CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 205

_id 4032
authors Barron, Christopher L.
year 1989
title 3-D Modelling
source architectural and Engineering Systems. April, 1989. [41] -56 unevenly numbered
summary From screen to structure, more and more AEs are finding design solutions in the third dimension. The author reviews current 3-D modeling systems, what are the expectations of the users and the developers goals
keywords architecture, practice, drafting, modeling, systems
series CADline
last changed 2003/06/02 13:58

_id 6a30
authors Bonn, Markus
year 1989
title Modeling Architectural Forms through Replacement Operations
doi https://doi.org/10.52842/conf.acadia.1989.103
source New Ideas and Directions for the 1990’s [ACADIA Conference Proceedings] Gainsville (Florida - USA) 27-29 October 1989, pp. 103-130
summary Replacement operations, where an element at any topological level may be replaced by another element at the same or different topological level, are defined. Their potential as design tools which may be incorporated in a CAD system is investigated and demonstrated through the experimental implementation of two such operations in MARCOS, a Modeling Architectural Compositions System. MARCOS has been written in C. It is highly interactive and runs on an Apple Macintosh IIx. The two operations which have been implemented are the face -> volume and volume -> volume replacements. They were chosen for their potential as generators of architectural forms. Examples of architectural compositions produced through the use of replacement operations are also illustrated.
series ACADIA
email
last changed 2022/06/07 07:54

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 268e
authors Christiansson, Per
year 1990
title Integration of Knowledge Based Systems and Media
source BYGGA MED IT. Informatiosteknologi i byggprocess. November, 1990. 4 p. : ill. includes bibliography The borders between different representations and their implementation in the computer systems are not sharp. It is possible now to create models which bring about a clearer and more obvious connection between the application and the computer stored models. knowledge base / systems / media / modeling / representation / integration. 32. Christiansson, Per. 'The KBS-MEDIA Project.' MacWorld Expo Asia '89. 1989. 2 p. : ill.
summary A short description of the KBS-MEDIA, knowledge based systems - media project advanced software
keywords knowledge base, systems, media
series CADline
last changed 1999/02/12 15:07

_id 2b8f
authors Colajanni, Benedetto and De Grassi, Mario
year 1989
title Inferential Mechanisms to be Employed in CAAD: The Castorp System
doi https://doi.org/10.52842/conf.ecaade.1989.x.c7m
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 7.1.1-7.1.9
summary The paper presents an approach to the problems of architectural design aided by Artificial Intelligence techniques that can solve the difficulties related to combinatorial explosion, often encountered in the past. Three expert systems, dubbed "reasoners", capable of some elementary design work and a hypothesis for their interaction have been developed. Reasoner A has an "analogical" view of space. A notion of conflict, managed by means of fuzzy logic, has been introduced. It corresponds, in an intuitive and straightforward fashion, to the common notion of conflict or contradiction in real space as a consequence of improper overlapping of actual physical objects or of their functional pertinence. Reasoner B works on formalized models of building objects. It designs new patterns from given patterns taken as defaults. Reasoner C picks up from an archive of patterns the one which best suits a list of given goals. Design is the result of interaction between the three reasoners. Finally, the proposed schema raises questions about formal structures ("images") and about the nature of culturally-linked options ("memory") on which some preliminary considerations are made. Prototypes of the reasoners are operating at the Instituto di Edilizia of the University of Ancona, Italy.
series eCAADe
last changed 2022/06/07 07:50

_id 600f
authors Cortes, Chaves Camila
year 1989
title Design Software of the '90s
source Architectural and Engineering Systems. July, 1989. vol. 5: pp. 30
summary The design firm of the '90s will have the ability to use the right tool for the right task, permitting tailored resources to be used more effectively. This mean portable, modular and multiuser software running on machines specifically designed for a particular environment with the option to tap other sources. Designers will enter the 21st century using integrated design knowledge-based support systems with knowledge-based inferencing systems, information management systems for text and graphics, a CAD/modeling package, and a flexible user interface with speech recognition, eye tracking and manual input device. Some of these are discussed in this article
keywords practice, construction, systems, software, integration
series CADline
last changed 1999/02/12 15:07

_id ee16
authors Coyne, R.D., Newton, S. and Sudweeks, F.
year 1989
title Modeling the Emergence of Schemas in Design Reasoning
source Design Computing Unit, Department of Architectural and Design Science, University of Sydney, 1989. pp. 173-205. CADLINE has abstract only
summary The authors explore how neural networks can be used to model important aspects of design reasoning: the way design involves memory; and a 'holistic' kind of reasoning by which designs appear to emerge from that memory. A simple neural network is constructed to demonstrate how information about schemas (in this case, room types) is stored implicitly after exposure to a number of examples of specific rooms. We then demonstrate how new room types emerge from this information. The paper includes a discussion of design, a discussion of schemas from a psycholinguistic perspective, a technical explanation of neural networks and the demonstration of an implemented examples
keywords neural networks, modeling, design, reasoning, learning, knowledge acquisition, experimentation
series CADline
email
last changed 2003/05/17 10:13

_id 8bdf
authors Crocker, Gary A. and Reinke, William F.
year 1989
title Boundary Evaluation in a Non-Manifold Environment
source November, 1989. 30 p., [16] p. of ill. includes bibliography
summary The recent availability of Non-Manifold Topology (NMT) enables the coexistence of wireframe geometry, surfaces, and solids in a single representation with complete topological resolution. This in turn allows a new approach to boundary evaluation. This new approach merges a set of primitives into a single Boundary REPresentation (B-rep), and selects the desired Boolean results without destroying any B-rep entities. The results of the Boolean operations are displayed by drawing only selected entities. The B-rep resulting from the merge contains a complete description of the input primitives. While traditional algorithms allow incremental addition of primitives, this new approach also allows incremental deletion of primitives from the merged B-rep. Changes in Boolean operators and/or their order of evaluation can be reflected in the B-rep simply by changing the criteria of the selection process. Constructive Solid Geometry (CSG) editing operations can be mirrored in the B-rep incrementally, i.e. without performing complete reevaluation of the B-rep from its constituent primitive definitions. In addition, the domain of boundary evaluation has been extended to include Boolean operations between wireframe geometry, surfaces, and solids. This new approach has been successfully implemented and tested to boundary evaluation. Test results have shown an order of magnitude reduction in the cost associated with reflecting CSG editing operations on existing B-reps, with only minimal additional cost for initial construction. Also shown are examples of Boolean operations between solids, surfaces, and wires
keywords computational geometry, boolean operations, solid modeling, B-rep, CSG, representation, topology, curved surfaces, intersection, curves,
series CADline
last changed 2003/06/02 13:58

_id a235
authors Danahy, John W.
year 1990
title Irises in a Landscape: An Experiment in Dynamic Interaction and Teaching Design Studio
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 363-376
summary The capacity of most computer-aided design systems is inadequate to represent landscape architectural ideas and compute landscape scenes quickly. As part of our teaching agenda, we decided to write software for the Silicon Graphics Iris workstations to tackle this problem directly. This paper begins with a discussion of our concerns about the use of CAD tools in the representation of landscape architectural space. Secondly, we discuss the approach that Toronto takes to computing and teaching with particular emphasis on the use of computers to support an integrated representational work environment. Finally, a fourth-year design studio that used our software is reviewed. Static illustrations of the system are presented here, although there is a videotape that demonstrates the dynamic nature of the system.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 298e
authors Dave, Bharat and Woodbury, Robert
year 1990
title Computer Modeling: A First Course in Design Computing
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 61-76
summary Computation in design has long been a focus in our department. In recent years our faculty has paid particular attention to the use of computation in professional architectural education. The result is a shared vision of computers in the curriculum [Woodbury 1985] and a set of courses, some with considerable historyland others just now being initiated. We (Dave and Woodbury) have jointly developed and at various times over the last seven years have taught Computer Modeling, the most introductory of these courses. This is a required course for all the incoming freshmen students in the department. In this paper we describe Computer Modeling: its context, the issues and topics it addresses, the tasks it requires of students, and the questions and opportunities that it raises. Computer Modeling is a course about concepts, about ways of explicitly understanding design and its relation to computation. Procedural skills and algorithmic problem solving techniques are given only secondary emphasis. In essential terms, the course is about models, of design processes, of designed objects, of computation and of computational design. Its lessons are intended to communicate a structure of such models to students and through this structure to demonstrate a relationship between computation and design. It is hoped that this structure can be used as a framework, around which students can continue to develop an understanding of computers in design.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 0642
authors Eastman, Charles M.
year 1989
title Why Are We Here and Where We are Going: The Evolution of CAD
doi https://doi.org/10.52842/conf.acadia.1989.009
source New Ideas and Directions for the 1990’s [ACADIA Conference Proceedings] Gainsville (Florida - USA) 27-29 October 1989, pp. 9-26
summary This paper reviews architectural CAD in terms of its current use, development and status within the U.S. The characteristics of a new generation of architectural CAD system, called building modeling, are outlined. Criteria are developed for the evaluation of CAD systems that support building modeling. Some of the opportunities for universities growing out of building modeling are reviewed, including pedagogical implications and opportunities for research.
series ACADIA
email
last changed 2022/06/07 07:55

_id 09a5
authors Eastman, Charles M.
year 1989
title Building Modeling in Architectural Design
source [8] p. : ill. Design & Computation . Los Angeles: Graduate School of Architecture and Urban Planning, UCLA, 1989? includes bibliography
summary This paper reviews building modeling from the perspective of U.S. architectural practice. During the previous twenty years of computer-aided architectural design, the underlying paradigm has mimicked a paper-based technology. The future of design, however, is proposed to be in building modeling. A review of building modeling is provided and some prospects for architectural design, based on its concepts, are proposed
keywords CAD, building, modeling, architecture, design
series CADline
email
last changed 2003/05/17 10:15

_id e3c7
authors Galle, Per
year 1989
title Computer Methods in Architectural Problem Solving: Critique and Proposals
doi https://doi.org/10.52842/conf.ecaade.1989.x.t9u
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 6.4.1-6.4.21
summary While the development of modeling and drafting tools for computer-aided design has reached a state of considerable maturity, computerized decision support in architectural sketch design is still in its infancy after more than 20 years. The paper analyzes the difficulties of developing computer tools for architectural problem solving in the early stages of design where decisions of major importance are made. The potentials of computer methods are discussed in relation to design as a static system of information and to design as a dynamic creative process. Two key problems are identified, and on this background current computer methods intended for use in architectural sketch design are critically reviewed. As a result some guidelines are suggested for future research into computer- aided architectural problem solving. The purpose of the paper is twofold: (1) to encourage research that will take this field into a state of maturity and acceptance by practitioners, and (2) to provoke further debate on the question of how to do it.

series eCAADe
last changed 2022/06/07 07:50

_id 778e
authors Gann, D.
year 1994
title Archaeological Site Reconstruction With AutoDesk's 3D Studio
source CSA Newsletter Vol 7:3 Nov 1994
summary 3D Studio is an IBM-compatible computer modeling program that enables users to create three-dimensional renderings of a variety of objects. In its ability to import a wide variety of maps and other images, 3D Studio allows for the realistic rendering of models created within AutoCAD or other 3D CAD packages. Over the past year, the Homol'ovi research program has been utilizing this software to create near photo-realistic renderings of conjectural site models. My own interests in three-dimensional computer modeling developed out of work at the site of Homol'ovi IV, a 150-room pueblo site located near Winslow, Arizona. The site was situated upon a steep 30-meter bluff with a bedrock cap. Approximately 24 rooms were located on top of the bedrock cap, with another 125 rooms situated on the slope of the butte. During the 1989 field season five structures were excavated, while a separate crew worked clearing and mapping the tops of walls. Mapping was accomplished with a Topcon EDM/theodolite station, and a standard map was created from this process. (See Fig. 3.) While the map was sufficient to show the general layout of the site, I remained unsatisfied; a 2D plan view simply did not convey the vertical dimension of the pueblo. At this point the Homol'ovi Research Program purchased a copy of AutoCAD in order to begin exploring three-dimensional mapping and modeling.
series other
last changed 2003/04/23 15:50

_id abd8
authors Gero, John S. (editor)
year 1989
title Artificial Intelligence in Design
source 553 p. Southampton and Berlin: CMP/Springer-Verlag, 1989 CADLINE has abstract only.
summary This volume contains the selected papers in the design stream from the Fourth International Conference on Applications of Artificial Intelligence in Engineering. The 26 papers are grouped under the following headings: Structural Design; Mechanical Design; Architectural Design; Qualitative Reasoning in Design; Design Research Groups; Constraint-Based Systems in Design; Design Modeling; and Processes in Design
keywords AI, design, architecture, mechanical engineering, civil engineering, reasoning, modeling, constraints
series CADline
email
last changed 2003/06/02 13:58

_id 88cb
authors Gero, John S. and Oksala, Tarkko (editors)
year 1988
title Knowledge-Based Systems in Architecture
source TIPS'88 - Knowledge Based Design in Architecture, Acta Polytechnica Scandinavica (1988 : Helsinki, Finland). 143 p. 1989
summary The technology of knowledge-based systems can be found in texts on artificial intelligence. There is very little published so far on knowledge-based systems in architecture. To this end an international conference -- TIPS' 88: Knowledge-Based Design in Architecture -- was organized for August 1988 in Finland. Thirteen papers from that conference have been selected and edited for this monograph. They are grouped under five parts: Introduction; Schemas and Models; Processes and Knowledge; Modeling Buildings; and Creativity and Knowledge-Based Systems
keywords knowledge base, architecture, representation, expert systems,building, creativity
series CADline
email
last changed 2003/06/02 13:58

_id 4f00
authors Gero, John S. and Sudweeks, F. (editors)
year 1989
title Expert Systems in Engineering, Architecture and Construction
source 360 p University of Sydney: 1989. CADLINE has abstract only.
summary Engineering involves both cognitive and calculational processes. It involves judgement as well as numeracy. Cognitive processes and judgement are better served by expert systems than other existing technologies. Expert systems are not designed to replace technologies currently used in engineering, rather they are and will continue to augment them. Clearly, better tools are needed and further education of engineers is needed. This conference aims to provide a forum for the presentation of developments and applications of expert systems in engineering, primarily in Australasia. The 20 papers accepted for presentation span the spectrum of engineering applications of expert systems from analysis and diagnosis, through simulation and modeling, learning, to design and synthesis
keywords expert systems, knowledge base, design process, architecture, structures, engineering, construction, analysis, simulation, modeling, learning, synthesis
series CADline
email
last changed 2003/06/02 13:58

_id ab63
authors Gross, Mark D.
year 1990
title Relational Modeling: A Basis for Computer-Assisted Design
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 123-136
summary Today's computer assisted design (CAD) systems automate traditional ways of working with tracing paper and pencil, but they cannot represent the rules and relationships of a design. As hardware becomes faster and memory less expensive, more sophisticated fundamental software technologies will be adopted. This shift in the basis of CAD will provide powerful capabilities and offer new ways to think about designing. Recently parametric design, a technique for describing a large class of designs with a small description in code, has become a focus of attention in architectural computing. In parametric CAD systems, design features are identified and keyed to a number of input variables. Changes in the input values result in variations of the basic design. Based on conventional software technologies, parametric design has been successfully applied in many design domains including architecture and is supported by several commercial CAD packages. A weakness of parametric techniques is the need to predetermine which properties are input parameters to be varied and which are to be derived. Relational modeling is a simple and powerful extension of parametric design that overcomes this weakness. By viewing relations as reversible rather than one-way, any set of properties can be chosen as input parameters. For example, a relational model that calculates the shadow length of a given building can also be used to calculate the building height given a desired shadow length. In exercising a relational model the designer is not limited to a pre-selected set of input variables but can explore and experiment freely with changes in all parts of the model. Co is a relational modeling environment under development on the Macintosh-II computer, and Co-Draw, a prototype CAD program based on Co. Co's relationaI engine and object-oriented database provide a powerful basis for modeling design relations. Co-Draw's interactive graphics offer a flexible medium for design exploration. Co provides tools for viewing and editing design models in various representations, including spreadsheet cards, tree and graph structures, as well as plan and elevation graphics. Co's concepts and architecture are described and the implications for design education are discussed.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 20a1
authors Hall, R.
year 1989
title Illumination and Color in Computer Generated Imagery
source New York: Springer Verlag
summary This is a discussion of the physics of illumination and the associated techniques for modeling global and local illumination in computer generated imagery. It was state-of-the-art in 1988, but is now rather outdated. It does include discussions of physics and color theory basics that have not changed, and a discussion of illumination models through ray tracing models using various specular reflectance functions and including Fresnel effects. This text is currently out of print. However, we still receive numerous requests for an electronic version of the source code in the book.
series other
last changed 2003/04/23 15:14

_id c0a3
authors Harfmann, Anton C. and Chen, Stuart S.
year 1989
title Component Based Computer Aided Learning for Students of Architecture and Civil Engineering
doi https://doi.org/10.52842/conf.acadia.1989.193
source New Ideas and Directions for the 1990’s [ACADIA Conference Proceedings] Gainsville (Florida - USA) 27-29 October 1989, pp. 193-208
summary The paper describes the methodology and the current efforts to develop an interdisciplinary computer aided learning system for architects and civil engineers. The system being developed incorporates a component oriented relational database with an existing interactive 3-dimensional modeling system developed in the School of Architecture and Planning at SUNY Buffalo. The software will be used in existing courses in architecture and civil engineering as a teaching aid to help students understand the complex 3-dimensional interrelationships of structural components. Initial implementation has focused on the modeling of the components and assemblies for a lowrise steel frame structure. Current implementation efforts are focusing on the capability to view connections in various ways including the ability to "explode" a connection to better understand the sequence of construction and load paths. Appropriate codes, limit states of failure and specific data will be linked to each specific component in an expert system shell so that the system can offer feedback about a student generated connection and perhaps offer other possible connections a library of standard connections. Future expansion of the system will include adding other "systems" of a building, such as mechanical, electrical, plumbing, enclosure etc., to help students visualize the integration of the various parts.
series ACADIA
email
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 10HOMELOGIN (you are user _anon_702538 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002