CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 3 of 3

_id caadria2022_344
id caadria2022_344
authors Krezlik, Adrian
year 2022
title Considering Energy, Materials and Health Factors in Architectural Design, Two Renovation Strategies for the Portuguese Building Stock
doi https://doi.org/10.52842/conf.caadria.2022.2.619
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 619-628
summary According to the Intergovernmental Panel on Climate Change, the built environment has a significant share in global final energy use, greenhouse gases emission, land-system change, and biodiversity loss to list some indicators. In Europe, the biggest challenge is to regenerate existing building stock to create a positive impact on Nature. The Portuguese housing stock is old: 56% is more than 30 years old, and it has a low level of thermal comfort and energy efficiency. The first thermal regulations appeared in 1990 and therefore most of the houses need urgent renovation to meet EU decarbonization goals, and to improve energy efficiency, as well as well-being and comfort of residents. This paper presents a method that aims to verify existing solutions known from vernacular architecture as complementary to existing strategies. It employs digital simulation to verify whether they could be used for renovation, measuring their impact on human and planetary health. The paper shows that there is a wide spectrum of parameters that influence the renovation process and that it is possible to enhance building performance using vernacular knowledge.
keywords Building Energy Modelling, Life Cycle Assessment, Occupant Health, Energy Renovation, Vernacular Mimicry, SDG 3, SDG 11, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2023_227
id ecaade2023_227
authors Moorhouse, Jon and Freeman, Tim
year 2023
title Towards a Genome for Zero Carbon Retrofit of UK Housing
doi https://doi.org/10.52842/conf.ecaade.2023.2.197
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 197–206
summary The United Kingdom has some of the worst insulated housing stock in Northern Europe. This is in part due to the age of housing in the UK, with over 90% being built before 1990 [McCrone 2017, Piddington 2020]. Moreover, 85% of current UK housing will still be in use in 2050 by which stage their Government are targeting Net Carbon Zero [Eyre 2019]. Domestic energy use accounts for around 25% of UK carbon emissions. The UK will need to retrofit 20 million dwellings in order to meet this target. If this delivery were evenly spread, it would equate to over 2,000 retrofit completions each day. Government-funded initiatives are stimulating the market, with upwards of 60,000 social housing retrofits planned for 2023, but it is clear that a system must be developed to enable the design and implementation of housing-stock improvement at a large scale.This paper charts the 20-year development of a digital approach to the design for low-carbon domestic retrofit by architects Constructive Thinking Studio Limited and thence documents the emergence of a collaborative approach to retrofit patterns on a National scale. The author has led the Research and Development stream of this practice, developing a Building Information Modelling methodology and integrated Energy Modelling techniques to optimise design for housing retrofit [Georgiadou 2019, Ben 2020], and then inform a growing palette of details and a database of validated solutions [Moorhouse 2013] that can grow and be used to predict options for future projects [D’Angelo 2022]. The data is augmented by monitoring energy and environmental performance, enabling a growing body of knowledge that can be aligned with existing big data to simulate the benefits of nationwide stock improvement. The paper outlines incremental case studies and collaborative methods pivotal in developing this work The proposed outcome of the work is a Retrofit Genome that is available at a national level.
keywords Retrofit, Housing, Zero-Carbon, BIM, Big Data, Design Genome
series eCAADe
email
last changed 2023/12/10 10:49

_id architectural_intelligence2022_4
id architectural_intelligence2022_4
authors Yihui Li, Wen Gao & Borong Lin
year 2022
title From type to network: a review of knowledge representation methods in architecture intelligence design
doi https://doi.org/https://doi.org/10.1007/s44223-022-00006-9
source Architectural Intelligence Journal
summary With the rise of the next generation of artificial intelligence driven by knowledge and data, the research on knowledge representation in architecture is also receiving widespread attention from the academia. This paper sorts out the evolution of architectural knowledge representation methods in the history of architecture, and summarizes three progressive representation frameworks of their development with type, pattern and network. By searching these three keywords in the Web of Science Core Collection among 4867 publications from 1990 to 2021, the number of publications in the past 5 years raised more than 50%, which show significant research interest in architecture industry in recent years. Among them, the first two are static declarative knowledge representation methods, while the network-based knowledge representation method also includes procedural knowledge representation methods and provides a way for knowledge association. This means the network representation has more advantage in terms of the logical completeness of knowledge representation, and accounts for 67% of the current research on knowledge representation in architecture. In the context of the rapid development of artificial intelligence, this method can realize the construction of architectural knowledge system and greatly improve the work efficiency of the building industry. On the other hand, in the face of carbon-neutral sustainable development scenarios, using knowledge representation, building performance knowledge and design knowledge could be expressed in a unified manner, and a personalized and efficient workflow for performance-oriented scheme design and optimization would be achieved.
series Architectural Intelligence
email
last changed 2025/01/09 15:00

No more hits.

HOMELOGIN (you are user _anon_373256 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002