CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 201

_id e8fe
authors Nagakura, Takehiko
year 1990
title Shape Recognition and Transformation: A Script-Based Approach
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 149-170
summary Design evolves. Architects deploy considerable knowledge to develop their designs from one stage to the next. Drawings play a major role in describing the 11 state" of design at each stage; however, they do not explicitly reveal the knowledge used to achieve the design, for the knowledge is concealed in the "process" between these stages rather than in the drawings themselves. This process involves parametric and schematic transformations as well as perception of unanticipated possibilities emerging from the drawings in progress. To make an impact on design, CAD must address these issues of design knowledge, but so far its focus has been instead on drawings as relatively static collections of graphic primitives. This paper introduces the concepts of shapes and shape transformation as fundamental aspects of design knowledge. It is implemented on a computer program in the form of a prototype shape-scripting language. In summary, this language works as a shell to encode a set of shape categories and their transformations, and it enables progressive shape recognition and shape transformation in line drawings. An appropriate set of these encoded transformations may represent a body of syntactic knowledge about an architectural style. This opens up the exciting possibility of a computational implementation of a shape grammar.
series CAAD Futures
last changed 1999/04/03 17:58

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id 4cf3
authors Kalay, Yehuda E.
year 1989
title Modeling Objects and Environments
source xix, 402 p. : ill. New York: Wiley, 1989. includes a short bibliography and index. Part of the Principles of Computer Aided Design series. --- See also review by Patricia G
summary McIntosh, in ACADIA Newsletter Vol. 9 No. 3 pp 20-23, June 1990. This book introduces the concept of modeling objects in the computer's memory so it can be used to aide the process of their design. Modeling is defined as an hierarchical abstraction of data and operators to manipulate it, subject to semantic integrity constraints that guarantee the realizability of the designed artifact in the real world. Starting with general concepts of modeling, the book moves on to discuss the modeling of shapes (form) in two and in three dimensions. The discussion covers both topology and geometry. Next the book introduces the concept of shape transformations (translation, scaling, rotation, etc.), both in absolute and in relative terms. The book then introduces the concept of assembly modeling, and adds non-graphical attributes to the representation. It concludes with a discussion on user interface and parametrization. The book includes many examples written in Pascal that complement the theory, and can be used as a basis for building a geometric modeling engine. It also includes exercises, so it can be used as a text book for a two-semester advance course in geometric modeling
keywords CAD, data structures, solid modeling, abstraction, polygons, solids, boolean operations, transforms, computer graphics, user interface, parametrization, B-rep, polyhedra, objects, PASCAL
series CADline
email
last changed 2003/06/02 13:58

_id 8bf3
authors McCullough, M., Mitchell, W.J. and Purcell, P. (Eds.)
year 1990
title The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [Conference Proceedings]
source International Conference on Computer-Aided Architectural Design 1989/ ISBN 0-262-13254-0] (Massachusetts / USA), 1989, 505 p.
summary Design is the computation of shape information that is needed to guide fabrication or construction of artifacts. But it is not so straightforward as, say, the computation of numerical information required to balance a checkbook. This is partly because algebras of shapes are not as well understood and precisely formalized as algebras of numbers, partly because the rules for carrying out shape computations tend to be fluid and ill defined and partly because the predicates that must be satisfied to achieve successful termination are often complex and difficult to specify. For centuries architects have carried out shape computations by hand, using informal procedures and the simplest of tools. Over the last two decades though, they have made increasing use of more formal procedures executed by computers. It is still too early to be sure of the gains and losses that follow from this development, but there is no doubt that it raises some challenging questions of architectural theory and some perplexing issues for those concerned with the future of architectural education. This book frames those issues and provides a diversity of perspectives on them. Its contents were initially presented at the CAAD Futures 89 Conference-an international gathering of researchers and teachers in the field of computer-aided architectural design which was jointly sponsored by the Harvard Graduate School of Design and the MIT Department of Architecture and held in Cambridge, Massachusetts, in July 1989. There are four major sections: Theoretical Foundations, Knowledge-Based Design Tools, Information Delivery Systems, and Case Studies: Electronic Media in the Design Studio. In a representative collection of current views, over thirty extensively illustrated papers discuss the experiences of universities in the USA, Europe, Japan, Israel, Canada, and Australia, articulate present theoretical and practical concerns, provide criticism of media and methods, and suggest directions for the future. Architectural educators and architects concerned with the effect of computer technology on the design process will find here an indispensable reference and a rich source of ideas. This book was itself prepared in an electronic design studio. Composition and typography, most image collection and placement, and such editing as was practical within this publishing format, were all performed digitally using Macintosh computers at the Harvard Graduate School of Design during a period of a few weeks in 1989.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id cdd3
authors Mitchell, William J.
year 1990
title A New Agenda For Computer-Aided Design
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 1-16
summary Design is the computation of shape information that is needed to guide fabrication or construction of an artifact. This information normally specifies artifact topology (connections of vertices, edges, surfaces, and closed volumes), dimensions, angles, and tolerances on dimensions and angles. There may also be associations of symbols with subshapes to specify material and other such properties. The process of design takes different forms in different contexts, but the most usual computational operations are transformations (unary operations) and combinations (binary operations) of shapes in a two-dimensional drawing or a three-dimensional geometric model. An initial vocabulary of shapes, together with a repertoire of shape transformation and combination operators., establishes the shape algebra within which the computation takes place. The computation terminates successfully when it can be shown that certain predicates are satisfied by a shape produced by recursively applying the transformation and combination operators to the initial vocabulary. These predicates are usually stated in symbolic (verbal or numerical) form. Thus determination of whether a predicate is satisfied usually involves producing a numerical or verbal interpretation of a drawing, then deriving inferences from this interpretation by applying rules or formulae.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 8a0c
authors Tan, Milton
year 1990
title Saying What It Is by What It Is Like - Describing Shapes Using Line Relationships
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 201-213
summary Shapes - taken as well-defined collections of lines - are fundamental building blocks in architectural drawings. From doodles to shop drawings, shapes are used to denote ideas and represent elements of design, many of which ultimately translate into actual objects. But because designs evolve, the shapes representing a design are seldom static - instead, they are perpetually open to transformations. And since transformations involve relationships, conventional methods of describing shapes as sets of discrete endpoints may not provide an appropriate foundation for schematic design. This paper begins with a review of the perception of shapes and its significance in design. In particular, it argues that juxtapositions and inter-relationships of shapes are important seedbeds for creative development of designs. It is clear that conventional representation of shapes as sets of discrete lines does not cope with these -emergent" subshapes; the most basic of which arise out of intersecting and colinear lines. Attempts to redress this by using ‘reduction rules’ based on traditional point-and-line data structures are encumbered by computational problems of precision and shape specification. Basically, this means that some ‘close’ cases of sub-shapes may escape detection and their specifications are difficult to use in substitution operations. The paper presents the findings of a computer project - Emergence II - which explored a 'relational' description of shapes based on the concept of construction lines. It builds on the notion that architectural shapes are constructed in a graphic context and that, at a basic compositional level, the context can be set by construction lines. Accordingly, the interface enables the delineation of line segments with reference to pre-established construction lines. This results in a simple data structure where the knowledge of shapes is centralized in a lookup table of all its construction lines rather than dispersed in the specifications of line segments. Taking this approach, the prototype software shows the ease and efficiency of applying ‘reduction rules’ for intersection and colinear conditions, and for finding emergent sub-shapes by simply tracking the construction lines delimiting the ends of line segments.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 3964
authors Yoshikawa, H. and Gossard, D. (eds.)
year 1989
title Intelligent CAD
source North-Holland, Amsterdam, pp. vii-ix
summary In this research, design process knowledge is represented at two different levels, action level and object level, corresponding to the meta-knowledge to model design behaviors and the special knowledge to model the processes in designing particular objects. A design knowledge base and database modeling language - Integrated Data Description Language (IDDL) was developed at the University of Tokyo to model both design processes and design objects. This language combines logic programming functions and object oriented programming functions into an integrated environment. Using this language, an intelligent CAD system - Intelligent Integrated Interactive CAD (IIICAD) was developed at the University of Tokyo. Contradictions of knowledge base and database are resolved using circumscription and Assumption-based Truth Maintenance System (ATMS) in this system. Many advanced knowledge modeling techniques, including Qualitative Process Theory (QPT), modal logic, default reasoning, etc., have also been introduced in the IIICAD system. The knowledge base and database representation scheme of IDDL serves as the basis in the feature-based integrated concurrent design system. In the integrated concurrent design system, a new feature modeling language was introduced. In addition to the qualitative and quantitative data/relations that were introduced in IDDL, the composing element features, data dependency relations, constraints, 2D and 3D feature geometric descriptions have also been introduced for representing product life-cycle models and their relations. Optimization functions were added to the integrated concurrent design system to identify the optimal design considering relevant life-cycle aspects.
series other
last changed 2003/04/23 15:14

_id a672
authors Flemming, Ulrich
year 1990
title Syntactic Structures in Architecture: Teaching Composition with Computer Assistance
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 31-48
summary The present paper outlines a plan for the teaching of architectural composition with computer assistance.The approach is to introduce students to a series of architectural languages characterized by a vocabulary of elements and a grammar whose rules indicate how these elements can be placed in space. Exercises with each language include the analysis of precedents; the generation of forms using a given rule set; and follow-up studies with an expanded rule set. The paper introduces languages and exercises through illustrative examples. This architectural content can be taught in the traditional way. The use of computers is motivated by expectations which are stated, and some basic requirements for the needed software are listed. Work to develop this software has started.
series CAAD Futures
email
last changed 2003/02/26 17:24

_id 8cff
authors Fridqvist, Sverker
year 1989
title Computers as a Creative Tool in Architecture
doi https://doi.org/10.52842/conf.ecaade.1989.x.k1l
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 9.6.1-9.6.4
summary The School of Architecture at Lund Institute of Technology was augmented by the establishment of the Computer Studio in 1987. As a result the school now has a device for teaching and research in the architects' use of computers. We are now conducting several research projects as well as courses and an education project. The third and fourth years of the education at the school of architecture are arranged as education projects instead of traditional lecturing. The students choose from projects that are organised by different departments at the School of Architecture. The issue is that the students will ask for instruction when felt needed, and that learning will therefore be more efficient. The Computer Studio has conducted such a project during the first half of 1989. We have tried to encourage the students to use our different computers and programs in new and creative ways. One of the issues of the computer project is to teach the students how computers are used at the architects offices today as well as expected future developments. The students shall be acquainted well enough with present and future possibilities to make good choices when deciding upon buying computers for architectural use. Another issue is to develop new ways of making and presenting architecture by using computers. As a group the teachers at the school of architecture have a very restrictive attitude towards the use of computers. We hope that our project will open their minds for the possibilities of computers, and to engage them in the development of new ways to use computers creatively in architecture. An interesting question is if the use of computers will yield different outcomes of he students' work than traditional methods. An object for research is whether the added possibilities of considering different aspects of he design by using a computer will make for higher quality of the results.

series eCAADe
email
more http://www.caad.lth.se/
last changed 2022/06/07 07:50

_id 840b
authors Knight, Weissman T.
year 1989
title Design and Computation
source August, 1989
summary Report No. 3: A color grammar that describes the composition and landscaping of Mughul gardens is discussed
keywords shape grammars
series CADline
last changed 2003/06/02 13:58

_id 2bcc
authors Mark, Earl
year 1989
title A Contrast in Pedagogy: The M.l.T. Versus Harvard Approach to Computer Aided Design
doi https://doi.org/10.52842/conf.ecaade.1989.x.d8b
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 5.1.1-5.1.9
summary This is a period of relative detente among academics in the field of computers and architecture, advocating the use of computers in a design studio is today received more politely than, as in the past, when it was received like a declaration of war. Among some research groups at M.I.T. and Harvard to first engage In this field, the approaches were so dissimilar to one another that they could be considered as constituting separate schools of thought. Over time, however, a number of paths have led to a similar direction, if not agreement among principal investigators. The lack of sharply competing ideologies today may be a little less exciting: however, the enormous growth of the academic discipline seems now to allow for a fruitful exchange of ideas between positions that no longer seem mutually exclusive.

Two views are important, among others, at M.I.T. and Harvard. The classic M.I.T. view looks upon the AI Lab as a microcosm for examining how architects think. Underlying this view is the position of 'lets examine the way architects think about design and build tools which can reflect that process'. Another point of view, as expressed at Harvard, is speculative on what architects seem to do in design practice and education, rather than speculative on the nature of thinking per se. Both views seem ultimately to be concerned with representing architectural design knowledge within computers. And in the rob of computers as a design medium. This paper examines how the M.I.T. view and the Harvard view have superficially been associated with separate research directions. As these contrasting points of view incorporate many common themes. The author finds that it may be possible to take an eclectic position in teaching computer aided design.

keywords Constraints, Shape Grammars, Representational World, Emergent Form. Design Thinking, Design Habit
series eCAADe
email
more http://palladio.arch.Virginia.EDU/~arch-con/exhibit/
last changed 2022/06/07 07:50

_id e91f
authors Mitchell, W.J., Liggett, R.S. and Tan, M.
year 1990
title Top-Down Knowledge-Based Design
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 137-148
summary Traditional computer drafting systems and three- dimensional geometric modeling systems work in bottom-up fashion. They provide a range of graphic primitives, such as vectors, arcs, and splines, together with operators for inserting, deleting, combining, and transforming instances of these. Thus they are conceptually very similar to word processors, with the difference that they operate on two- dimensional or three-dimensional patterns of graphic primitives rather than one-dimensional strings of characters. This sort of system is effective for input and editing of drawings or models that represent existing designs, but provides little more help than a pencil when you want to construct from scratch a drawing of some complex object such as a human figure, an automobile, or a classical column: you must depend on your own knowledge of what the pieces are and how to shape them and put them together. If you already know how to draw something then a computer drafting system will help you to do so efficiently, but if you do not know how to begin, or how to develop and refine the drawing, then the efficiency that you gain is of little practical consequence. And accelerated performance, flashier color graphics, or futuristic three-dimensional modes of interaction will not help with this problem at all. By contrast, experienced expert graphic artists and designers usually work in top-down fashion-beginning with a very schematic sketch of the whole object, then refining this, in step-by-step fashion, till the requisite level of precision and completeness is reached. For example, a figure drawing might begin as a "stick figure" schema showing lengths and angles of limbs, then be developed to show the general blocking of masses, and finally be resolved down to the finest details of contour and surface. Similarly, an architectural drawing might begin as a parti showing just a skeleton of construction lines, then be developed into a single-line floor plan, then a plan showing accurate wall thicknesses and openings, and finally a fully developed and detailed drawing.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 0565
authors Oxman, Robert and Oxman, Rivka
year 1990
title The Computability of Architectural Knowledge
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 171-185
summary In an important contribution to the theoretical foundation of design computing, Mitchell noted "an increasingly urgent need to establish a demonstrably sound, comprehensive, rigorously formalized theoretical foundation upon which to base practical software development efforts" (Mitchell, 1986). In this paper we propose such a theoretical framework. A basic assumption of this work is that the advancement of design computing is dependent upon the emergence of a rigorous formulation of knowledge in design. We present a model of knowledge in architectural design which suggests a promising conceptual basis for dealing with knowledge in computer-aided design systems. We require models which can represent the formal knowledge and manipulative operations of the designer in all of their complexity-that is formal models rather than just geometric models. Shape Grammars (Stiny,1980) represent an example of such models, and constitute a relatively high level of design knowledge as compared to, for example, use of symmetry operations to generate simple formal configurations. Building upon an understanding of the classes of design knowledge as the conceptual basis for formal modeling systems may contribute a new realization of the potential of the medium for design. This will require a comprehensive approach to the definition of architectural and design knowledge. We consider here the implications of a well-defined body of architectural and design knowledge for design education and the potential mutual interaction-in a knowledge-rich environment-of design learning and CAAD learning. The computational factors connected with the representation of design knowledge and its integration in design systems are among the key problems of CAAD. Mitchell's model of knowledge in design incorporates formal knowledge in a comprehensive, multi-level, hierarchical structure in which types of knowledge are correlated with computational concepts. In the main focus of this paper we present a structured, multi-level model of design knowledge which we discuss with respect to current architectural theoretical considerations. Finally, we analyze the computational and educational relevance of such models.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id c9f3
authors Shaviv, Edna
year 1989
title Implementation of Solid Modeling in High Hierarchy Architectural Language (HHAL)
doi https://doi.org/10.52842/conf.ecaade.1989.x.a0j
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 8.2.1.8.2.21
summary This work illustrates the use of solid modeling for the representation and analysis of complex architectural structures and details. While the approach is a general one it is demonstrated and implemented on the visual representation and evaluation of Mediaeval Age basilican structures. Basilican structures have the advantage that rules of composition for defining their form are well formulated. These rules are imposed on the solid modeler as high hierarchy architectural language (HHALL). It is within this language that the basilican structures are described and analyzed.
keywords High Hierarchy Architectural Language (HHAL), Solid Modeling, Shape Grammar, Formal Language, Design Systems, Basilican Structures
series eCAADe
email
last changed 2022/06/07 07:50

_id a8b7
authors De Grassi, Mario and Di Manzo, Mauro
year 1989
title The Design of Buildings as Changes of Known Solutions: A Model for “Reasoner B” ; Reasoner B" in the Castorp System
doi https://doi.org/10.52842/conf.ecaade.1989.x.u3h
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 7.3.1-7.3.9
summary The paper presents a study aimed at the modelization of a design operation of perturbation of an architectural framework in order to comply with a series of given design specifications. A formalized representation of the building object is assumed, Artificial Intelligence techniques are adopted to work on it. It is assumed that the computer carries out deformations starting from one of these structures in order to attain to a solution consistent with project specifications. A description of the structures employed for the representation of the building body (matroids) is firstly proposed. A planning theme is then assumed, as an example, whose main feature is to maintain the outer perimeter of a dwelling, to change its internal distribution in such a way as to resemble as closely as possible to the original and yet meaningfully alter its typology.
series eCAADe
type normal paper
last changed 2022/06/07 07:50

_id 0105
authors Bossan, Mario and Ronchi, Alfredo M.
year 1989
title Presentazione Esperienza Didattica del Dipartimento di Ingegneria dei Sistemi Edilizi e Territoriali - Politecnico di Milano
doi https://doi.org/10.52842/conf.ecaade.1989.x.x4i
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 9.8.1-9.8.19
summary Didactic and research experience developed at the "Dipartimento di Ingegneria dei Sistemi Edilizi e Territoriali del Politecnico di Milano" in the environment of Computer Aided Architectural Design (CAAD). From the early part of the 1980's, using initially at an experimental level the resources available at the departmental centre of calculation various applications of CAD techniques in the building sector have been effected at DISET (Dipartimento di Ingegneria del Politecnico di Milano). During 1983, after a three year period of experimenting with these systems, it was decided to organise and activate a small computer aided design centre, within the department, the use of which was reserved for dissertation and research students.

series eCAADe
email
last changed 2022/06/07 07:50

_id 235d
authors Catalano, Fernando
year 1990
title The Computerized Design Firm
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 317-332
summary This paper is not just about the future of computerized design practice. It is about what to do today in contemplation of tomorrow-the issues of computercentered practice and the courses of action open to us can be discerned by the careful observer. The realities of computerized design practice are different from the issues on which design education still fixes its attention. To educators, the present paper recommends further clinical research on computerized design firms and suggests that case studies on the matter be developed and utilized as teaching material. Research conducted by the author of this paper indicates that a new form of design firm is emerging-the computerized design firm-totally supported and augmented by the new information technology. The present paper proceeds by introducing an abridged case study of an actual totally electronic, computerized design practice. Then, the paper concentrates on modelling the computerized design firm as an intelligent system, indicating non-trivial changes in its structure and strategy brought about by the introduction of the new information technology into its operations - among other considerations, different strategies and diverse conceptions of management and workgroup roles are highlighted. In particular, this paper points out that these structural and strategic changes reflect back on the technology of information with pressures to redirect present emphasis on the individual designer, working alone in an isolated workstation, to a more realistic conception of the designer as a member of an electronic workgroup. Finally, the paper underlines that this non-trivial conception demands that new hardware and software be developed to meet the needs of the electronic workgroup - which raises issues of human-machine interface. Further, it raises the key issues of how to represent and expose knowledge to users in intelligent information - sharing systems, designed to include not only good user interfaces for supporting problem-solving activities of individuals, but also good organizational interfaces for supporting the problem-solving activities of groups. The paper closes by charting promising directions for further research and with a few remarks about the computerized design firm's (near) future.
series CAAD Futures
last changed 1999/04/03 17:58

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 600f
authors Cortes, Chaves Camila
year 1989
title Design Software of the '90s
source Architectural and Engineering Systems. July, 1989. vol. 5: pp. 30
summary The design firm of the '90s will have the ability to use the right tool for the right task, permitting tailored resources to be used more effectively. This mean portable, modular and multiuser software running on machines specifically designed for a particular environment with the option to tap other sources. Designers will enter the 21st century using integrated design knowledge-based support systems with knowledge-based inferencing systems, information management systems for text and graphics, a CAD/modeling package, and a flexible user interface with speech recognition, eye tracking and manual input device. Some of these are discussed in this article
keywords practice, construction, systems, software, integration
series CADline
last changed 1999/02/12 15:07

_id 8bdf
authors Crocker, Gary A. and Reinke, William F.
year 1989
title Boundary Evaluation in a Non-Manifold Environment
source November, 1989. 30 p., [16] p. of ill. includes bibliography
summary The recent availability of Non-Manifold Topology (NMT) enables the coexistence of wireframe geometry, surfaces, and solids in a single representation with complete topological resolution. This in turn allows a new approach to boundary evaluation. This new approach merges a set of primitives into a single Boundary REPresentation (B-rep), and selects the desired Boolean results without destroying any B-rep entities. The results of the Boolean operations are displayed by drawing only selected entities. The B-rep resulting from the merge contains a complete description of the input primitives. While traditional algorithms allow incremental addition of primitives, this new approach also allows incremental deletion of primitives from the merged B-rep. Changes in Boolean operators and/or their order of evaluation can be reflected in the B-rep simply by changing the criteria of the selection process. Constructive Solid Geometry (CSG) editing operations can be mirrored in the B-rep incrementally, i.e. without performing complete reevaluation of the B-rep from its constituent primitive definitions. In addition, the domain of boundary evaluation has been extended to include Boolean operations between wireframe geometry, surfaces, and solids. This new approach has been successfully implemented and tested to boundary evaluation. Test results have shown an order of magnitude reduction in the cost associated with reflecting CSG editing operations on existing B-reps, with only minimal additional cost for initial construction. Also shown are examples of Boolean operations between solids, surfaces, and wires
keywords computational geometry, boolean operations, solid modeling, B-rep, CSG, representation, topology, curved surfaces, intersection, curves,
series CADline
last changed 2003/06/02 13:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 10HOMELOGIN (you are user _anon_914151 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002