CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 263

_id e1c9
authors Danahy, John and Wright, Robert
year 1989
title Computing and Design in the Canadian Schools of Architecture and Landscape Architecture: A Proposed Research Agenda for Integrated CAD & GIS in the 1990's
doi https://doi.org/10.52842/conf.acadia.1989.227
source New Ideas and Directions for the 1990’s [ACADIA Conference Proceedings] Gainsville (Florida - USA) 27-29 October 1989, pp. 227-244
summary Conventional computer systems currently used by architecture and landscape architecture are not addressing complex decision making, system interface, dynamic manipulation and real time visualization of data. This paper identifies a strategy by which Canadian Schools could form a supportive network, incorporate and expand their research development. Within this larger framework schools would have better tools, a larger research base and access to funding as a group. The following discussion is an idea of what we at the Canadian Schools need to do differently over the next five years in our research and teaching in order to make a unique contribution to our fields.
series ACADIA
email
last changed 2022/06/07 07:55

_id ab9c
authors Kvan, Thomas and Kvan, Erik
year 1999
title Is Design Really Social
source International Journal of Virtual Reality, 4:1
summary There are many who will readily agree with Mitchell's assertion that "the most interesting new directions (for computer-aided design) are suggested by the growing convergence of computation and telecommunication. This allows us to treat designing not just as a technical process... but also as a social process." [Mitchell 1995]. The assumption is that design was a social process until users of computer-aided design systems were distracted into treating it as a merely technical process. Most readers will assume that this convergence must and will lead to increased communication between design participants, that better social interaction leads to be better design. The unspoken assumption appears to be that putting the participants into an environment with maximal communication channels will result in design collaboration. The tools provided, therefore, must permit the best communication and the best social interaction. We see a danger here, a pattern being repeated which may lead us into less than useful activities. As with several (popular) architectural design or modelling systems already available, however, computer system implementations all too often are poor imitations manual systems. For example, few in the field will argue with the statement that the storage of data in layers in a computer-aided drafting system is an dispensable approach. Layers derive from manual overlay drafting technology [Stitt 1984] which was regarded as an advanced (manual) production concept at the time many software engineers were specifying CAD software designs. Early implementations of CAD systems (such as RUCAPS, GDS, Computervision) avoided such data organisation, the software engineers recognising that object-based structures are more flexible, permitting greater control of data editing and display. Layer-based systems, however, are easier to implement in software, more familiar to the user and hence easier to explain, initially easier to use but more limiting for an experienced and thoughtful user, leading in the end to a lesser quality in resultant drawings and significant problems in output control (see Richens [1990], pp. 31-40 for a detailed analysis of such features and constraints). Here then we see the design for architectural software faithfully but inappropriately following manual methods. So too is there a danger of assuming that the best social interaction is that done face-to-face, therefore all collaborative design communications environments must mimic face-to-face.
series journal paper
email
last changed 2003/05/15 10:29

_id 82a2
authors Streich, Bernd
year 1991
title The Conception of Education in CAD
doi https://doi.org/10.52842/conf.ecaade.1991.x.p4b
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
summary In February 1990 the University of Kaiserslautern founded the new teaching and research department "Computer-Aided Design and Construction in Environmental Planning and Architecture". Unlike other German universities, the speciality of the new teaching department is in the common education of architects and environmental planners (including urban planning), so that a wide range of computer systems is at their disposal: computer-aided architectural design systems just as geographic information systems, picture processing or information systems to support urban planning etc. No other German university disposes of this kind of common education in a single teaching department. The following aspects will be discussed: (-) The general concept of education in three dimensions, viz. a dimension of application concerning architecture and urban planning, a dimension of technical features concerning computer applications and a dimension of critical judgement. (-) Contents of education and teaching concept including examples and students' resonance. (-) Research fields in urban planning and architecture which are necessary for a practical-oriented education concept. (-) Experience with the educational background furnished by the students of architecture and environmental planning and general consequences for the teaching concept.

series eCAADe
email
last changed 2022/06/07 07:50

_id 450c
authors Akin, Φmer
year 1990
title Computational Design Instruction: Toward a Pedagogy
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 302-316
summary The computer offers enormous potential both in and out of the classroom that is realized only in limited ways through the applications available to us today. In the early days of the computer it was generally argued that it would replace the architect. When this idea became obsolete, the prevailing opinion of proponents and opponents alike shifted to the notion of the computer as merely adding to present design capabilities. This idea is so ingrained in our thinking that we still speak of "aiding" design with computers. It is clear to those who grasp the real potential of this still new technology - as in the case of many other major technological innovations - that it continues to change the way we design, rather than to merely augment or replace human designers. In the classroom the computer has the potential to radically change three fundamental ingredients: student, instruction, and instructor. It is obvious that changes of this kind spell out a commensurate change in design pedagogy. If the computer is going to be more than a passive instrument in the design studio, then design pedagogy will have to be changed, fundamentally. While the practice of computing in the studio continues to be a significant I aspect of architectural education, articulation of viable pedagogy for use in the design studio is truly rare. In this paper the question of pedagogy in the CAD studio will be considered first. Then one particular design studio taught during Fall 1988 at Carnegie Mellon University will be presented. Finally, we shall return to issues of change in the student, instruction, and instructor, as highlighted by this particular experience.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id 6a30
authors Bonn, Markus
year 1989
title Modeling Architectural Forms through Replacement Operations
doi https://doi.org/10.52842/conf.acadia.1989.103
source New Ideas and Directions for the 1990’s [ACADIA Conference Proceedings] Gainsville (Florida - USA) 27-29 October 1989, pp. 103-130
summary Replacement operations, where an element at any topological level may be replaced by another element at the same or different topological level, are defined. Their potential as design tools which may be incorporated in a CAD system is investigated and demonstrated through the experimental implementation of two such operations in MARCOS, a Modeling Architectural Compositions System. MARCOS has been written in C. It is highly interactive and runs on an Apple Macintosh IIx. The two operations which have been implemented are the face -> volume and volume -> volume replacements. They were chosen for their potential as generators of architectural forms. Examples of architectural compositions produced through the use of replacement operations are also illustrated.
series ACADIA
email
last changed 2022/06/07 07:54

_id ddss9219
id ddss9219
authors Bourdakis, V. and Fellows, R.F.
year 1993
title A model appraising the performance of structural systems used in sports hall and swimming pool buildings in greece
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary The selection of the best performing structural system (among steel, timber laminated, concrete, fabric tents) for medium span (30-50m) sports halls and swimming pools in Greece formed the impetus for this research. Decision-making concerning selection of the structural system is difficult in this sector of construction, as was explained in the "Long Span Structures" conference (November 1990, Athens. Greece). From the literature it has been found that most building appraisals end up at the level of data analysis and draw conclusions on the individual aspects they investigate. These approaches usually focus on a fraction of the problem, examining it very deeply and theoretically. Their drawback is loss of comprehensiveness and ability to draw conclusions on an overall level and consequently being applicable to the existing conditions. Research on an inclusive level is sparse. In this particular research project, an inclusive appraisal approach was adopted, leading to the identification of three main variables: resources, human-user-satisfaction, and technical. Consequently, this led to a combination of purely quantitative and qualitative data. Case studies were conducted on existing buildings in order to assess the actual performance of the various alternative structural systems. This paper presents the procedure followed for the identification of the research variables and the focus on the development of the model of quantification. The latter is of vital importance if the problem of incompatibility of data is to be solved, overall relation of findings is to be achieved and holistic conclusions are to be drawn.
series DDSS
last changed 2003/11/21 15:16

_id 8927
authors Brown, G.Z., McDonald, M. and Meacham, M.
year 1990
title A Review of Computer Use in Industrialized Housing
source October, 1990. 72 p. : ill. includes bibliography
summary The U.S. housing industry is becoming increasingly industrialized. In the process, housing production is becoming more standardized and rationalized, which have the potential to make computerization of the production process easier. This report reviews, assess and documents the extent of computer use in marketing, design, engineering and manufacturing of industrialized housing. Compares and contrasts the state of the art in U.S. vs. Japan and Western Europe. It assess and documents the needs of the domestic industry in this field, and establishes design criteria for new computerized energy tools unique to industrialized housing
keywords prefabrication, housing, CAD, practice, building, energy, management
series CADline
last changed 2003/06/02 13:58

_id 48fc
authors Carrara, Gianfranco and Novembri, Gabriele
year 1990
title Knowledge Assistant in the Process of Architectural Design
source Building and Environment. 1990. 39 p. includes bibliography
summary The article illustrates a methodological approach for the realization of a knowledge-based assistant for building and architectural design. The system is based on the concepts of constraint propagation, and uses the formal method of frames. The aim of the system is to cooperate 'interactively' with the designer in the various phases of this work
keywords knowledge base, architecture, CAD, building, design, frames
series CADline
last changed 2003/06/02 13:58

_id 235d
authors Catalano, Fernando
year 1990
title The Computerized Design Firm
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 317-332
summary This paper is not just about the future of computerized design practice. It is about what to do today in contemplation of tomorrow-the issues of computercentered practice and the courses of action open to us can be discerned by the careful observer. The realities of computerized design practice are different from the issues on which design education still fixes its attention. To educators, the present paper recommends further clinical research on computerized design firms and suggests that case studies on the matter be developed and utilized as teaching material. Research conducted by the author of this paper indicates that a new form of design firm is emerging-the computerized design firm-totally supported and augmented by the new information technology. The present paper proceeds by introducing an abridged case study of an actual totally electronic, computerized design practice. Then, the paper concentrates on modelling the computerized design firm as an intelligent system, indicating non-trivial changes in its structure and strategy brought about by the introduction of the new information technology into its operations - among other considerations, different strategies and diverse conceptions of management and workgroup roles are highlighted. In particular, this paper points out that these structural and strategic changes reflect back on the technology of information with pressures to redirect present emphasis on the individual designer, working alone in an isolated workstation, to a more realistic conception of the designer as a member of an electronic workgroup. Finally, the paper underlines that this non-trivial conception demands that new hardware and software be developed to meet the needs of the electronic workgroup - which raises issues of human-machine interface. Further, it raises the key issues of how to represent and expose knowledge to users in intelligent information - sharing systems, designed to include not only good user interfaces for supporting problem-solving activities of individuals, but also good organizational interfaces for supporting the problem-solving activities of groups. The paper closes by charting promising directions for further research and with a few remarks about the computerized design firm's (near) future.
series CAAD Futures
last changed 1999/04/03 17:58

_id 91c4
authors Checkland, P.
year 1981
title Systems Thinking, Systems Practice
source John Wiley & Sons, Chichester
summary Whether by design, accident or merely synchronicity, Checkland appears to have developed a habit of writing seminal publications near the start of each decade which establish the basis and framework for systems methodology research for that decade."" Hamish Rennie, Journal of the Operational Research Society, 1992 Thirty years ago Peter Checkland set out to test whether the Systems Engineering (SE) approach, highly successful in technical problems, could be used by managers coping with the unfolding complexities of organizational life. The straightforward transfer of SE to the broader situations of management was not possible, but by insisting on a combination of systems thinking strongly linked to real-world practice Checkland and his collaborators developed an alternative approach - Soft Systems Methodology (SSM) - which enables managers of all kinds and at any level to deal with the subtleties and confusions of the situations they face. This work established the now accepted distinction between hard systems thinking, in which parts of the world are taken to be systems which can be engineered, and soft systems thinking in which the focus is on making sure the process of inquiry into real-world complexity is itself a system for learning. Systems Thinking, Systems Practice (1981) and Soft Systems Methodology in Action (1990) together with an earlier paper Towards a Systems-based Methodology for Real-World Problem Solving (1972) have long been recognized as classics in the field. Now Peter Checkland has looked back over the three decades of SSM development, brought the account of it up to date, and reflected on the whole evolutionary process which has produced a mature SSM. SSM: A 30-Year Retrospective, here included with Systems Thinking, Systems Practice closes a chapter on what is undoubtedly the most significant single research programme on the use of systems ideas in problem solving. Now retired from full-time university work, Peter Checkland continues his research as a Leverhulme Emeritus Fellow. "
series other
last changed 2003/04/23 15:14

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id f9e5
authors Cherneff, Jonathan Martin
year 1990
title Knowledge Based Interpretation of Architectural Drawings
source Massachusetts Institute of Technology, Department of Civil Engineering, Cambridge, MA
summary Architectural schematic drawings have been used to communicate building designs for centuries. The symbolic language used in these drawings efficiently represents much of the intricacy of the building process (e.g. implied business relationships, common building practice, and properties of construction materials). The drawing language is an accepted standard representation for building design, something that modern data languages have failed to achieve. In fact, the lack of an accepted standard electronic representation has hampered efforts at computer intergration and perhaps worsened industry fragmentation. In general, drawings must be interpreted, by a professional, and then reentered in order to transfer them from one CAD system to another. This work develops a method for machine interpretation of architectural (or other) schematic drawings. The central problem is to build an efficient drawing parser (i.e. a program that identifies the semantic entitites, characteristics, and relationships that are represented in the drawing). The parser is built from specifications of the drawing grammar and an underlying spatial model. The grammar describes what to look for, and the spatial model enables the parser to find it quickly. Coupled with existing optical recognition technology, this technique enables the use of drawings directly as: (1) a database to drive various AEC applications, (2) a communication protocol to integrate CAD systems, (3) a traditional user interface.
series thesis:PhD
last changed 2003/02/12 22:37

_id a33f
authors Cote, Pierre, Hartkopf , Volker and Loftness, Vivian (et al)
year 1990
title Vector Field Representation for the Evaluation of Multiple Performance Variables
source 1990. 6, [7] p., [3] p. of ill. includes bibliography
summary A vector field representation is proposed to simulate the spatial distribution of four building system performance variables: light, sound, radiant heat, and air flow. From this simulation, a measure of the impact of adding, deleting, or modifying an object in the field is computed. This measure serves as a passive evaluation of the user/designer's decision to modify the location or dimensions of the object in a space. This process of simulation-evaluation is performed by a performance module (PM), which is viewed as a component of a CAAD System (Computer Architectural Aided Design). This paper describes the motivation, objectives, methodology and preliminary results of the approach
keywords simulation, CAD, computation, evaluation, building, performance, architecture
series CADline
last changed 2003/06/02 13:58

_id e5e2
authors Coyne, R.D., Rosenman, M.A. and Radford, A.D. (et.al.)
year 1990
title Knowledge Based Design Systems
source 576 p. : ill Reading, Mass.: Addison-Wesley, 1990. includes bibliographies and index.
summary This book describes the bases, approaches, techniques, and implementations of knowledge-based design systems, and advocates and develops new directions in design systems generally. A formal model of design coupled with the notion of prototypes provides a coherent framework for all that follows and is a platform on which a comprehension of knowledge-based design rests. The book is divided into three parts. Part I, Design, examines and describes design and design processes, providing the context for the remainder of the book. Part II, Representation and Reasoning, explores the kinds of knowledge involved in design and the tools and techniques available for representing and controlling this knowledge. It examines the attributes of design that must be described and the ways in which knowledge-based methods are capable of describing and controlling them. Part III, Knowledge-Based Design, presents in detail the fundamentals of the interpretation of design, including the role of expert systems in interpreting existing designs, before describing how to produce designs within a knowledge-based environment. This part includes a detailed examination of design processes from the perspective of how to control these processes. Within each of these processes, the place and role of knowledge is presented and examples of knowledge-based design systems given. Finally, the authors examine central areas of human design and demonstrate what current knowledge-based design systems are capable of doing now and in the future
keywords knowledge base, design process, representation, CAD, AI, prototypes, expert systems
series CADline
email
last changed 2003/05/17 10:13

_id 411f
authors Coyne, Richard D. and Postmus, A.G.
year 1990
title Spatial Applications of Neural Networks in Computer-Aided Design
source Artificial Intelligence in Engineering. 1990. vol. 5: pp. 9-22. CADLINE has abstract only
summary Neural networks of PDP (parallel distributed processing), models of computation are based on mathematical models of neural processes. The authors explore the application of PDP to simple spatial reasoning in computer-aided design. Knowledge that provides a mapping from performances to design descriptions can be encoded into PDP systems in the form of learned patterns. The implementation of a simple PDP pattern associator is described. The system is shown to facilitate a rudimentary kind of associative or analogical reasoning. It also facilitates reasoning where only incomplete information is available. There are important concerns in design reasoning
keywords CAD, neural networks, design, representation, knowledge, reasoning
series CADline
email
last changed 2003/05/17 10:13

_id a235
authors Danahy, John W.
year 1990
title Irises in a Landscape: An Experiment in Dynamic Interaction and Teaching Design Studio
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 363-376
summary The capacity of most computer-aided design systems is inadequate to represent landscape architectural ideas and compute landscape scenes quickly. As part of our teaching agenda, we decided to write software for the Silicon Graphics Iris workstations to tackle this problem directly. This paper begins with a discussion of our concerns about the use of CAD tools in the representation of landscape architectural space. Secondly, we discuss the approach that Toronto takes to computing and teaching with particular emphasis on the use of computers to support an integrated representational work environment. Finally, a fourth-year design studio that used our software is reviewed. Static illustrations of the system are presented here, although there is a videotape that demonstrates the dynamic nature of the system.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 298e
authors Dave, Bharat and Woodbury, Robert
year 1990
title Computer Modeling: A First Course in Design Computing
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 61-76
summary Computation in design has long been a focus in our department. In recent years our faculty has paid particular attention to the use of computation in professional architectural education. The result is a shared vision of computers in the curriculum [Woodbury 1985] and a set of courses, some with considerable historyland others just now being initiated. We (Dave and Woodbury) have jointly developed and at various times over the last seven years have taught Computer Modeling, the most introductory of these courses. This is a required course for all the incoming freshmen students in the department. In this paper we describe Computer Modeling: its context, the issues and topics it addresses, the tasks it requires of students, and the questions and opportunities that it raises. Computer Modeling is a course about concepts, about ways of explicitly understanding design and its relation to computation. Procedural skills and algorithmic problem solving techniques are given only secondary emphasis. In essential terms, the course is about models, of design processes, of designed objects, of computation and of computational design. Its lessons are intended to communicate a structure of such models to students and through this structure to demonstrate a relationship between computation and design. It is hoped that this structure can be used as a framework, around which students can continue to develop an understanding of computers in design.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id c2ed
authors De Vries, Mark and Wagter, Harry
year 1990
title A CAAD Model for Use in Early Design Phases
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 215-228
summary In this paper we present a model for handling design information in the early design phases. This model can be used for representing both vague and exact defined information. The first part describes the difficulties involved in using CAD in the architectural design process and the characteristics of that process. Then we give a description of the design information and its representation during the design process. Next an overview of the architectural design process describes how design information is added and manipulated during the design process in order to achieve an effective result. Finally, we include a brief description of a simple prototype program to illustrate how this theory acts in practice.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id b66a
authors Dvorak, Robert W.
year 1989
title CAD Tools for Systems Theory and Bottom Up Design
doi https://doi.org/10.52842/conf.acadia.1989.209
source New Ideas and Directions for the 1990’s [ACADIA Conference Proceedings] Gainsville (Florida - USA) 27-29 October 1989, pp. 209-226
summary The use of CAD is investigated in the teaching of systems theory to a fourth year group of design students. A comparison is made between the CAD group using MacArchitrion and a non-CAD group using traditional design methods. The paper includes a discussion of the meaning of systems design theories, relates the CAD and non-CAD student design methods and illustrates the results. It also includes recommendations for improvements so the computer can become more effective in this type of design teaching. Finally, it concludes with recommendations from the students at the end of the semester project. The basic premise for the CAD design group is that computers should encourage students to understand and use systems design theory.
series ACADIA
last changed 2022/06/07 07:55

_id 3207
authors Emmerik, Maarten J.G.M. van
year 1990
title Interactive design of parameterized 3D models by direct manipulation
source Delft University of Technology
summary The practical applicability of a computer-aided design system is strongly influenced by both the user interface and the internal model representation. A well designed user interface facilitates the communication with the system by offering an intuitive environment for for specification and representation of model information. An internal model representation, capable of storing geometric, topological and hierarchical dependencies between components in a model, increases the efficiency of the system by facilitating modification and elaboration of the model during the different stages of the design process. The subject of this thesis is the integration of a high level parameterized model representation with direct manipulation interface techniques for the design of three-dimensional objects. A direct manipulation interface enables the user to specify a model by interaction on a graphical representation, as an alternative for an abstract and error-prone apha-numerical dialogue style. A high level model representation is obtained by using a procedural modeling language with general purpose control structures, including arithmetic and logical expressions, repetition, conditionals, functions and procedures, and dedicated data types such as coordinate systems, geometric primitives and geometric constraints. The language interpreter is interconnected with a graphical interface, an incremental constraint solver and a geometrical modeler, using visual programming techniques. The developed techniques are implemented in a modeling system called GeoNode. The system incorporates paradigms of object-oriented design, with respect to both the user interface and to the system implementation. The applicability of the presented techniques is illustrated by examples in application domains such as solid modeling, kinematic analysis, feature modeling and top-down design.
keywords CAD/CAM
series thesis:PhD
last changed 2003/02/12 22:37

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 13HOMELOGIN (you are user _anon_579161 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002