CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 264

_id a23f
authors Jordan, J. Peter (Ed.)
year 1990
title From Research to Practice [Conference Proceedings]
doi https://doi.org/10.52842/conf.acadia.1990
source ACADIA Conference Proceedings / Big Sky (Montana - USA) 4-6 October 1990, 231 p.
summary For the tenth time in as many years, the Association for Computer-Aided Design in Architecture (ACADIA) has invited architectural educators and professionals to discuss their activities and interests related to computer-aided architectural design. This annual meeting has grown from a small group representing a handful of schools to a conference with international participation. For the fifth time, the papers presented at this annual conference have been collected and published in a bound volume as the conference proceedings. In organizing these meetings, ACADIA must be viewed has having firmly established itself as a valuable forum for those who are interested and active in this area. Moreover, the proceedings of these conferences have become an important record for documenting the progress of ideas and activities in this field. This organization and its annual conferences have been a critical influence on my own professional development. The first conference I attended, ACADIA '86, confirmed a nagging suspicion that courses in computer-aided design (CAD) offered at the university level should be more than vendor training. Papers and conversations at subsequent conferences have reinforced this conviction and strengthened my commitment to CAD education which does more than convey electronic drawing technology. At the same time, I have been frustrated at the apparent lack of communication between those involved in these activities in architectural education and the average professional practice. With some notable exceptions, architects are only beginning to make basic computer-aided drafting pay for itself. In many small offices, "The CAD Computer" remains more decoration and status symbol than useful tool. While it can be argued that the economics of computer-aided drafting have only recently become attractive, it must be admitted that many members of ACADIA are actively involved in the development and use of computer applications which are significantly more challenging. In the short run, most of these activities will go largely unnoticed by the community of practicing architects. This situation raises a number of questions on the value of the work produced by members of ACADIA. One can (and many do) challenge the worth of "design" research produced by academia to those in professional practice. However, it is a fundamental mistake to insist that such work be of immediate and direct relevance to the profession. In fact, some presentations at the ACADIA conferences have focused solely on the pedagogical environment (which may be of some intellectual interest) but do not even attempt to address professional design issues. Other work may serve as the basis for further activities which may result in useful applications at some future point in time. Such work is strategic in nature and should not be expected to bear fruit for many years. These are the *natural" products of a university environment and, indeed, may be what the university does best. Still, design professionals remain indifferent (if not somewhat hostile) to these endeavors. The central dilemma resides in the ongoing debate about the fundamental goals of professional education. A number of design professionals believe that architectural education should follow more of a “trade school” model where a professional degree program becomes solely a process of acquiring (and practicing) a set of skills which are directly and immediately useful upon graduation. Today these people stiR closely examine the drafting skill of any recent graduate, but they are also likely to demanding expertise on AutoCAD. It is my view that this position tends to deprecate the image of architects and depreciate the economic status of the profession. On the other hand, there is a similar minority in architectural academia who teach because they are unable or unwilling to deal with the very real complexities and challenges of professional practice. These instructors tend to focus on obscure theory and academic credentials while discounting the importance of professional development. For most who participate in this discussion, it is becoming increasingly clear that professional competency must be founded on an effective marriage of intellectual theory and practical expertise. This must lead to the conclusion that CAD research must recognize and give serious consideration to the professional agenda in a substantive manner without abandoning those activities which deal with strategic and pedagogical issues.
series ACADIA
email
more http://www.acadia.org
last changed 2022/06/07 07:49

_id abc9
authors Campbell, A.T. and Fussell, D.S.
year 1990
title Adaptive Mesh Generation for Global Diffuse Illumination
source Computer Graphics Proc. SIGGRAPH 90 Vol. 24, No. 4, Aug. 1990, pp. 155-164
summary Rapid developments in the design of algorithms for rendering globally illuminated scenes have taken place in the past five years. Net energy methods such as the hemicube and other radiosity algorithms have become very effective a t computing the energy balance for scenes containing diffusely reflecting objects. Such methods first break up a scene description into a relatively large number of elements, or possibly sev- eral levels of elements. Energy transfers among these ele- ments are then determined using a variety of means. While much progress has been made in the design of energy transfer algorithms, little or no attention has been paid to the proper generation of the mesh of surface elements. This pa- per presents a technique for adaptively creating a mesh of surface elements as the energy transfers are computed. The method allows large numbers of small elements to be placed at parts of the scene where the most active energy trans- fers occur without requiring that other parts of the scene be needlessly subdivided to the same degree. As a result, the computational effort in the energy transfer computations can be concentrated where it has the most effect. CR Categories and Subject Descriptors: 1.3.3 [Computer Graphics]: Picture/Image Generation-Display algorithms. 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism. General Terms: Algorithms Additional Key Words and Phrases: global illumination, radiosity, mesh-generation, diffuse, data structure, incremental.
series journal paper
last changed 2003/04/23 15:50

_id 4b48
authors Dourish, P.
year 1999
title Where the Footprints Lead: Tracking down other roles for social navigation
source Social Navigation of Information Space, eds. A. Munro, K. H. and D Benyon. London: Springer-Verlag, pp 15-34
summary Collaborative Filtering was proposed in the early 1990's as a means of managing access to large information spaces by capturing and exploiting aspects of the experiences of previous users of the same information. Social navigation is a more general form of this style of interaction, and with the widening scope of the Internet as an information provider, systems of this sort have rapidly moved from early research prototypes to deployed services in everyday use. On the other hand, to most of the HCI community, the term social navigation" is largely synonymous with "recommendation systems": systems that match your interests to those of others and, on that basis, provide recommendations about such things as music, books, articles and films that you might enjoy. The challenge for social navigation, as an area of research and development endeavour, is to move beyond this rather limited view of the role of social navigation; and to do this, we must try to take a broader view of both our remit and our opportunities. This chapter will revisit the original motivations, and chart something of the path that recent developments have taken. Based on reflections on the original concerns that motivated research into social navigation, it will explore some new avenues of research. In particular, it will focus on two. The first is social navigation within the framework of "awareness" provisions in collaborative systems generally; and the second is the relationship of social navigation systems to spatial models and the ideas of "space" and "place" in collaborative settings. By exploring these two ideas, two related goals can be achieved. The first is to draw attention to ways in which current research into social navigation can be made relevant to other areas of research endeavour; and the second is to re-motivate the idea of "social navigation" as a fundamental model for collaboration in information-seeking."
series other
last changed 2003/04/23 15:50

_id db00
authors Espina, Jane J.B.
year 2002
title Base de datos de la arquitectura moderna de la ciudad de Maracaibo 1920-1990 [Database of the Modern Architecture of the City of Maracaibo 1920-1990]
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 133-139
summary Bases de datos, Sistemas y Redes 134The purpose of this report is to present the achievements obtained in the use of the technologies of information andcommunication in the architecture, by means of the construction of a database to register the information on the modernarchitecture of the city of Maracaibo from 1920 until 1990, in reference to the constructions located in 5 of Julio, Sectorand to the most outstanding planners for its work, by means of the representation of the same ones in digital format.The objective of this investigation it was to elaborate a database for the registration of the information on the modernarchitecture in the period 1920-1990 of Maracaibo, by means of the design of an automated tool to organize the it datesrelated with the buildings, parcels and planners of the city. The investigation was carried out considering three methodologicalmoments: a) Gathering and classification of the information of the buildings and planners of the modern architectureto elaborate the databases, b) Design of the databases for the organization of the information and c) Design ofthe consultations, information, reports and the beginning menu. For the prosecution of the data files were generated inprograms attended by such computer as: AutoCAD R14 and 2000, Microsoft Word, Microsoft PowerPoint and MicrosoftAccess 2000, CorelDRAW V9.0 and Corel PHOTOPAINT V9.0.The investigation is related with the work developed in the class of Graphic Calculation II, belonging to the Departmentof Communication of the School of Architecture of the Faculty of Architecture and Design of The University of the Zulia(FADLUZ), carried out from the year 1999, using part of the obtained information of the works of the students generatedby means of the CAD systems for the representation in three dimensions of constructions with historical relevance in themodern architecture of Maracaibo, which are classified in the work of The Other City, generating different types ofisometric views, perspectives, representations photorealistics, plants and facades, among others.In what concerns to the thematic of this investigation, previous antecedents are ignored in our environment, and beingthe first time that incorporates the digital graph applied to the work carried out by the architects of “The Other City, thegenesis of the oil city of Maracaibo” carried out in the year 1994; of there the value of this research the field of thearchitecture and computer science. To point out that databases exist in the architecture field fits and of the design, alsoweb sites with information has more than enough architects and architecture works (Montagu, 1999).In The University of the Zulia, specifically in the Faculty of Architecture and Design, they have been carried out twoworks related with the thematic one of database, specifically in the years 1995 and 1996, in the first one a system wasdesigned to visualize, to classify and to analyze from the architectural point of view some historical buildings of Maracaiboand in the second an automated system of documental information was generated on the goods properties built insidethe urban area of Maracaibo. In the world environment it stands out the first database developed in Argentina, it is the database of the Modern andContemporary Architecture “Datarq 2000” elaborated by the Prof. Arturo Montagú of the University of Buenos Aires. The general objective of this work it was the use of new technologies for the prosecution in Architecture and Design (MONTAGU, Ob.cit). In the database, he intends to incorporate a complementary methodology and alternative of use of the informationthat habitually is used in the teaching of the architecture. When concluding this investigation, it was achieved: 1) analysis of projects of modern architecture, of which some form part of the historical patrimony of Maracaibo; 2) organized registrations of type text: historical, formal, space and technical data, and graph: you plant, facades, perspectives, pictures, among other, of the Moments of the Architecture of the Modernity in the city, general data and more excellent characteristics of the constructions, and general data of the Planners with their more important works, besides information on the parcels where the constructions are located, 3)construction in digital format and development of representations photorealistics of architecture projects already built. It is excellent to highlight the importance in the use of the Technologies of Information and Communication in this investigation, since it will allow to incorporate to the means digital part of the information of the modern architecturalconstructions that characterized the city of Maracaibo at the end of the XX century, and that in the last decades they have suffered changes, some of them have disappeared, destroying leaves of the modern historical patrimony of the city; therefore, the necessity arises of to register and to systematize in digital format the graphic information of those constructions. Also, to demonstrate the importance of the use of the computer and of the computer science in the representation and compression of the buildings of the modern architecture, to inclination texts, images, mapping, models in 3D and information organized in databases, and the relevance of the work from the pedagogic point of view,since it will be able to be used in the dictation of computer science classes and history in the teaching of the University studies of third level, allowing the learning with the use in new ways of transmission of the knowledge starting from the visual information on the part of the students in the elaboration of models in three dimensions or electronic scalemodels, also of the modern architecture and in a future to serve as support material for virtual recoveries of some buildings that at the present time they don’t exist or they are almost destroyed. In synthesis, the investigation will allow to know and to register the architecture of Maracaibo in this last decade, which arises under the parameters of the modernity and that through its organization and visualization in digital format, it will allow to the students, professors and interested in knowing it in a quicker and more efficient way, constituting a contribution to theteaching in the history area and calculation. Also, it can be of a lot of utility for the development of future investigation projects related with the thematic one and restoration of buildings of the modernity in Maracaibo.
keywords database, digital format, modern architecture, model, mapping
series SIGRADI
email
last changed 2016/03/10 09:51

_id sigradi2006_e183a
id sigradi2006_e183a
authors Costa Couceiro, Mauro
year 2006
title La Arquitectura como Extensión Fenotípica Humana - Un Acercamiento Basado en Análisis Computacionales [Architecture as human phenotypic extension – An approach based on computational explorations]
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 56-60
summary The study describes some of the aspects tackled within a current Ph.D. research where architectural applications of constructive, structural and organization processes existing in biological systems are considered. The present information processing capacity of computers and the specific software development have allowed creating a bridge between two holistic nature disciplines: architecture and biology. The crossover between those disciplines entails a methodological paradigm change towards a new one based on the dynamical aspects of forms and compositions. Recent studies about artificial-natural intelligence (Hawkins, 2004) and developmental-evolutionary biology (Maturana, 2004) have added fundamental knowledge about the role of the analogy in the creative process and the relationship between forms and functions. The dimensions and restrictions of the Evo-Devo concepts are analyzed, developed and tested by software that combines parametric geometries, L-systems (Lindenmayer, 1990), shape-grammars (Stiny and Gips, 1971) and evolutionary algorithms (Holland, 1975) as a way of testing new architectural solutions within computable environments. It is pondered Lamarck´s (1744-1829) and Weismann (1834-1914) theoretical approaches to evolution where can be found significant opposing views. Lamarck´s theory assumes that an individual effort towards a specific evolutionary goal can cause change to descendents. On the other hand, Weismann defended that the germ cells are not affected by anything the body learns or any ability it acquires during its life, and cannot pass this information on to the next generation; this is called the Weismann barrier. Lamarck’s widely rejected theory has recently found a new place in artificial and natural intelligence researches as a valid explanation to some aspects of the human knowledge evolution phenomena, that is, the deliberate change of paradigms in the intentional research of solutions. As well as the analogy between genetics and architecture (Estévez and Shu, 2000) is useful in order to understand and program emergent complexity phenomena (Hopfield, 1982) for architectural solutions, also the consideration of architecture as a product of a human extended phenotype can help us to understand better its cultural dimension.
keywords evolutionary computation; genetic architectures; artificial/natural intelligence
series SIGRADI
email
last changed 2016/03/10 09:49

_id 5da8
authors Tokman, Leyla Y.
year 2001
title Collaborative e-Design
source DCNET'2000: Design Computing on the Net'2000, Organized by Key Centre of Design Computing and Cognition, University of Sydney ve the International Journal of Design Computing
summary In early 1900’s, successful architects who have a strong influencewith not only their ideas on architecture but also their own work gave desk criticism ‘the form of one-on-one conversation’ in their atelier or studio. Being in these studios was a big opportunity for limited number of accepted students. The architectural education in the first half of 1900’s has many other parallels to education from the other professions. Developments in computer technology have been created a new medium in architectural design and education since 1960’s. Today, Computer technology and communication technology together (Information Technology- IT) help architects and students communicate ideas. This is a big opportunity for architecture candidates in 1990’s comparing with the candidates in 1900âs. One of the main changes is desk criticism from ‘the form of one-on-one conversation’ to ‘the form of multiple consultants’. That means today, not only students but also professionals can develop projects together with any adviser/ partner at any time and at any place where IT can be accessible. Moreover, This collaboration for synchronous - asynchronous studies in virtual environments also brings the equal opportunity to the students from not only developed countries but also developing countries. Students and professionals can share and enhance different ideas, progression of design decisions in educational view and practice view. In this study, some experiences will be shared on design computing and also some new visions/ conceptual models of design computing in collaborative environments will be offered.
keywords Collaborative Design, Computing, Information Technology, Participation, Opportunity, Network, Team Design
series journal paper
email
more http://www.arch.usyd.EDU.AU/kcdc/journal/vol3/dcnet/tokman
last changed 2003/05/15 21:45

_id 0f73
authors Ervin, Stephen M.
year 1990
title Designing with Diagrams: A Role for Computing in Design Education and Exploration
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 107-122
summary Environmental designers, design educators and design students using computers are a constituency with a set of requirements for database structure and flexibility, for knowledge representation and inference mechanisms, and for both graphical and non-graphical operations, that are now articulatable and to-date largely unmet. This is especially so in the area called 'preliminary' or 'schematic' design, where our requirements are related to, but different from, those of our colleagues in mechanical and electrical engineering, whose needs have dominated the notable developments in this area. One manifestation of these needs is in the peculiar form of graphics called diagrams , and the ways in which environmental designers (architects, landscape architects., urban designers) use them. Our diagrams are both similar to and different from structural, circuit, or logical diagrams in important ways. These similarities and differences yield basic insights into designing and design knowledge, and provide guidance for some necessary steps in the development of the next generation of CAD systems. Diagrams as a form of knowledge representation have received little scrutiny in the literature of graphic representation and computer graphics. In the following sections I present an overview of the theoretical basis for distinguishing and using diagrams; examine some of the computational requirements for a system of computer-aided diagramming; describe a prototype implementation called CBD (Constraint Based Diagrammer) and illustrate one example of its use; and speculate on the implications and potential applications of these ideas in computer-aided design education.
series CAAD Futures
last changed 1999/04/03 17:58

_id 6a30
authors Bonn, Markus
year 1989
title Modeling Architectural Forms through Replacement Operations
doi https://doi.org/10.52842/conf.acadia.1989.103
source New Ideas and Directions for the 1990’s [ACADIA Conference Proceedings] Gainsville (Florida - USA) 27-29 October 1989, pp. 103-130
summary Replacement operations, where an element at any topological level may be replaced by another element at the same or different topological level, are defined. Their potential as design tools which may be incorporated in a CAD system is investigated and demonstrated through the experimental implementation of two such operations in MARCOS, a Modeling Architectural Compositions System. MARCOS has been written in C. It is highly interactive and runs on an Apple Macintosh IIx. The two operations which have been implemented are the face -> volume and volume -> volume replacements. They were chosen for their potential as generators of architectural forms. Examples of architectural compositions produced through the use of replacement operations are also illustrated.
series ACADIA
email
last changed 2022/06/07 07:54

_id avocaad_2001_09
id avocaad_2001_09
authors Yu-Tung Liu, Yung-Ching Yeh, Sheng-Cheng Shih
year 2001
title Digital Architecture in CAD studio and Internet-based competition
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Architectural design has been changing because of the vast and creative use of computer in different ways. From the viewpoint of designing itself, computer has been used as drawing tools in the latter phase of design (Mitchell 1977; Coyne et al. 1990), presentation and simulation tools in the middle phase (Liu and Bai 2000), and even critical media which triggers creative thinking in the very early phase (Maher et al. 2000; Liu 1999; Won 1999). All the various roles that computer can play have been adopted in a number of professional design corporations and so-called computer-aided design (CAD) studio in schools worldwide (Kvan 1997, 2000; Cheng 1998). The processes and outcomes of design have been continuously developing to capture the movement of the computer age. However, from the viewpoint of social-cultural theories of architecture, the evolvement of design cannot be achieved solely by designers or design processes. Any new idea of design can be accepted socially, culturally and historically only under one condition: The design outcomes could be reviewed and appreciated by critics in the field at the time of its production (Csikszentmihalyi 1986, 1988; Schon and Wiggins 1992; Liu 2000). In other words, aspects of design production (by designers in different design processes) are as critical as those of design appreciation (by critics in different review processes) in the observation of the future trends of architecture.Nevertheless, in the field of architectural design with computer and Internet, that is, so-called computer-aided design computer-mediated design, or internet-based design, most existing studies pay more attentions to producing design in design processes as mentioned above. Relatively few studies focus on how critics act and how they interact with designers in the review processes. Therefore, this study intends to investigate some evolving phenomena of the interaction between design production and appreciation in the environment of computer and Internet.This paper takes a CAD studio and an Internet-based competition as examples. The CAD studio includes 7 master's students and 2 critics, all from the same countries. The Internet-based competition, held in year 2000, includes 206 designers from 43 counties and 26 critics from 11 countries. 3 students and the 2 critics in the CAD studio are the competition participating designers and critics respectively. The methodological steps are as follows: 1. A qualitative analysis: observation and interview of the 3 participants and 2 reviewers who join both the CAD studio and the competition. The 4 analytical criteria are the kinds of presenting media, the kinds of supportive media (such as verbal and gesture/facial data), stages of the review processes, and interaction between the designer and critics. The behavioral data are acquired by recording the design presentation and dialogue within 3 months. 2. A quantitative analysis: statistical analysis of the detailed reviewing data in the CAD studio and the competition. The four 4 analytical factors are the reviewing time, the number of reviewing of the same project, the comparison between different projects, and grades/comments. 3. Both the qualitative and quantitative data are cross analyzed and discussed, based on the theories of design thinking, design production/appreciation, and the appreciative system (Goodman 1978, 1984).The result of this study indicates that the interaction between design production and appreciation during the review processes could differ significantly. The review processes could be either linear or cyclic due to the influences from the kinds of media, the environmental discrepancies between studio and Internet, as well as cognitive thinking/memory capacity. The design production and appreciation seem to be more linear in CAD studio whereas more cyclic in the Internet environment. This distinction coincides with the complementary observations of designing as a linear process (Jones 1970; Simon 1981) or a cyclic movement (Schon and Wiggins 1992). Some phenomena during the two processes are also illustrated in detail in this paper.This study is merely a starting point of the research in design production and appreciation in the computer and network age. The future direction of investigation is to establish a theoretical model for the interaction between design production and appreciation based on current findings. The model is expected to conduct using revised protocol analysis and interviews. The other future research is to explore how design computing creativity emerge from the process of producing and appreciating.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id aea2
authors Laurel, B. (ed.)
year 1990
title The Art of Human-Computer Interface Design
source New York: Addison-Wesley.
summary Human-computer interface design is a new discipline. So new in fact, that Alan Kay of Apple Computer quipped that people "are not sure whether they should order it by the yard or the ton"! Irrespective of the measure, interface design is gradually emerging as a much-needed and timely approach to reducing the awkwardness and inconveniences of human-computer interaction. "Increased cognitive load", "bewildered and tired users" - these are the byproducts of the "plethora of options and the interface conventions" faced by computer users. Originally, computers were "designed by engineers, for engineers". Little or no attention was, or needed to be, paid to the interface. However, the pervasive use of the personal computer and the increasing number and variety of applications and programs has given rise to a need to focus on the "cognitive locus of human-computer interaction" i.e. the interface. What is the interface? Laurel defines the interface as a "contact surface" that "reflects the physical properties of the interactors, the functions to be performed, and the balance of power and control." (p.xiii) Incorporated into her definition are the "cognitive and emotional aspects of the user's experience". In a very basic sense, the interface is "the place where contact between two entities occurs." (p.xii) Doorknobs, steering wheels, spacesuits-these are all interfaces. The greater the difference between the two entities, the greater the need for a well-designed interface. In this case, the two very different entities are computers and humans. Human-conputer interface design looks at how we can lessen the effects of these differences. This means, for Laurel, empowering users by providing them with ease of use. "How can we think about it so that the interfaces we design will empower users?" "What does the user want to do?" These are the questions Laurel believes must be asked by designers. These are the questions addressed directly and indirectly by the approximately 50 contributors to The Art of Human-Computer Interface Design. In spite of the large number of contributors to the book and the wide range of fields with which they are associated, there is a broad consensus on how interfaces can be designed for empowerment and ease of use. User testing, user contexts, user tasks, user needs, user control: these terms appear throughout the book and suggest ways in which design might focus less on the technology and more on the user. With this perspective in mind, contributor D. Norman argues that computer interfaces should be designed so that the user interacts more with the task and less with the machine. Such interfaces "blend with the task", and "make tools invisible" so that "the technology is subervient to that goal". Sellen and Nicol insist on the need for interfaces that are 'simple', 'self-explanatory', 'adaptive' and 'supportive'. Contributors Vertelney and Grudin are interested in interfaces that support the contexts in which many users work. They consider ways in which group-oriented tasks and collaborative efforts can be supported and aided by the particular design of the interface. Mountford equates ease of use with understating the interface: "The art and science of interface design depends largely on making the transaction with the computer as transparent as possible in order to minimize the burden on the user".(p.248) Mountford also believes in "making computers more powerful extensions of our natural capabilities and goals" by offering the user a "richer sensory environment". One way this can be achieved according to Saloman is through creative use of colour. Saloman notes that colour can not only impart information but that it can be a useful mnemonic device to create associations. A richer sensory environment can also be achieved through use of sound, natural speech recognition, graphics, gesture input devices, animation, video, optical media and through what Blake refers to as "hybrid systems". These systems include additional interface features to control components such as optical disks, videotape, speech digitizers and a range of devices that support "whole user tasks". Rich sensory environments are often characteristic of game interfaces which rely heavily on sound and graphics. Crawford believes we have a lot to learn from the design of games and that they incorporate "sound concepts of user interface design". He argues that "games operate in a more demanding user-interface universe than other applications" since they must be both "fun" and "functional".
series other
last changed 2003/04/23 15:14

_id cf2011_p093
id cf2011_p093
authors Nguyen, Thi Lan Truc; Tan Beng Kiang
year 2011
title Understanding Shared Space for Informal Interaction among Geographically Distributed Teams
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 41-54.
summary In a design project, much creative work is done in teams, thus requires spaces for collaborative works such as conference rooms, project rooms and chill-out areas. These spaces are designed to provide an atmosphere conducive to discussion and communication ranging from formal meetings to informal communication. According to Kraut et al (E.Kraut et al., 1990), informal communication is an important factor for the success of collaboration and is defined as “conversations take place at the time, with the participants, and about the topics at hand. It often occurs spontaneously by chance and in face-to-face manner. As shown in many research, much of good and creative ideas originate from impromptu meeting rather than in a formal meeting (Grajewski, 1993, A.Isaacs et al., 1997). Therefore, the places for informal communication are taken into account in workplace design and scattered throughout the building in order to stimulate face-to-face interaction, especially serendipitous communication among different groups across disciplines such as engineering, technology, design and so forth. Nowadays, team members of a project are not confined to people working in one location but are spread widely with geographically distributed collaborations. Being separated by long physical distance, informal interaction by chance is impossible since people are not co-located. In order to maintain the benefit of informal interaction in collaborative works, research endeavor has developed a variety ways to shorten the physical distance and bring people together in one shared space. Technologies to support informal interaction at a distance include video-based technologies, virtual reality technologies, location-based technologies and ubiquitous technologies. These technologies facilitate people to stay aware of other’s availability in distributed environment and to socialize and interact in a multi-users virtual environment. Each type of applications supports informal interaction through the employed technology characteristics. One of the conditions for promoting frequent and impromptu face-to-face communication is being co-located in one space in which the spatial settings play as catalyst to increase the likelihood for frequent encounter. Therefore, this paper analyses the degree to which sense of shared space is supported by these technical approaches. This analysis helps to identify the trade-off features of each shared space technology and its current problems. A taxonomy of shared space is introduced based on three types of shared space technologies for supporting informal interaction. These types are named as shared physical environments, collaborative virtual environments and mixed reality environments and are ordered increasingly towards the reality of sense of shared space. Based on the problem learnt from other technical approaches and the nature of informal interaction, this paper proposes physical-virtual shared space for supporting intended and opportunistic informal interaction. The shared space will be created by augmenting a 3D collaborative virtual environment (CVE) with real world scene at the virtual world side; and blending the CVE scene to the physical settings at the real world side. Given this, the two spaces are merged into one global structure. With augmented view of the real world, geographically distributed co-workers who populate the 3D CVE are facilitated to encounter and interact with their real world counterparts in a meaningful and natural manner.
keywords shared space, collaborative virtual environment, informal interaction, intended interaction, opportunistic interaction
series CAAD Futures
email
last changed 2012/02/11 19:21

_id c1e2
authors Norman, Richard B.
year 1990
title Color Contrast and CAAD: The Seven Color Contrasts of Johannes Itten
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 469-478
summary Computer-aided architectural design is design with color - the monitor of a CAAD system is a display of color, a place where images are produced by color manipulation. The success of these images can be judged by the ability of the colors selected to communicate graphic ideas and to convey graphic information. Color as a visual phenomena intrigued the impressionist painters at the end of the nineteenth century; it was the focus of much attention at the Bauhaus in Weimar Germany. When Johannes Itten was appointed as a Master of Form at the Bauhaus in 1919, he developed "an aesthetic color theory originating in the experience and intuition of a painter". In his definitive work, Itten postulates seven ways to communicate visual information with color. "Each is unique in character and artistic value, in visual, expressive and symbolic effect, and together they constitute the fundamental resource of color design". These seven contrasts provide a lexicon of the methods by which computer images convey graphic information. The colors which form a computer image can be simply manipulated to illustrate these contrasts; today's computers make color manipulation a very simple matter. This paper is composed of short essays about each of these contrasts and how they can guide the selection of appropriate colors to convey visual intent on a picture tube. Considered together the contrasts of Itten provide a fundamental resource for electronic graphic communication.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id e80e
authors Van der Does, Jan
year 1993
title Visualising by Means of Endoscope, Computer and Hand-Drawn Techniques
source Endoscopy as a Tool in Architecture [Proceedings of the 1st European Architectural Endoscopy Association Conference / ISBN 951-722-069-3] Tampere (Finland), 25-28 August 1993, pp. 167-180
summary Traditionally, communication during the various stages of the building process takes place via drawings of floor plans, elevations, perspectives and scale models. Computerized drawing techniques have recently come into use. Ways of presenting designs have increasingly become of far-reaching importance in current architecture. Nowadays architectural firms employ specialists who are familiar with the latest developments in the field of presentation techniques, or they farm this highly significant part of their job out to gifted designers. Some of the new techniques being developed endeavor to provide a more realistic presentation of designs of housing estates. Apart from new drawing techniques, mention should also be made of the endoscope, an instrument which can simulate an eye-level tour around a scale model while recording it on videotape. Realistic representations differ quite a lot from the conventional architectural presentation techniques applied, which require a larger amount of imagination on the part of the onlookers. The afore mentioned architectural notation systems, on the one hand, can only be understood by experts, in spite of added explanatory signs and symbols. The often used models and artist’s impressions, on the other hand, frequently create a somewhat distorted view, due to lack of concern for spatial proportions. As a consequence, the design presented and the actual architectural realisation may turn out to differ widely. To bridge the widening gap between the experts and the users, clients and government officials, research concerning architectural representation is needed. In 1990 a Dutch scientific journal, issued by The Delft University, published an illustrated report of research findings under the title Overdracht en Simulatie (Information and Simulation). The article gives a description of a pilot study carried out by a research team (Van Der Does, Van Haaften, Kegel and Vrins) to assess and evaluate various presentation techniques used in architecture. This study was just a first step towards a more detailed follow-up study, to which I shall come back after having given a summarized view of the pilot study.
keywords Architectural Endoscopy
series EAEA
more http://info.tuwien.ac.at/eaea/
last changed 2005/09/09 10:43

_id 6960
authors Langendorf, Richard
year 1986
title Alternative Models of Architectural Practice: The Impact of Computers -- 1990 and 2000
doi https://doi.org/10.52842/conf.acadia.1986.007
source ACADIA Workshop ‘86 Proceedings - Houston (Texas - USA) 24-26 October 1986, pp. 7-27
summary Though many architectural firms have only recently begun to use computers, and most firms still do not use computers for design, it is likely that by the turn of the century computers will have transformed architectural practice. First this paper assesses the likelihood of change by examining the potential use of computers in architectural practice, summarizing technology forecasts for computer hardware, software, and standards. -However, because there is an opportunity, architectural firms will not necessarily computerize. Next is a brief review of impediments to change and the process of organizational adaptation of new technology. Finally, the paper concludes with a number of forecasts in architectural practice in 1990 and 2000. A variety of professional practice options are defined, with the suggestion that there will be increasing experimentation and diversity within the profession. Finally, the implications of these changes are explored for architectural education.
series ACADIA
last changed 2022/06/07 07:52

_id 49a8
authors McCall, R., Fischer, G. and Morch, A.
year 1990
title Supporting Reflection-in-Action in the Janus Design Environment
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 247-259
summary We have developed a computer-based design aid called Janus, which is based on a model of computer-supported design that we think has significance for the future of architectural education. Janus utilizes a knowledge-based approach to link a graphic construction system to hypertext. This allows the computer to make useful comments on the solutions that students construct in a CAD-like environment. These comments contain information intended to make students think more carefully about what they are doing while they are doing it. In other words, Janus promotes what Donald Schon has called "reflection-inaction" (Schon, 1983). The Janus design environment is named for the Roman god with a pair of faces looking in opposite directions. In our case the faces correspond to complementary design activities we call construction and argumentation. Construction is the activity of graphically creating the form of the solution e.g., a building. Traditionally this has been done with tracing paper, pencils, and pens. Argumentation is the activity of reasoning about the problem and its solution. This includes such things as considering what to do next, what alternative courses of action are available, and which course of action to choose. Argumentation is mostly verbal but partly graphical.
series CAAD Futures
last changed 1999/04/03 17:58

_id architectural_intelligence2022_4
id architectural_intelligence2022_4
authors Yihui Li, Wen Gao & Borong Lin
year 2022
title From type to network: a review of knowledge representation methods in architecture intelligence design
doi https://doi.org/https://doi.org/10.1007/s44223-022-00006-9
source Architectural Intelligence Journal
summary With the rise of the next generation of artificial intelligence driven by knowledge and data, the research on knowledge representation in architecture is also receiving widespread attention from the academia. This paper sorts out the evolution of architectural knowledge representation methods in the history of architecture, and summarizes three progressive representation frameworks of their development with type, pattern and network. By searching these three keywords in the Web of Science Core Collection among 4867 publications from 1990 to 2021, the number of publications in the past 5 years raised more than 50%, which show significant research interest in architecture industry in recent years. Among them, the first two are static declarative knowledge representation methods, while the network-based knowledge representation method also includes procedural knowledge representation methods and provides a way for knowledge association. This means the network representation has more advantage in terms of the logical completeness of knowledge representation, and accounts for 67% of the current research on knowledge representation in architecture. In the context of the rapid development of artificial intelligence, this method can realize the construction of architectural knowledge system and greatly improve the work efficiency of the building industry. On the other hand, in the face of carbon-neutral sustainable development scenarios, using knowledge representation, building performance knowledge and design knowledge could be expressed in a unified manner, and a personalized and efficient workflow for performance-oriented scheme design and optimization would be achieved.
series Architectural Intelligence
email
last changed 2025/01/09 15:00

_id e5d0
authors Lowe, John P.
year 1994
title Computer-Aided-Design in the Studio Setting: A Paradigm Shift in Architectural Education
doi https://doi.org/10.52842/conf.ecaade.1994.x.g6j
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 230
summary The introduction of the personal computer in 1982 set forth a revolution that will continue to transform the profession of Architecture. Most architectural practices in America have embraced this revolution realizing the potentials of the computer. However, education seems to have been slower accepting the potentials and challenges of computers. Computer technology will change the design studio setting and therefore the fundamental way architects are educated. The Department of Architecture at Kansas State University has made a commitment to move toward a computer based design studio. In the fall of 1990, discussions began among the faculty to search for the placement of a computer studio within the five year program. Curriculum, staffing, and funding were issues that had to be overcome to make this commitment work. The strategy that was adopted involved placing the computer studio at the fourth year level in phase one. Phase two will progress as more staff are trained on the computer and course work was adapted to accommodate other year levels for a computer based design studios. Funding was a major obstacle. The decision was made to move from a position of being the primary suppliers of computing technology to one of support for student purchased computers. This strategy alleviated the department from maintaining and upgrading the technology. There was great enthusiasm and support from the faculty as a whole for the use of computers in the studio setting. However, the pedagogical impacts of such a change are just beginning to be realized.

series eCAADe
last changed 2022/06/07 07:50

_id ecaade2023_227
id ecaade2023_227
authors Moorhouse, Jon and Freeman, Tim
year 2023
title Towards a Genome for Zero Carbon Retrofit of UK Housing
doi https://doi.org/10.52842/conf.ecaade.2023.2.197
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 197–206
summary The United Kingdom has some of the worst insulated housing stock in Northern Europe. This is in part due to the age of housing in the UK, with over 90% being built before 1990 [McCrone 2017, Piddington 2020]. Moreover, 85% of current UK housing will still be in use in 2050 by which stage their Government are targeting Net Carbon Zero [Eyre 2019]. Domestic energy use accounts for around 25% of UK carbon emissions. The UK will need to retrofit 20 million dwellings in order to meet this target. If this delivery were evenly spread, it would equate to over 2,000 retrofit completions each day. Government-funded initiatives are stimulating the market, with upwards of 60,000 social housing retrofits planned for 2023, but it is clear that a system must be developed to enable the design and implementation of housing-stock improvement at a large scale.This paper charts the 20-year development of a digital approach to the design for low-carbon domestic retrofit by architects Constructive Thinking Studio Limited and thence documents the emergence of a collaborative approach to retrofit patterns on a National scale. The author has led the Research and Development stream of this practice, developing a Building Information Modelling methodology and integrated Energy Modelling techniques to optimise design for housing retrofit [Georgiadou 2019, Ben 2020], and then inform a growing palette of details and a database of validated solutions [Moorhouse 2013] that can grow and be used to predict options for future projects [D’Angelo 2022]. The data is augmented by monitoring energy and environmental performance, enabling a growing body of knowledge that can be aligned with existing big data to simulate the benefits of nationwide stock improvement. The paper outlines incremental case studies and collaborative methods pivotal in developing this work The proposed outcome of the work is a Retrofit Genome that is available at a national level.
keywords Retrofit, Housing, Zero-Carbon, BIM, Big Data, Design Genome
series eCAADe
email
last changed 2023/12/10 10:49

_id 2ccd
authors Kalisperis, Loukas N.
year 1994
title 3D Visualization in Design Education
doi https://doi.org/10.52842/conf.acadia.1994.177
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 177-184
summary It has been said that "The beginning of architecture is empty space." (Mitchell 1990) This statement typifies a design education philosophy in which the concepts of space and form are separated and defined respectively as the negative and positive of the physical world, a world where solid objects exist and void-the mere absence of substance-is a surrounding atmospheric emptiness. Since the beginning of the nineteenth century, however, there has been an alternative concept of space as a continuum: that there is a continuously modified surface between the pressures of form and space in which the shape of the space in our lungs is directly connected to the shape of the space within which we exist. (Porter 1979). The nature of the task of representing architecture alters to reflect the state of architectural understanding at each period of time. The construction of architectural space and form represents a fundamental achievement of humans in their environment and has always involved effort and materials requiring careful planning, preparation, and forethought. In architecture there is a necessary conversion to that which is habitable, experiential, and functional from an abstraction in an entirely different medium. It is often an imperfect procedure that centers on the translation rather than the actual design. Design of the built environment is an art of distinctions within the continuum of space, for example: between solid and void, interior and exterior, light and dark, or warm and cold. It is concerned with the physical organization and articulation of space. The amount and shape of the void contained and generated by the building create the fabric and substance of the built environment. Architecture as a design discipline, therefore, can be considered as a creative expression of the coexistence of form and space on a human scale. As Frank Ching writes in Architecture: Form, Space, and Order, "These elements of form and space are the critical means of architecture. While the utilitarian concerns of function and use can be relatively short lived, and symbolic interpretations can vary from age to age, these primary elements of form and space comprise timeless and fundamental vocabulary of the architectural designer." (1979)

series ACADIA
email
last changed 2022/06/07 07:52

_id 8bf3
authors McCullough, M., Mitchell, W.J. and Purcell, P. (Eds.)
year 1990
title The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [Conference Proceedings]
source International Conference on Computer-Aided Architectural Design 1989/ ISBN 0-262-13254-0] (Massachusetts / USA), 1989, 505 p.
summary Design is the computation of shape information that is needed to guide fabrication or construction of artifacts. But it is not so straightforward as, say, the computation of numerical information required to balance a checkbook. This is partly because algebras of shapes are not as well understood and precisely formalized as algebras of numbers, partly because the rules for carrying out shape computations tend to be fluid and ill defined and partly because the predicates that must be satisfied to achieve successful termination are often complex and difficult to specify. For centuries architects have carried out shape computations by hand, using informal procedures and the simplest of tools. Over the last two decades though, they have made increasing use of more formal procedures executed by computers. It is still too early to be sure of the gains and losses that follow from this development, but there is no doubt that it raises some challenging questions of architectural theory and some perplexing issues for those concerned with the future of architectural education. This book frames those issues and provides a diversity of perspectives on them. Its contents were initially presented at the CAAD Futures 89 Conference-an international gathering of researchers and teachers in the field of computer-aided architectural design which was jointly sponsored by the Harvard Graduate School of Design and the MIT Department of Architecture and held in Cambridge, Massachusetts, in July 1989. There are four major sections: Theoretical Foundations, Knowledge-Based Design Tools, Information Delivery Systems, and Case Studies: Electronic Media in the Design Studio. In a representative collection of current views, over thirty extensively illustrated papers discuss the experiences of universities in the USA, Europe, Japan, Israel, Canada, and Australia, articulate present theoretical and practical concerns, provide criticism of media and methods, and suggest directions for the future. Architectural educators and architects concerned with the effect of computer technology on the design process will find here an indispensable reference and a rich source of ideas. This book was itself prepared in an electronic design studio. Composition and typography, most image collection and placement, and such editing as was practical within this publishing format, were all performed digitally using Macintosh computers at the Harvard Graduate School of Design during a period of a few weeks in 1989.
series CAAD Futures
email
last changed 2003/05/16 20:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 13HOMELOGIN (you are user _anon_935970 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002