CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 264

_id a685
authors Oxman, Rivka E.
year 1990
title Prior Knowledge in Design : A Dynamic Knowledge-based Model of Design and Creativity
source Design Studies. January 1990. vol. 11: pp. 17-28 : ill. includes bibliography
summary The incorporation of precedents into a present design situation by adaptation, restructuring and reformulation depends upon processes of typification and generalization. The function of prototypes as a characteristic form of generalized and structured knowledge in design is described. A precedent-based design model employing memory-based reasoning is proposed. It is argued that typological concepts can serve as a matching level between situation types and solution types. In such an approach both the organization of structured knowledge and the mechanisms of matching to prior knowledge such as cross-indexing and analogy appear to be of seminal importance. A memory-based reasoning process in routine, innovative and creative design is postulated. This is based on concepts of dynamic and episodic memory. Relevant work in the fields of memory organization, machine learning and analogical reasoning is considered with respect to its significance to the field of knowledge-based design
keywords prototypes, reasoning, knowledge base, design
series CADline
email
last changed 2003/06/02 13:58

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
doi https://doi.org/10.52842/conf.acadia.1994.039
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id e33a
authors De Cola, S., De Cola, B. and Pentasuglia, Francesco
year 1990
title Messina 1908: The Invisible City
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 239-246
summary The initial purposes of this work were to build a 3D model of the old city of Messina and to reconstruct a walk through it; to understand the "Ghost city," the parts that form it, and the rules of its plan, which are explicit in some cases but hidden most of the time; to measure its space, appreciate the similarities to and differences from modern city plans, and use the information to improve the plans of tomorrow. It might seem a useless study of a nonexistent city, and yet during the months of detailed work, of patient reconstruction from the surveys and photographs of the city destroyed in 1908, we began to consider how it was still possible to obtain spatial values of and to project behaviors in the lost city, in other words, to practice tests on memory that are very interesting for people working in a context in which memory no longer exists. The work presented here is the first stage of a more complex research project still to be carried out on Messina as it was at the end of the nineteenth century. Here we constructed a 3D model of some parts of the city prior to the earthquake of 1908 and made a five-minute video, using cartoon techniques, of an "impossible" walk through the city. The fragments of the city were reconstructed from available documentary sources, primarily photographic images, which tended to be of the most important places in the city.
series CAAD Futures
last changed 1999/04/03 17:58

_id f9e5
authors Cherneff, Jonathan Martin
year 1990
title Knowledge Based Interpretation of Architectural Drawings
source Massachusetts Institute of Technology, Department of Civil Engineering, Cambridge, MA
summary Architectural schematic drawings have been used to communicate building designs for centuries. The symbolic language used in these drawings efficiently represents much of the intricacy of the building process (e.g. implied business relationships, common building practice, and properties of construction materials). The drawing language is an accepted standard representation for building design, something that modern data languages have failed to achieve. In fact, the lack of an accepted standard electronic representation has hampered efforts at computer intergration and perhaps worsened industry fragmentation. In general, drawings must be interpreted, by a professional, and then reentered in order to transfer them from one CAD system to another. This work develops a method for machine interpretation of architectural (or other) schematic drawings. The central problem is to build an efficient drawing parser (i.e. a program that identifies the semantic entitites, characteristics, and relationships that are represented in the drawing). The parser is built from specifications of the drawing grammar and an underlying spatial model. The grammar describes what to look for, and the spatial model enables the parser to find it quickly. Coupled with existing optical recognition technology, this technique enables the use of drawings directly as: (1) a database to drive various AEC applications, (2) a communication protocol to integrate CAD systems, (3) a traditional user interface.
series thesis:PhD
last changed 2003/02/12 22:37

_id e5e2
authors Coyne, R.D., Rosenman, M.A. and Radford, A.D. (et.al.)
year 1990
title Knowledge Based Design Systems
source 576 p. : ill Reading, Mass.: Addison-Wesley, 1990. includes bibliographies and index.
summary This book describes the bases, approaches, techniques, and implementations of knowledge-based design systems, and advocates and develops new directions in design systems generally. A formal model of design coupled with the notion of prototypes provides a coherent framework for all that follows and is a platform on which a comprehension of knowledge-based design rests. The book is divided into three parts. Part I, Design, examines and describes design and design processes, providing the context for the remainder of the book. Part II, Representation and Reasoning, explores the kinds of knowledge involved in design and the tools and techniques available for representing and controlling this knowledge. It examines the attributes of design that must be described and the ways in which knowledge-based methods are capable of describing and controlling them. Part III, Knowledge-Based Design, presents in detail the fundamentals of the interpretation of design, including the role of expert systems in interpreting existing designs, before describing how to produce designs within a knowledge-based environment. This part includes a detailed examination of design processes from the perspective of how to control these processes. Within each of these processes, the place and role of knowledge is presented and examples of knowledge-based design systems given. Finally, the authors examine central areas of human design and demonstrate what current knowledge-based design systems are capable of doing now and in the future
keywords knowledge base, design process, representation, CAD, AI, prototypes, expert systems
series CADline
email
last changed 2003/05/17 10:13

_id ab63
authors Gross, Mark D.
year 1990
title Relational Modeling: A Basis for Computer-Assisted Design
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 123-136
summary Today's computer assisted design (CAD) systems automate traditional ways of working with tracing paper and pencil, but they cannot represent the rules and relationships of a design. As hardware becomes faster and memory less expensive, more sophisticated fundamental software technologies will be adopted. This shift in the basis of CAD will provide powerful capabilities and offer new ways to think about designing. Recently parametric design, a technique for describing a large class of designs with a small description in code, has become a focus of attention in architectural computing. In parametric CAD systems, design features are identified and keyed to a number of input variables. Changes in the input values result in variations of the basic design. Based on conventional software technologies, parametric design has been successfully applied in many design domains including architecture and is supported by several commercial CAD packages. A weakness of parametric techniques is the need to predetermine which properties are input parameters to be varied and which are to be derived. Relational modeling is a simple and powerful extension of parametric design that overcomes this weakness. By viewing relations as reversible rather than one-way, any set of properties can be chosen as input parameters. For example, a relational model that calculates the shadow length of a given building can also be used to calculate the building height given a desired shadow length. In exercising a relational model the designer is not limited to a pre-selected set of input variables but can explore and experiment freely with changes in all parts of the model. Co is a relational modeling environment under development on the Macintosh-II computer, and Co-Draw, a prototype CAD program based on Co. Co's relationaI engine and object-oriented database provide a powerful basis for modeling design relations. Co-Draw's interactive graphics offer a flexible medium for design exploration. Co provides tools for viewing and editing design models in various representations, including spreadsheet cards, tree and graph structures, as well as plan and elevation graphics. Co's concepts and architecture are described and the implications for design education are discussed.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 04aa
authors Harfmann, Anton C. and Chen, Stuart S.
year 1990
title Building Representation within a Component Based Paradigm
doi https://doi.org/10.52842/conf.acadia.1990.117
source From Research to Practice [ACADIA Conference Proceedings] Big Sky (Montana - USA) 4-6 October 1990, pp. 117-127
summary This paper questions the use of a 2-dimensional medium to convey 3-dimensional information about design intent and proposes a computer-aided paradigm that could radically alter the way in which buildings are designed and built. The paradigm is centered about the accurate and rational representation (Rush, 86) of each individual component that makes up a building in a single, shared, computer based model. The single model approach couples the accurate physical representation of components with the accurate representation of technical information and knowledge about the assemblies of building components. It is anticipated that implementation of this approach will result in fewer communication problems that currently plague the fragmented process of practicing in the professions of architecture and engineering. The paper introduces the basic concepts within the paradigm and focuses on the development of intuitive, reasoning about the component-based design suitable for incorporation in a computer-aided setting.
series ACADIA
email
last changed 2022/06/07 07:49

_id 0b62
authors Maher, Mary Lou
year 1990
title Process Models for Design Synthesis
source AI Magazine. 1990. vol. 11: pp. 49-58
summary Models of design processes provide guidance in the development of knowledge-based systems for design. The basis for such models comes from both research in design theory and methodology as well as problem solving in artificial intelligence. Three models are presented: decomposition, case-based reasoning, and transformation. Each model provides a formalism for representing design knowledge and experience in distinct and complementary forms
keywords design process, knowledge base, systems, theory, decomposition, representation, reasoning
series CADline
email
last changed 2003/05/17 10:19

_id 49a8
authors McCall, R., Fischer, G. and Morch, A.
year 1990
title Supporting Reflection-in-Action in the Janus Design Environment
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 247-259
summary We have developed a computer-based design aid called Janus, which is based on a model of computer-supported design that we think has significance for the future of architectural education. Janus utilizes a knowledge-based approach to link a graphic construction system to hypertext. This allows the computer to make useful comments on the solutions that students construct in a CAD-like environment. These comments contain information intended to make students think more carefully about what they are doing while they are doing it. In other words, Janus promotes what Donald Schon has called "reflection-inaction" (Schon, 1983). The Janus design environment is named for the Roman god with a pair of faces looking in opposite directions. In our case the faces correspond to complementary design activities we call construction and argumentation. Construction is the activity of graphically creating the form of the solution e.g., a building. Traditionally this has been done with tracing paper, pencils, and pens. Argumentation is the activity of reasoning about the problem and its solution. This includes such things as considering what to do next, what alternative courses of action are available, and which course of action to choose. Argumentation is mostly verbal but partly graphical.
series CAAD Futures
last changed 1999/04/03 17:58

_id effd
authors Morozumi, M., Nakamura, H. and Kijima, Y.
year 1990
title A Primitive-Instancing Interactive 3-D Modeling System for Spatial Design Studies
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 457-468
summary The authors have developed a basic, interactive, primitive-instancing 3-D modeling system (CAADF), which is based on a high-speed 3-D color graphic workstation, and have tested its potential ability to support spatial design studies in an architectural design studio. After- a review of work performed by a student with the system, this paper concludes that this system provides an attractive environment for spatial design studies which conventional CAD systems have not achieved. The interactive process of 3-D modeling in perspective or isometric view images and the dynamic viewing utility are the most successful features of the system. In contrast to those advantages, the resolution of color graphic display is a limitation of the system. The authors conclude that if sufficiently many appropriate 3-D geometric primitives are supported by a CAD system, a primitive instancing method can significantly reduce the work entailed in object modeling.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 4317
authors Rosenman, Michael A.
year 1990
title Application of Expert Systems to Building Design Analysis and Evaluation
source Building and Environment. 1990. vol.25: pp. 221-233
summary This paper demonstrates the applicability of expert systems to design analysis and evaluation. Design is a field in which a large part of the processes involved is knowledge-based rather than computation-based. Much of this knowledge is experiential and as such lends itself to be encapsulated in an expert system. An analogy is made between analysis and interpretation and between evaluation and comparison of interpretations. Three examples of expert systems carrying out design analysis and evaluation in different domains are described. It is argued that a graphical interface and a model of the elements within the domain are essential parts of any design system
keywords analysis, design, knowledge base, evaluation, expert systems, architecture
series CADline
last changed 2003/06/02 13:58

_id cd2d
authors Tham, K.W., H.S. Lee and Gero, John S.
year 1990
title Building Envelope Design Using Design Prototypes
source St Louis, Missouri: 1990
summary CADLINE has abstract only. A knowledge-based system for the design of building envelopes using design prototypes is described. The notion of design prototypes and the architecture of a design system utilizing design prototypes for routine design are presented. Design prototypes are schemas for representing design knowledge comprehensively, providing descriptions of structure, behavior and function, and how these are interrelated to facilitate design. The authors identify the processes associated with such a model of design. The approach is object-centered. Examples are drawn from the building envelope design domain, demonstrating how design prototypes are structured and utilized in routine design. Considerations are given to energy, lighting and acoustic performance
keywords building, envelope, knowledge base, systems, prototypes, automation, applications, energy, lighting, acoustics
series CADline
email
last changed 2003/06/02 13:58

_id 48fc
authors Carrara, Gianfranco and Novembri, Gabriele
year 1990
title Knowledge Assistant in the Process of Architectural Design
source Building and Environment. 1990. 39 p. includes bibliography
summary The article illustrates a methodological approach for the realization of a knowledge-based assistant for building and architectural design. The system is based on the concepts of constraint propagation, and uses the formal method of frames. The aim of the system is to cooperate 'interactively' with the designer in the various phases of this work
keywords knowledge base, architecture, CAD, building, design, frames
series CADline
last changed 2003/06/02 13:58

_id 8775
authors Cigolle, Mark and Coleman, Kim
year 1990
title Computer Integrated Design: Transformation as Process
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 333-346
summary To bring together poetry, magic and science, to explore beyond preconceptions, to invent spaces and forms which re-form and inform man's experience, these are the possibilities of architecture. Computer integrated design offers a means for extending the search, one which integrates both conceptual and perceptual issues in the making of architecture. The computer may assist in generating constructs which would not have been created by conventional methods. The application of computer techniques to design has to date been focused primarily on production aspects, an area which is already highly organizable and communicable. In conceptual and perceptual aspects of design, computer techniques remain underdeveloped. Since the impetus for- the development of computer applications has come from the immediate economics of practice rather than a theoretically based strategy, computer-aided design is currently biased toward the replication of conventional techniques rather than the exploration of new potentials. Over the last two years we have been involved in experimentation with methodologies which engage the computer in formative explorations of the design idea. Work produced from investigations by 4th and 5th year undergraduate students in computer integrated design studios that we have been teaching at the University of Southern California demonstrates the potential for the use of the computer as a principal tool in the exploration of syntax and perception, space and program. The challenge is to approach the making of architecture as an innovative act, one which does not rely on preconceived notions of design.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 411f
authors Coyne, Richard D. and Postmus, A.G.
year 1990
title Spatial Applications of Neural Networks in Computer-Aided Design
source Artificial Intelligence in Engineering. 1990. vol. 5: pp. 9-22. CADLINE has abstract only
summary Neural networks of PDP (parallel distributed processing), models of computation are based on mathematical models of neural processes. The authors explore the application of PDP to simple spatial reasoning in computer-aided design. Knowledge that provides a mapping from performances to design descriptions can be encoded into PDP systems in the form of learned patterns. The implementation of a simple PDP pattern associator is described. The system is shown to facilitate a rudimentary kind of associative or analogical reasoning. It also facilitates reasoning where only incomplete information is available. There are important concerns in design reasoning
keywords CAD, neural networks, design, representation, knowledge, reasoning
series CADline
email
last changed 2003/05/17 10:13

_id 8435
authors Coyne, Richard D.
year 1990
title Tools for Exploring Associative Reasoning in Design
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 91-106
summary Two tools for storing and recalling information in computer systems are discussed and demonstrated in relation to design. The tools are hypermedia and neural networks. Each provides a valuable model for reasoning by the association of ideas.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 45b4
authors Coyne, Richard D.
year 1990
title Logic of Design Actions
source Knowledge Based Systems. 1990. vol. 3: pp. 242-257
summary The way in which knowledge about design can be incorporated into knowledge-based design systems is discussed and demonstrated within the framework of an overall logical/ linguistic model of the design process. The technique of hierarchical planning is discussed within this framework. The domain under consideration is that of spatial layout in buildings
keywords space allocation, logic, design process, knowledge base, planning
series CADline
email
last changed 2003/05/17 10:13

_id a235
authors Danahy, John W.
year 1990
title Irises in a Landscape: An Experiment in Dynamic Interaction and Teaching Design Studio
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 363-376
summary The capacity of most computer-aided design systems is inadequate to represent landscape architectural ideas and compute landscape scenes quickly. As part of our teaching agenda, we decided to write software for the Silicon Graphics Iris workstations to tackle this problem directly. This paper begins with a discussion of our concerns about the use of CAD tools in the representation of landscape architectural space. Secondly, we discuss the approach that Toronto takes to computing and teaching with particular emphasis on the use of computers to support an integrated representational work environment. Finally, a fourth-year design studio that used our software is reviewed. Static illustrations of the system are presented here, although there is a videotape that demonstrates the dynamic nature of the system.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id c2ed
authors De Vries, Mark and Wagter, Harry
year 1990
title A CAAD Model for Use in Early Design Phases
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 215-228
summary In this paper we present a model for handling design information in the early design phases. This model can be used for representing both vague and exact defined information. The first part describes the difficulties involved in using CAD in the architectural design process and the characteristics of that process. Then we give a description of the design information and its representation during the design process. Next an overview of the architectural design process describes how design information is added and manipulated during the design process in order to achieve an effective result. Finally, we include a brief description of a simple prototype program to illustrate how this theory acts in practice.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 0f73
authors Ervin, Stephen M.
year 1990
title Designing with Diagrams: A Role for Computing in Design Education and Exploration
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 107-122
summary Environmental designers, design educators and design students using computers are a constituency with a set of requirements for database structure and flexibility, for knowledge representation and inference mechanisms, and for both graphical and non-graphical operations, that are now articulatable and to-date largely unmet. This is especially so in the area called 'preliminary' or 'schematic' design, where our requirements are related to, but different from, those of our colleagues in mechanical and electrical engineering, whose needs have dominated the notable developments in this area. One manifestation of these needs is in the peculiar form of graphics called diagrams , and the ways in which environmental designers (architects, landscape architects., urban designers) use them. Our diagrams are both similar to and different from structural, circuit, or logical diagrams in important ways. These similarities and differences yield basic insights into designing and design knowledge, and provide guidance for some necessary steps in the development of the next generation of CAD systems. Diagrams as a form of knowledge representation have received little scrutiny in the literature of graphic representation and computer graphics. In the following sections I present an overview of the theoretical basis for distinguishing and using diagrams; examine some of the computational requirements for a system of computer-aided diagramming; describe a prototype implementation called CBD (Constraint Based Diagrammer) and illustrate one example of its use; and speculate on the implications and potential applications of these ideas in computer-aided design education.
series CAAD Futures
last changed 1999/04/03 17:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 13HOMELOGIN (you are user _anon_919695 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002