CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 207

_id 6b83
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 1989
title Towards a New Generation of Computer Assistants for Architectural Design: An Existing Scenario
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 8.3.1.8.3.10
doi https://doi.org/10.52842/conf.ecaade.1989.x.f9h
summary The context in which designers operate is becoming more and more complex, owing to the large number of codes, new materials, technologies and professional figures; new instruments are needed, therefore, to support and verify design activity. The results obtained in the first years of 'computer era' were barely sufficient. The hardware and software available today is capable of producing a new generation of CAD systems which can aid the designer in the process of conceiving and defining building objects. At the CAD Laboratory in the Department of Building and Environmental Control Techniques at the 'La Sapienza' University of Rome, research is being carried out with the aim of defining a new kind of Knowledge-based assistant for architectural design. To this purpose a partnership has been established whit a private firm called CARTESIANA, whose partners are software houses, designing and building associations.
keywords Knowledge-Based Architectural Design
series eCAADe
last changed 2022/06/07 07:50

_id 8cff
authors Fridqvist, Sverker
year 1989
title Computers as a Creative Tool in Architecture
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 9.6.1-9.6.4
doi https://doi.org/10.52842/conf.ecaade.1989.x.k1l
summary The School of Architecture at Lund Institute of Technology was augmented by the establishment of the Computer Studio in 1987. As a result the school now has a device for teaching and research in the architects' use of computers. We are now conducting several research projects as well as courses and an education project. The third and fourth years of the education at the school of architecture are arranged as education projects instead of traditional lecturing. The students choose from projects that are organised by different departments at the School of Architecture. The issue is that the students will ask for instruction when felt needed, and that learning will therefore be more efficient. The Computer Studio has conducted such a project during the first half of 1989. We have tried to encourage the students to use our different computers and programs in new and creative ways. One of the issues of the computer project is to teach the students how computers are used at the architects offices today as well as expected future developments. The students shall be acquainted well enough with present and future possibilities to make good choices when deciding upon buying computers for architectural use. Another issue is to develop new ways of making and presenting architecture by using computers. As a group the teachers at the school of architecture have a very restrictive attitude towards the use of computers. We hope that our project will open their minds for the possibilities of computers, and to engage them in the development of new ways to use computers creatively in architecture. An interesting question is if the use of computers will yield different outcomes of he students' work than traditional methods. An object for research is whether the added possibilities of considering different aspects of he design by using a computer will make for higher quality of the results.

series eCAADe
email
more http://www.caad.lth.se/
last changed 2022/06/07 07:50

_id 6dc2
authors Rahman, Shama
year 1989
title The Realities of Introducing IT/CAD in Architectural and Interior Design Education: A Case Study at the Polytechnic of North London
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 4.1.1.-4.1.9
doi https://doi.org/10.52842/conf.ecaade.1989.x.j5h
summary This paper is an attempt to illustrate the realities of introducing Information Technology at a school of Architecture and Interior Design. The department, under the auspicies of the Polytechnic of North London, comprises of 520 full/part time students working towards various professional and postgraduate degrees and diplomas in Architecture and Interior Design. For the last 18 months, the department has undertaken a rapid IT/CAD implementation programme. This has involved developing a strategy, formulating resource needs and implementing teaching. The strategy is based on the concept of application of IT as a tool for design and a medium for representation, management, use and exchange of design information. A course outline has been developed suggesting what could be taught and who could be taught what, how, when and for how long. At the same time, different types of teaching methods are being experimented upon. On the basis of these factors, attempts are being made to meet resource needs for software, hardware, teaching and technical support. Various issues and problems have been brought to light e.g. overcoming cost of hardware and software, lack of teaching and technical support, finding time slots in overloaded curriculums, changing existing attitudes towards IT,etc. We have approached these problems in various ways. We liaise closely with architects' offices, and try to use student skills and expertise within the polytechnic. We try to overcome time-slot problems by joint teaching and assessment with other subjects and try to integrate IT/CAD with studio-based design projects by locating computlng facilities inside studios. This paper is a story of how we have set for ourselves a path to follow. This path is by no means rigid and will continuously change with new experiences and the demands of a volatile industry. We have only just begun.

series eCAADe
last changed 2022/06/07 07:50

_id a74a
authors Asanowicz, Alexander
year 1989
title Four Easy Questions
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 9.18.1-9.18.4
doi https://doi.org/10.52842/conf.ecaade.1989.x.x8v
summary Should we teach CAAD? - yes, but why? Answer to this question is clear too. Question three - "when?" - on the 5, 6 and 7 term. Why so rate? - it is a compromise because "Architecture is an art" and students of architecture should know how to make a project without computers. How to teach CAAD? - we should teach haw to use professional computer programs and not programming. We must work out a new manual for architects. It should be constructed in such a way as to correspond to consecutive steps of the architectural design process.
keywords CAAD, Manuals, Architectural Design Process
series eCAADe
email
last changed 2022/06/07 07:50

_id 235d
authors Catalano, Fernando
year 1990
title The Computerized Design Firm
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 317-332
summary This paper is not just about the future of computerized design practice. It is about what to do today in contemplation of tomorrow-the issues of computercentered practice and the courses of action open to us can be discerned by the careful observer. The realities of computerized design practice are different from the issues on which design education still fixes its attention. To educators, the present paper recommends further clinical research on computerized design firms and suggests that case studies on the matter be developed and utilized as teaching material. Research conducted by the author of this paper indicates that a new form of design firm is emerging-the computerized design firm-totally supported and augmented by the new information technology. The present paper proceeds by introducing an abridged case study of an actual totally electronic, computerized design practice. Then, the paper concentrates on modelling the computerized design firm as an intelligent system, indicating non-trivial changes in its structure and strategy brought about by the introduction of the new information technology into its operations - among other considerations, different strategies and diverse conceptions of management and workgroup roles are highlighted. In particular, this paper points out that these structural and strategic changes reflect back on the technology of information with pressures to redirect present emphasis on the individual designer, working alone in an isolated workstation, to a more realistic conception of the designer as a member of an electronic workgroup. Finally, the paper underlines that this non-trivial conception demands that new hardware and software be developed to meet the needs of the electronic workgroup - which raises issues of human-machine interface. Further, it raises the key issues of how to represent and expose knowledge to users in intelligent information - sharing systems, designed to include not only good user interfaces for supporting problem-solving activities of individuals, but also good organizational interfaces for supporting the problem-solving activities of groups. The paper closes by charting promising directions for further research and with a few remarks about the computerized design firm's (near) future.
series CAAD Futures
last changed 1999/04/03 17:58

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 8775
authors Cigolle, Mark and Coleman, Kim
year 1990
title Computer Integrated Design: Transformation as Process
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 333-346
summary To bring together poetry, magic and science, to explore beyond preconceptions, to invent spaces and forms which re-form and inform man's experience, these are the possibilities of architecture. Computer integrated design offers a means for extending the search, one which integrates both conceptual and perceptual issues in the making of architecture. The computer may assist in generating constructs which would not have been created by conventional methods. The application of computer techniques to design has to date been focused primarily on production aspects, an area which is already highly organizable and communicable. In conceptual and perceptual aspects of design, computer techniques remain underdeveloped. Since the impetus for- the development of computer applications has come from the immediate economics of practice rather than a theoretically based strategy, computer-aided design is currently biased toward the replication of conventional techniques rather than the exploration of new potentials. Over the last two years we have been involved in experimentation with methodologies which engage the computer in formative explorations of the design idea. Work produced from investigations by 4th and 5th year undergraduate students in computer integrated design studios that we have been teaching at the University of Southern California demonstrates the potential for the use of the computer as a principal tool in the exploration of syntax and perception, space and program. The challenge is to approach the making of architecture as an innovative act, one which does not rely on preconceived notions of design.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 0f73
authors Ervin, Stephen M.
year 1990
title Designing with Diagrams: A Role for Computing in Design Education and Exploration
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 107-122
summary Environmental designers, design educators and design students using computers are a constituency with a set of requirements for database structure and flexibility, for knowledge representation and inference mechanisms, and for both graphical and non-graphical operations, that are now articulatable and to-date largely unmet. This is especially so in the area called 'preliminary' or 'schematic' design, where our requirements are related to, but different from, those of our colleagues in mechanical and electrical engineering, whose needs have dominated the notable developments in this area. One manifestation of these needs is in the peculiar form of graphics called diagrams , and the ways in which environmental designers (architects, landscape architects., urban designers) use them. Our diagrams are both similar to and different from structural, circuit, or logical diagrams in important ways. These similarities and differences yield basic insights into designing and design knowledge, and provide guidance for some necessary steps in the development of the next generation of CAD systems. Diagrams as a form of knowledge representation have received little scrutiny in the literature of graphic representation and computer graphics. In the following sections I present an overview of the theoretical basis for distinguishing and using diagrams; examine some of the computational requirements for a system of computer-aided diagramming; describe a prototype implementation called CBD (Constraint Based Diagrammer) and illustrate one example of its use; and speculate on the implications and potential applications of these ideas in computer-aided design education.
series CAAD Futures
last changed 1999/04/03 17:58

_id a672
authors Flemming, Ulrich
year 1990
title Syntactic Structures in Architecture: Teaching Composition with Computer Assistance
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 31-48
summary The present paper outlines a plan for the teaching of architectural composition with computer assistance.The approach is to introduce students to a series of architectural languages characterized by a vocabulary of elements and a grammar whose rules indicate how these elements can be placed in space. Exercises with each language include the analysis of precedents; the generation of forms using a given rule set; and follow-up studies with an expanded rule set. The paper introduces languages and exercises through illustrative examples. This architectural content can be taught in the traditional way. The use of computers is motivated by expectations which are stated, and some basic requirements for the needed software are listed. Work to develop this software has started.
series CAAD Futures
email
last changed 2003/02/26 17:24

_id 63c7
authors Fox, C. William
year 1990
title Integrating Computing into an Architectural Undergraduate Program
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 377-386
summary This paper will discuss the process of integrating computing into the undergraduate architectural program at Temple University. It will address the selection and use of hardware and software consistent with the issues and concerns of introducing a new tool to expand the repertoire of skills available to students for use in the design process.
series CAAD Futures
last changed 1999/04/03 17:58

_id ecaade03_433_208_froehlich
id ecaade03_433_208_froehlich
authors Fröhlich, C., Hirschberg, U., Frühwirth, M. and Wondra, W.
year 2003
title no_LAb__in_feld - Is common- ground a word or just a sound? (Lou Reed, 1989)
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 433-436
doi https://doi.org/10.52842/conf.ecaade.2003.433
summary This paper describes the concept and the current state of development of a new laboratory for digital experimentation in architectural education and research. The novel forms of collaboration and learning for which it is intended and the quick pace of innovation in digital technology on which it depends both require an appropriately flexible spatial and technological framework. And it requires a particular mindset. The no_LAb__in_feld is not just another laboratory. It is a place, a community, a high-tech construction site, a permanent work in progress. It is the prototype of a next generation design studio.
keywords Design studio education: creative collaboration; digital playground; hybridinteractive installations; augmented reality
series eCAADe
email
more http://ikg.tugraz.at/
last changed 2022/06/07 07:50

_id 315caadria2004
id 315caadria2004
authors Kuo-Chung Wen, Wei-Lung Chen
year 2004
title Application of Genetic Algorithms to Establish Flooding Evacuation Path Model in Metropolitan Area
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 557-570
doi https://doi.org/10.52842/conf.caadria.2004.557
summary This research has shown the difficulties associated with the GIS and the flooding evacuation path search through the huge searching space generated during the network analysis process. This research also presents an approach to these problems by utilizing a search process whose concept is derived from natural genetics. Genetic algorithms (GAs) have been introduced in the optimization problem solving area by Holland (1975) and Goldberg (1989) and have shown their usefulness through numerous applications. We apply GA and GIS to choice flooding evacuation path in metropolitan area in this study. We take the region of Shiji city in Taiwan for case. That could be divided into four parts. First, is to set the population of GA operation. Second, is to choose crossover and mutation. Third, is to calculate the fitness function of each generation and to select the better gene arrangement. Fourth, is to reproduce, after evolution, we can establish Flooding Evacuation Path that more reflect really human action and choice when flood takes place. However we can apply GA to calculate different evacuation path in different time series. Final, we compare and establish real model of evacuation path model to choosing flooding evacuation path.
series CAADRIA
email
last changed 2022/06/07 07:52

_id 67a9
authors Lawson, Stephen
year 1989
title In the Eye of the Beholder: A Proposal to Further the Critical Framework of Computer Graphics in Architectural Design
source New Ideas and Directions for the 1990’s [ACADIA Conference Proceedings] Gainsville (Florida - USA) 27-29 October 1989, pp. 147-157
doi https://doi.org/10.52842/conf.acadia.1989.147
summary This paper speculates on some of the inherent differences between computer graphics and conventional media when used in architectural design. It suggests that a lot of work and thought has gone into developing computer graphics as a medium for the development and expression of architectural ideas and examines some of the reasons that the fruits of this labor have been slow to fmd their way into the mainstream of the profession. This slowness to embrace rapidly developing technologies seems to be resulting in an ever widening gap between potential and the mainstream practice.
series ACADIA
last changed 2022/06/07 07:52

_id e91f
authors Mitchell, W.J., Liggett, R.S. and Tan, M.
year 1990
title Top-Down Knowledge-Based Design
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 137-148
summary Traditional computer drafting systems and three- dimensional geometric modeling systems work in bottom-up fashion. They provide a range of graphic primitives, such as vectors, arcs, and splines, together with operators for inserting, deleting, combining, and transforming instances of these. Thus they are conceptually very similar to word processors, with the difference that they operate on two- dimensional or three-dimensional patterns of graphic primitives rather than one-dimensional strings of characters. This sort of system is effective for input and editing of drawings or models that represent existing designs, but provides little more help than a pencil when you want to construct from scratch a drawing of some complex object such as a human figure, an automobile, or a classical column: you must depend on your own knowledge of what the pieces are and how to shape them and put them together. If you already know how to draw something then a computer drafting system will help you to do so efficiently, but if you do not know how to begin, or how to develop and refine the drawing, then the efficiency that you gain is of little practical consequence. And accelerated performance, flashier color graphics, or futuristic three-dimensional modes of interaction will not help with this problem at all. By contrast, experienced expert graphic artists and designers usually work in top-down fashion-beginning with a very schematic sketch of the whole object, then refining this, in step-by-step fashion, till the requisite level of precision and completeness is reached. For example, a figure drawing might begin as a "stick figure" schema showing lengths and angles of limbs, then be developed to show the general blocking of masses, and finally be resolved down to the finest details of contour and surface. Similarly, an architectural drawing might begin as a parti showing just a skeleton of construction lines, then be developed into a single-line floor plan, then a plan showing accurate wall thicknesses and openings, and finally a fully developed and detailed drawing.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 3824
authors Mitchell, William J.
year 1989
title A New Agenda for Computer-Aided Architectural Design
source New Ideas and Directions for the 1990’s [ACADIA Conference Proceedings] Gainsville (Florida - USA) 27-29 October 1989, pp. 27-43
doi https://doi.org/10.52842/conf.acadia.1989.027
summary The essential theoretical foundations for today's practical computer-aided design systems were laid more than two decades ago. They have served us well, but they are now sorely in need of revision. This paper suggests some directions that this revision might take. In particular, I focus on the roles of ambiguity and discontinuity in shape interpretation, instability in rules for carrying out shape computations, and nonmonotonicity in critical reasoning. I suggest that the challenge before us is to build a new generation of CAD systems that respond in sophisticated ways to these issues.
series ACADIA
email
last changed 2022/06/07 07:58

_id cdd3
authors Mitchell, William J.
year 1990
title A New Agenda For Computer-Aided Design
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 1-16
summary Design is the computation of shape information that is needed to guide fabrication or construction of an artifact. This information normally specifies artifact topology (connections of vertices, edges, surfaces, and closed volumes), dimensions, angles, and tolerances on dimensions and angles. There may also be associations of symbols with subshapes to specify material and other such properties. The process of design takes different forms in different contexts, but the most usual computational operations are transformations (unary operations) and combinations (binary operations) of shapes in a two-dimensional drawing or a three-dimensional geometric model. An initial vocabulary of shapes, together with a repertoire of shape transformation and combination operators., establishes the shape algebra within which the computation takes place. The computation terminates successfully when it can be shown that certain predicates are satisfied by a shape produced by recursively applying the transformation and combination operators to the initial vocabulary. These predicates are usually stated in symbolic (verbal or numerical) form. Thus determination of whether a predicate is satisfied usually involves producing a numerical or verbal interpretation of a drawing, then deriving inferences from this interpretation by applying rules or formulae.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 0565
authors Oxman, Robert and Oxman, Rivka
year 1990
title The Computability of Architectural Knowledge
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 171-185
summary In an important contribution to the theoretical foundation of design computing, Mitchell noted "an increasingly urgent need to establish a demonstrably sound, comprehensive, rigorously formalized theoretical foundation upon which to base practical software development efforts" (Mitchell, 1986). In this paper we propose such a theoretical framework. A basic assumption of this work is that the advancement of design computing is dependent upon the emergence of a rigorous formulation of knowledge in design. We present a model of knowledge in architectural design which suggests a promising conceptual basis for dealing with knowledge in computer-aided design systems. We require models which can represent the formal knowledge and manipulative operations of the designer in all of their complexity-that is formal models rather than just geometric models. Shape Grammars (Stiny,1980) represent an example of such models, and constitute a relatively high level of design knowledge as compared to, for example, use of symmetry operations to generate simple formal configurations. Building upon an understanding of the classes of design knowledge as the conceptual basis for formal modeling systems may contribute a new realization of the potential of the medium for design. This will require a comprehensive approach to the definition of architectural and design knowledge. We consider here the implications of a well-defined body of architectural and design knowledge for design education and the potential mutual interaction-in a knowledge-rich environment-of design learning and CAAD learning. The computational factors connected with the representation of design knowledge and its integration in design systems are among the key problems of CAAD. Mitchell's model of knowledge in design incorporates formal knowledge in a comprehensive, multi-level, hierarchical structure in which types of knowledge are correlated with computational concepts. In the main focus of this paper we present a structured, multi-level model of design knowledge which we discuss with respect to current architectural theoretical considerations. Finally, we analyze the computational and educational relevance of such models.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 2a8b
authors Purcell, Patrick and Applebaum Dan
year 1990
title Light Table: An Interface To Visual Information Systems
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 229-238
summary A primary aim of the Light Table project was to see if a combination of the optical laser disc, local area networks, and interactive videographic workstation technology could bring a major visual collection, (such as the Rotch Visual Collections of the Massachusetts Institute of Technology), to a campuswide population of undergraduate users. VIS (Visual Information System) is the name being given to the new genre of information technology. Much research and development effort is currently being applied to areas where the image has a special significance, for example in architecture and planning, in graphic and fine arts, in biology, in medicine, and in photography. One particular advance in the technology of VIS has been the facility to access visual information across a distributed computer system via LAN (Local Area Networks) and video delivery systems, (such as campus TV cable). This advance allows users to retrieve images from both local and remote sources, dispatching the image search through the LAN, and receiving the images back at their workstation via dedicated channels on the campus TV cable. Light Table is the title of a system that acts as a computer-based interactive videographic interface to a variety of visual information systems described in the body of this paper. It takes its name from the traditional, back- lit, translucent light table that lecturers use to assemble and view collections of slides for talks and seminars. The component of Light Table which is being reported in greatest detail here, a software outcome called Galatea, is a versatile and robust system capable of controlling video devices in a networked environment.
series CAAD Futures
last changed 1999/04/03 17:58

_id c5a8
authors Schmitt, Gerhard N. (Ed.)
year 1991
title CAAD Futures '91 [Conference Proceedings]
source International Conference on Computer-Aided Architectural Design 1989/ ISBN 3-528-08821-4 / Zürich (Switzerland), July 1991, 594 p.
summary Computer Aided Architectural Design (CAAD) is the art of design and computation. Since the establishment of the CAAD futures organization in 1985, experts meet every two years to explore the state-of-the-art and postulate on future development in Computer Aided Architectural Design. The fourth international CAAD futures conference took place in July 1991 in Zürich at the Swiss Federal Institute of Technology (ETH Zürich), organized by the Chair for CAAD. More than 220 participants from 25 countries attended the conference. Presentation topics were education, research, and application. The mission of CAAD futures '91 was to provide an international forum for the dissemination and discussion of future oriented developments and new experiences in the field of Computer Aided Architectural Design. This book is one result of the conference and is divided into three sections: Education, Research and Application. This international overview of the 1991 state-of-the- art in Computer Aided Architectural Design will serve as a reference for design teachers, researchers, and application developers interested in CAAD.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 2db4
authors Schmitt, Gerhard
year 1992
title Design for Performance
source New York: John Wiley & Sons, 1992. pp. 83-100 : ill. includes bibliography Design for performance describes a generative approach toward fulfilling qualitative and quantitative design requirements based on specification and existing cases. The term design applies to the architectural domain: the term performance includes the aesthetic, quantitative, and qualitative behavior of an artifact. In achieving architectural quality while adhering to measurable criteria, design for performance has representational, computational, and practical advantages over traditional methods, in particular over post-facto single- and multicriteria analysis and evaluation. In this paper a proposal for a working model and a partial implementation of this model are described. architecture / evaluation / performance / synthesis / design / representation / prediction / integration. Ô h)0*0*0*°° ÔŒ21. Schneekloth, Lynda H., Rajendra K. Jain and Gary E. Day. 'Wind Study of Pedestrian Environments.' February, 1989. 30, [2] p. : ill. includes bibliography and index.
summary This report summarizes Part 1 of the research on wind conditions affecting pedestrian environments for the State University of New York at Buffalo. Part 1 reports on existing conditions in the main part of the North Campus in Amherst. Procedures and methods are outlined, the profile of the current situation reported, and a special study on the proposed Natural Science and Math Building are included
keywords architecture, research, evaluation, analysis, simulation, hardware
series CADline
last changed 1999/02/12 15:09

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 10HOMELOGIN (you are user _anon_15978 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002