CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 203

_id 0ef3
authors Sheppard, S. R. J.
year 1989
title Visual Simulation: A User's Guide for Architect, Engineers, and Planners.
source New York, Van Nostrand Reinhold
summary Contributed by Susan Pietsch (spietsch@arch.adelaide.edu.au)
keywords 3D City Modeling, Development Control, Design Control
series other
last changed 2001/06/04 20:41

_id 22ed
authors Glaser, Migges M.
year 1989
title ART + COM Lab Report - BERKOM Project "New Media in Urban Planning"
doi https://doi.org/10.52842/conf.ecaade.1989.x.l1t
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 6.1.1-6.1.6
summary The highly developed glasfiber technology of the Berlin ISDN-B prototype network will make it possible to test a future benefit of the possibilities of real time visual communication for architects and planers in their home office. In the project an external user will be able to share high end visual outputs of a Service Center for Visualisation with his own low end CAAD workstation via ISDN-B. The capabilities of these services will range from a still picture archive, real time access to video film archive, a variety of conventional database services to special postproduction for his own 3D data models. The transferred 3D model can be rendered an animated on the Center's systems, if requested also integrated into a video background film. The production will than be available on his workstation screen. These new means will be evaluated in the view of the architects new possibilities for the design process.
keywords Multimedia, CAAD Services, Computer Animation
series eCAADe
last changed 2022/06/07 07:50

_id b4c4
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 2000
title A framework for an Architectural Collaborative Design
doi https://doi.org/10.52842/conf.ecaade.2000.057
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 57-60
summary The building industry involves a larger number of disciplines, operators and professionals than other industrial processes. Its peculiarity is that the products (building objects) have a number of parts (building elements) that does not differ much from the number of classes into which building objects can be conceptually subdivided. Another important characteristic is that the building industry produces unique products (de Vries and van Zutphen, 1992). This is not an isolated situation but indeed one that is spreading also in other industrial fields. For example, production niches have proved successful in the automotive and computer industries (Carrara, Fioravanti, & Novembri, 1989). Building design is a complex multi-disciplinary process, which demands a high degree of co-ordination and co-operation among separate teams, each having its own specific knowledge and its own set of specific design tools. Establishing an environment for design tool integration is a prerequisite for network-based distributed work. It was attempted to solve the problem of efficient, user-friendly, and fast information exchange among operators by treating it simply as an exchange of data. But the failure of IGES, CGM, PHIGS confirms that data have different meanings and importance in different contexts. The STandard for Exchange of Product data, ISO 10303 Part 106 BCCM, relating to AEC field (Wix, 1997), seems to be too complex to be applied to professional studios. Moreover its structure is too deep and the conceptual classifications based on it do not allow multi-inheritance (Ekholm, 1996). From now on we shall adopt the BCCM semantic that defines the actor as "a functional participant in building construction"; and we shall define designer as "every member of the class formed by designers" (architects, engineers, town-planners, construction managers, etc.).
keywords Architectural Design Process, Collaborative Design, Knowledge Engineering, Dynamic Object Oriented Programming
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id c1e2
authors Norman, Richard B.
year 1990
title Color Contrast and CAAD: The Seven Color Contrasts of Johannes Itten
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 469-478
summary Computer-aided architectural design is design with color - the monitor of a CAAD system is a display of color, a place where images are produced by color manipulation. The success of these images can be judged by the ability of the colors selected to communicate graphic ideas and to convey graphic information. Color as a visual phenomena intrigued the impressionist painters at the end of the nineteenth century; it was the focus of much attention at the Bauhaus in Weimar Germany. When Johannes Itten was appointed as a Master of Form at the Bauhaus in 1919, he developed "an aesthetic color theory originating in the experience and intuition of a painter". In his definitive work, Itten postulates seven ways to communicate visual information with color. "Each is unique in character and artistic value, in visual, expressive and symbolic effect, and together they constitute the fundamental resource of color design". These seven contrasts provide a lexicon of the methods by which computer images convey graphic information. The colors which form a computer image can be simply manipulated to illustrate these contrasts; today's computers make color manipulation a very simple matter. This paper is composed of short essays about each of these contrasts and how they can guide the selection of appropriate colors to convey visual intent on a picture tube. Considered together the contrasts of Itten provide a fundamental resource for electronic graphic communication.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id avocaad_2001_20
id avocaad_2001_20
authors Shen-Kai Tang
year 2001
title Toward a procedure of computer simulation in the restoration of historical architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the field of architectural design, “visualization¨ generally refers to some media, communicating and representing the idea of designers, such as ordinary drafts, maps, perspectives, photos and physical models, etc. (Rahman, 1992; Susan, 2000). The main reason why we adopt visualization is that it enables us to understand clearly and to control complicated procedures (Gombrich, 1990). Secondly, the way we get design knowledge is more from the published visualized images and less from personal experiences (Evans, 1989). Thus the importance of the representation of visualization is manifested.Due to the developments of computer technology in recent years, various computer aided design system are invented and used in a great amount, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and collaboration, etc. (Lawson, 1995; Liu, 1996). The conventional media are greatly replaced by computer media, and the visualization is further brought into the computerized stage. The procedure of visual impact analysis and assessment (VIAA), addressed by Rahman (1992), is renewed and amended for the intervention of computer (Liu, 2000). Based on the procedures above, a great amount of applied researches are proceeded. Therefore it is evident that the computer visualization is helpful to the discussion and evaluation during the design process (Hall, 1988, 1990, 1992, 1995, 1996, 1997, 1998; Liu, 1997; Sasada, 1986, 1988, 1990, 1993, 1997, 1998). In addition to the process of architectural design, the computer visualization is also applied to the subject of construction, which is repeatedly amended and corrected by the images of computer simulation (Liu, 2000). Potier (2000) probes into the contextual research and restoration of historical architecture by the technology of computer simulation before the practical restoration is constructed. In this way he established a communicative mode among archeologists, architects via computer media.In the research of restoration and preservation of historical architecture in Taiwan, many scholars have been devoted into the studies of historical contextual criticism (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000). Clues that accompany the historical contextual criticism (such as oral information, writings, photographs, pictures, etc.) help to explore the construction and the procedure of restoration (Hung, 1995), and serve as an aid to the studies of the usage and durability of the materials in the restoration of historical architecture (Dasser, 1990; Wang, 1998). Many clues are lost, because historical architecture is often age-old (Hung, 1995). Under the circumstance, restoration of historical architecture can only be proceeded by restricted pictures, written data and oral information (Shi, 1989). Therefore, computer simulation is employed by scholars to simulate the condition of historical architecture with restricted information after restoration (Potier, 2000). Yet this is only the early stage of computer-aid restoration. The focus of the paper aims at exploring that whether visual simulation of computer can help to investigate the practice of restoration and the estimation and evaluation after restoration.By exploring the restoration of historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example), this study aims to establish a complete work on computer visualization, including the concept of restoration, the practice of restoration, and the estimation and evaluation of restoration.This research is to simulate the process of restoration by computer simulation based on visualized media (restricted pictures, restricted written data and restricted oral information) and the specialized experience of historical architects (Potier, 2000). During the process of practicing, communicates with craftsmen repeatedly with some simulated alternatives, and makes the result as the foundation of evaluating and adjusting the simulating process and outcome. In this way we address a suitable and complete process of computer visualization for historical architecture.The significance of this paper is that we are able to control every detail more exactly, and then prevent possible problems during the process of restoration of historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 4f00
authors Gero, John S. and Sudweeks, F. (editors)
year 1989
title Expert Systems in Engineering, Architecture and Construction
source 360 p University of Sydney: 1989. CADLINE has abstract only.
summary Engineering involves both cognitive and calculational processes. It involves judgement as well as numeracy. Cognitive processes and judgement are better served by expert systems than other existing technologies. Expert systems are not designed to replace technologies currently used in engineering, rather they are and will continue to augment them. Clearly, better tools are needed and further education of engineers is needed. This conference aims to provide a forum for the presentation of developments and applications of expert systems in engineering, primarily in Australasia. The 20 papers accepted for presentation span the spectrum of engineering applications of expert systems from analysis and diagnosis, through simulation and modeling, learning, to design and synthesis
keywords expert systems, knowledge base, design process, architecture, structures, engineering, construction, analysis, simulation, modeling, learning, synthesis
series CADline
email
last changed 2003/06/02 13:58

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id c0a3
authors Harfmann, Anton C. and Chen, Stuart S.
year 1989
title Component Based Computer Aided Learning for Students of Architecture and Civil Engineering
doi https://doi.org/10.52842/conf.acadia.1989.193
source New Ideas and Directions for the 1990’s [ACADIA Conference Proceedings] Gainsville (Florida - USA) 27-29 October 1989, pp. 193-208
summary The paper describes the methodology and the current efforts to develop an interdisciplinary computer aided learning system for architects and civil engineers. The system being developed incorporates a component oriented relational database with an existing interactive 3-dimensional modeling system developed in the School of Architecture and Planning at SUNY Buffalo. The software will be used in existing courses in architecture and civil engineering as a teaching aid to help students understand the complex 3-dimensional interrelationships of structural components. Initial implementation has focused on the modeling of the components and assemblies for a lowrise steel frame structure. Current implementation efforts are focusing on the capability to view connections in various ways including the ability to "explode" a connection to better understand the sequence of construction and load paths. Appropriate codes, limit states of failure and specific data will be linked to each specific component in an expert system shell so that the system can offer feedback about a student generated connection and perhaps offer other possible connections a library of standard connections. Future expansion of the system will include adding other "systems" of a building, such as mechanical, electrical, plumbing, enclosure etc., to help students visualize the integration of the various parts.
series ACADIA
email
last changed 2022/06/07 07:49

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 2ea6
authors Novak, Marcos
year 1989
title An Experiment in Computational Composition
doi https://doi.org/10.52842/conf.acadia.1989.061
source New Ideas and Directions for the 1990’s [ACADIA Conference Proceedings] Gainsville (Florida - USA) 27-29 October 1989, pp. 61-83
summary A compositional study based on a visual interpretation of information theory is introduced. An algorithm is presented that relates variety in spatial parameters to visual information, along with a genetically inspired mechanism for refining a design through cycles of incremental cumulative changes. Two- and three-dimensional examples are shown.
series ACADIA
email
last changed 2022/06/07 08:00

_id avocaad_2001_19
id avocaad_2001_19
authors Shen-Kai Tang, Yu-Tung Liu, Yu-Sheng Chung, Chi-Seng Chung
year 2001
title The visual harmony between new and old materials in the restoration of historical architecture: A study of computer simulation
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the research of historical architecture restoration, scholars respectively focus on the field of architectural context and architectural archeology (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000) or on architecture construction and the procedure of restoration (Shi, 1988, 1989; Chiu, 1990). How to choose materials and cope with their durability becomes an important issue in the restoration of historical architecture (Dasser, 1990; Wang, 1998).In the related research of the usage and durability of materials, some scholars deem that, instead of continuing the traditional ways that last for hundreds of years (that is to replace new materials with old ones), it might be better to keep the original materials (Dasser, 1990). However, unavoidably, some of the originals are much worn. Thus we have to first establish the standard of eliminating components, and secondly to replace identical or similar materials with the old components (Lee, 1990). After accomplishing the restoration, we often unexpectedly find out that the renewed historical building is too new that the sense of history is eliminated (Dasser, 1990; Fu, 1997). Actually this is the important factor that determines the accomplishment of restoration. In the past, some scholars find out that the contrast and conflict between new and old materials are contributed to the different time of manufacture and different coating, such as antiseptic, pattern, etc., which result in the discrepancy of the sense of visual perception (Lee, 1990; Fu, 1997; Dasser, 1990).In recent years, a number of researches and practice of computer technology have been done in the field of architectural design. We are able to proceed design communication more exactly by the application of some systematic softwares, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and so on (Lawson, 1995; Liu, 1996). The application of computer technology to the research of the preservation of historical architecture is comparatively late. Continually some researchers explore the procedure of restoration by computer simulation technology (Potier, 2000), or establish digital database of the investigation of historical architecture (Sasada, 2000; Wang, 1998). How to choose materials by the technology of computer simulation influences the sense of visual perception. Liu (2000) has a more complete result on visual impact analysis and assessment (VIAA) about the research of urban design projection. The main subjects of this research paper focuses on whether the technology of computer simulation can extenuate the conflict between new and old materials that imposed on visual perception.The objective of this paper is to propose a standard method of visual harmony effects for materials in historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example).There are five steps in this research: 1.Categorize the materials of historical architecture and establish the information in digital database. 2.Get new materials of historical architecture and establish the information in digital database. 3.According to the mixing amount of new and old materials, determinate their proportion of the building; mixing new and old materials in a certain way. 4.Assign the mixed materials to the computer model and proceed the simulation of lighting. 5.Make experts and the citizens to evaluate the accomplished computer model in order to propose the expected standard method.According to the experiment mentioned above, we first address a procedure of material simulation of the historical architecture restoration and then offer some suggestions of how to mix new and old materials.By this procedure of simulation, we offer a better view to control the restoration of historical architecture. And, the discrepancy and discordance by new and old materials can be released. Moreover, we thus avoid to reconstructing ¡§too new¡¨ historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id d703
authors Tovey, M.
year 1989
title Drawing and CAD in industrial design
source Design Studies, Vol. 10, No. 1, pp. 24-39
summary Drawing is an essential component in the industrial design process, facilitating visual thinking and creativity. It constitutes one type of design model, along with specifications, 3D representations and CAD techniques. The design process involves movement from one model to another, and by using representations of different types and at different levels of detail a fluid and inventive design approach is facilitated. Examples of schematic drawings, ideas sketches and concept drawings demonstrate this in product design and transport design. CAD has proved to be highly effective in evaluative and analytical design development, and in manufacture. It is inherently unsuitable for innovative design, but has potential for contributing to evolutionary design, as is evidenced by its proven effectiveness in engineering optimization. Automotive design is almost always concerned with design evolution, and procedures for car stylists to work productively with CAD are being developed in Coventry Polytechnic's SERC funded research project Computer Aided Vehicle Styling. Vehicle stylist's design thinking is characterized by holistic, right-hemisphere processes informed by tacit knowledge and dependent on visual representation. They have particular difficulties with CAD systems. Nonetheless, design techniques that capitalize on CAD's potential and may be applicable to industrial design are briefly described. CAD drawings and conventional design drawings are compared by using examples from the car industry, and from the research project. Tentative speculations about future design procedures are made.
series journal paper
last changed 2003/04/23 15:14

_id acadia06_079
id acadia06_079
authors Kumar, Shilpi
year 2006
title Architecture and Industrial Design A Convergent Process for Design
doi https://doi.org/10.52842/conf.acadia.2006.079
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 79-94
summary The use of technology has grown with the way design professions have evolved over time. Changing needs, desires of comfort, and perceptions of the consumers have led to a distinct improvement in the design of both product and architecture. The use of the digital media and emerging technologies has brought a dramatic change to the design process allowing us to view, feel, and mould a virtual object at every stage of design, development, and engineering. Change is often quick and easy since a virtual product does not inherently carry the biases of its physical counterpart. In order to communicate ideas across the team, digital processes are also used to bring together opinions, experiences, and perspectives. These methods encourage decision making based on information rather than prejudice or instinct. Thus, digital exchanges (technology) impact firm strategies at three levels: product, process, and administrative or support activities (Adler 1989).Digital tools for design exchange in Industrial Design (ID) began much earlier than many other professions. The profession of Architecture is also slowly moving to a similar model with digital exchange finding increasing prevalence in drawing, modeling, performance simulation, design collaboration, construction management, and building fabrication. The biggest problem is the disintegrated use of technology in the architectural profession without a strategy toward streamlining the design process from conception to fabrication. In this paper we investigate how the use of technology has evolved in the professions of Industrial Design and Architecture comparatively in their product, process, and support activities. Further, we will present a set of guidelines that will help architects in the convergence of design process, helping in a more efficient work flow with a strategic use of digital technology.
series ACADIA
email
last changed 2022/06/07 07:52

_id 1920
authors Riesbeck, C. and Schank, R.C.
year 1989
title Inside Case-based Reasoning
source Lawrence Erlbaum Associates, Hillsdale, NJ
summary Case-based reasoning, broadly construed, is the process of solving new problems based on the solutions of similar past problems. An auto mechanic who fixes an engine by recalling another car that exhibited similar symptoms is using case-based reasoning. A lawyer who advocates a particular outcome in a trial based on legal precedents is using case-based reasoning. It has been argued that case-based reasoning is not only a powerful method for computer reasoning, but also a pervasive behavior in everyday human problem solving. Case-based reasoning (CBR) has been formalized as a four-step process:N 1. Retrieve: Given a target problem, retrieve cases from memory that are relevant to solving it. A case consists of a problem, its solution, and, typically, annotations about how the solution was derived. For example, suppose Fred wants to prepare blueberry pancakes. Being a novice cook, the most relevant experience he can recall is one in which he successfully made plain pancakes. The procedure he followed for making the plain pancakes, together with justifications for decisions made along the way, constitutes Fred's retrieved case. 2. Reuse: Map the solution from the previous case to the target problem. This may involve adapting the solution as needed to fit the new situation. In the pancake example, Fred must adapt his retrieved solution to include the addition of blueberries. 3. Revise: Having mapped the previous solution to the target situation, test the new solution in the real world (or a simulation) and, if necessary, revise. Suppose Fred adapted his pancake solution by adding blueberries to the batter. After mixing, he discovers that the batter has turned blue -- an undesired effect. This suggests the following revision: delay the addition of blueberries until after the batter has been ladled into the pan. 4. Retain: After the solution has been successfully adapted to the target problem, store the resulting experience as a new case in memory. Fred, accordingly, records his newfound procedure for making blueberry pancakes, thereby enriching his set of stored experiences, and better preparing him for future pancake-making demands. At first glance, CBR may seem similar to the rule-induction algorithmsP of machine learning.N Like a rule-induction algorithm, CBR starts with a set of cases or training examples; it forms generalizations of these examples, albeit implicit ones, by identifying commonalities between a retrieved case and the target problem. For instance, when Fred mapped his procedure for plain pancakes to blueberry pancakes, he decided to use the same basic batter and frying method, thus implicitly generalizing the set of situations under which the batter and frying method can be used. The key difference, however, between the implicit generalization in CBR and the generalization in rule induction lies in when the generalization is made. A rule-induction algorithm draws its generalizations from a set of training examples before the target problem is even known; that is, it performs eager generalization. For instance, if a rule-induction algorithm were given recipes for plain pancakes, Dutch apple pancakes, and banana pancakes as its training examples, it would have to derive, at training time, a set of general rules for making all types of pancakes. It would not be until testing time that it would be given, say, the task of cooking blueberry pancakes. The difficulty for the rule-induction algorithm is in anticipating the different directions in which it should attempt to generalize its training examples. This is in contrast to CBR, which delays (implicit) generalization of its cases until testing time -- a strategy of lazy generalization. In the pancake example, CBR has already been given the target problem of cooking blueberry pancakes; thus it can generalize its cases exactly as needed to cover this situation. CBR therefore tends to be a good approach for rich, complex domains in which there are myriad ways to generalize a case.
series other
last changed 2003/04/23 15:14

_id 235d
authors Catalano, Fernando
year 1990
title The Computerized Design Firm
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 317-332
summary This paper is not just about the future of computerized design practice. It is about what to do today in contemplation of tomorrow-the issues of computercentered practice and the courses of action open to us can be discerned by the careful observer. The realities of computerized design practice are different from the issues on which design education still fixes its attention. To educators, the present paper recommends further clinical research on computerized design firms and suggests that case studies on the matter be developed and utilized as teaching material. Research conducted by the author of this paper indicates that a new form of design firm is emerging-the computerized design firm-totally supported and augmented by the new information technology. The present paper proceeds by introducing an abridged case study of an actual totally electronic, computerized design practice. Then, the paper concentrates on modelling the computerized design firm as an intelligent system, indicating non-trivial changes in its structure and strategy brought about by the introduction of the new information technology into its operations - among other considerations, different strategies and diverse conceptions of management and workgroup roles are highlighted. In particular, this paper points out that these structural and strategic changes reflect back on the technology of information with pressures to redirect present emphasis on the individual designer, working alone in an isolated workstation, to a more realistic conception of the designer as a member of an electronic workgroup. Finally, the paper underlines that this non-trivial conception demands that new hardware and software be developed to meet the needs of the electronic workgroup - which raises issues of human-machine interface. Further, it raises the key issues of how to represent and expose knowledge to users in intelligent information - sharing systems, designed to include not only good user interfaces for supporting problem-solving activities of individuals, but also good organizational interfaces for supporting the problem-solving activities of groups. The paper closes by charting promising directions for further research and with a few remarks about the computerized design firm's (near) future.
series CAAD Futures
last changed 1999/04/03 17:58

_id e378
authors Gerken, H.
year 1989
title Performance and Problems of Software Surveys
doi https://doi.org/10.52842/conf.ecaade.1989.x.h3l
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 6.3.1-6.3.4
summary The general purpose of surveys of products and services is to give a first information on a special market segment to the potential buyer. Therefore such surveys have an important transmitting and at the same time objectifying task. There is a lot of software surveys in West Germany and German-speaking neighboring countries, for instance the well known Nomina Reports. Besides these general, many application fields and computer classes comprising surveys there are special ones which are sometimes part of a larger publication. In the field of architecture there are two special software surveys available: the survey of the Swiss engineers and architects association (SIA) and the survey of the Institute of Architecture and Planning Theory (IAP) of the University of Hannover.
series eCAADe
last changed 2022/06/07 07:50

_id 4cf3
authors Kalay, Yehuda E.
year 1989
title Modeling Objects and Environments
source xix, 402 p. : ill. New York: Wiley, 1989. includes a short bibliography and index. Part of the Principles of Computer Aided Design series. --- See also review by Patricia G
summary McIntosh, in ACADIA Newsletter Vol. 9 No. 3 pp 20-23, June 1990. This book introduces the concept of modeling objects in the computer's memory so it can be used to aide the process of their design. Modeling is defined as an hierarchical abstraction of data and operators to manipulate it, subject to semantic integrity constraints that guarantee the realizability of the designed artifact in the real world. Starting with general concepts of modeling, the book moves on to discuss the modeling of shapes (form) in two and in three dimensions. The discussion covers both topology and geometry. Next the book introduces the concept of shape transformations (translation, scaling, rotation, etc.), both in absolute and in relative terms. The book then introduces the concept of assembly modeling, and adds non-graphical attributes to the representation. It concludes with a discussion on user interface and parametrization. The book includes many examples written in Pascal that complement the theory, and can be used as a basis for building a geometric modeling engine. It also includes exercises, so it can be used as a text book for a two-semester advance course in geometric modeling
keywords CAD, data structures, solid modeling, abstraction, polygons, solids, boolean operations, transforms, computer graphics, user interface, parametrization, B-rep, polyhedra, objects, PASCAL
series CADline
email
last changed 2003/06/02 13:58

_id 8bf3
authors McCullough, M., Mitchell, W.J. and Purcell, P. (Eds.)
year 1990
title The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [Conference Proceedings]
source International Conference on Computer-Aided Architectural Design 1989/ ISBN 0-262-13254-0] (Massachusetts / USA), 1989, 505 p.
summary Design is the computation of shape information that is needed to guide fabrication or construction of artifacts. But it is not so straightforward as, say, the computation of numerical information required to balance a checkbook. This is partly because algebras of shapes are not as well understood and precisely formalized as algebras of numbers, partly because the rules for carrying out shape computations tend to be fluid and ill defined and partly because the predicates that must be satisfied to achieve successful termination are often complex and difficult to specify. For centuries architects have carried out shape computations by hand, using informal procedures and the simplest of tools. Over the last two decades though, they have made increasing use of more formal procedures executed by computers. It is still too early to be sure of the gains and losses that follow from this development, but there is no doubt that it raises some challenging questions of architectural theory and some perplexing issues for those concerned with the future of architectural education. This book frames those issues and provides a diversity of perspectives on them. Its contents were initially presented at the CAAD Futures 89 Conference-an international gathering of researchers and teachers in the field of computer-aided architectural design which was jointly sponsored by the Harvard Graduate School of Design and the MIT Department of Architecture and held in Cambridge, Massachusetts, in July 1989. There are four major sections: Theoretical Foundations, Knowledge-Based Design Tools, Information Delivery Systems, and Case Studies: Electronic Media in the Design Studio. In a representative collection of current views, over thirty extensively illustrated papers discuss the experiences of universities in the USA, Europe, Japan, Israel, Canada, and Australia, articulate present theoretical and practical concerns, provide criticism of media and methods, and suggest directions for the future. Architectural educators and architects concerned with the effect of computer technology on the design process will find here an indispensable reference and a rich source of ideas. This book was itself prepared in an electronic design studio. Composition and typography, most image collection and placement, and such editing as was practical within this publishing format, were all performed digitally using Macintosh computers at the Harvard Graduate School of Design during a period of a few weeks in 1989.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 1b88
authors Tang, John C.
year 1989
title Listing, Drawing and Gesturing in Design: A Study of the Use of Shared Workspaces by Design Teams
source Stanford University
summary This dissertation is a descriptive study of the shared workspace activity of small groups working on conceptual design tasks. Shared workspace activity refers to the listing, drawing, and gesturing activity that occurs in the work environment of a group. This research is premised on the need to understand what participants actually do in an activity in order to guide the development of technology (especially advanced computer tools) to support this activity. The thesis presents: (1) a methodology for observing and analyzing collaborative design activity; (2) a detailed description and analysis of key aspects of shared workspace activity; (3) a set of specific recommendations for the design of tools to support shared workspace activity. The methodology of interaction analysis was applied to study the activity of small groups (3-4 people) working on short (approximately 1$1/over2$ hours) conceptual design tasks. The group's work was organized around either a whiteboard or large paper sheets on a conference table. Eight design sessions were videotaped and analyzed. The analysis included integrating a variety of perspectives on the data, including that of the participants themselves. The analysis focused on how teams use their shared workspace. A framework for analyzing workspace activity was proposed. This framework provides a structure for categorizing workspace activity according to two dimensions: actions and functions. The actions describe the process of producing the activity: listing, drawing or gesturing. The functions indicate the purpose effectively accomplished by the activity: storing information, expressing ideas, or mediating interaction. Using the framework to analyze workspace activity led to specific observations about shared workspace activity: (1) gestures, and their relationship to the workspace, convey important information; (2) the overhead involved in the process of recording information can be problematic; (3) the process of creating artifacts conveys significant information that is useful in understanding their meaning; (4) workspace actions and functions fluently intermix; (5) the nature of access to the workspace (orientation, simultaneous access, and proximity) structures how the workspace is used. These observations led to specific recommendations for the development of technology to support shared workspace activity.  
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 6754
authors Terzidis, Costas
year 1989
title Transformational Design
doi https://doi.org/10.52842/conf.acadia.1989.087
source New Ideas and Directions for the 1990’s [ACADIA Conference Proceedings] Gainsville (Florida - USA) 27-29 October 1989, pp. 87-101
summary The use of dynamically executable transformations and their orchestration in time is discussed and explored as a design tool. The aim has been to accommodate the dynamic character of architectural design during its form searching stages. The transformation and reformation of architectural elements is executed in real time under the direction of a user, who, by controlling the rhythm and the speed, orchestrates the compositional evolution of an architectural parti.
series ACADIA
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 10HOMELOGIN (you are user _anon_600290 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002