etc., to help students visualize the integration of the various parts.
series ACADIA
email
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 9HOMELOGIN (you are user _anon_726982 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002