CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 76

_id abc9
authors Campbell, A.T. and Fussell, D.S.
year 1990
title Adaptive Mesh Generation for Global Diffuse Illumination
source Computer Graphics Proc. SIGGRAPH 90 Vol. 24, No. 4, Aug. 1990, pp. 155-164
summary Rapid developments in the design of algorithms for rendering globally illuminated scenes have taken place in the past five years. Net energy methods such as the hemicube and other radiosity algorithms have become very effective a t computing the energy balance for scenes containing diffusely reflecting objects. Such methods first break up a scene description into a relatively large number of elements, or possibly sev- eral levels of elements. Energy transfers among these ele- ments are then determined using a variety of means. While much progress has been made in the design of energy transfer algorithms, little or no attention has been paid to the proper generation of the mesh of surface elements. This pa- per presents a technique for adaptively creating a mesh of surface elements as the energy transfers are computed. The method allows large numbers of small elements to be placed at parts of the scene where the most active energy trans- fers occur without requiring that other parts of the scene be needlessly subdivided to the same degree. As a result, the computational effort in the energy transfer computations can be concentrated where it has the most effect. CR Categories and Subject Descriptors: 1.3.3 [Computer Graphics]: Picture/Image Generation-Display algorithms. 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism. General Terms: Algorithms Additional Key Words and Phrases: global illumination, radiosity, mesh-generation, diffuse, data structure, incremental.
series journal paper
last changed 2003/04/23 15:50

_id 4212
authors Haeberli, Paul
year 1990
title Paint by Numbers : Abstract Image Representations
source Computer Graphics. August, 1990. vol. 24: pp. 207-214 : ill. includes bibliography
summary This paper is about creating interesting abstract representations of natural and synthetic scenes. It is possible to create abstract images using an ordered collection of brush strokes. By controlling the color, shape, size, and orientation of individual brush strokes, impressionistic painting of computer generated or photographic images can be created. Several techniques are presented
keywords computer graphics, display, algorithms, user interface, painting, representation, rendering
series CADline
last changed 1999/02/12 15:08

_id ab3c
authors Kramer, G.
year 1996
title Mapping a Single Data Stream to Multiple Auditory Variables: A Subjective Approach to Creating a Compelling Design
source Proceedings of the Third International Conferenceon Auditory Display, Santa FO Institute
summary Representing a single data variable changing in time via sonification, or using that data to control a sound in some way appears to be a simple problem but actually involves a significant degree of subjectivity. This paper is a response to my own focus on specific sonification tasks (Kramer 1990, 1993) (Fitch & Kramer, 1994), on broad theoretical concerns in auditory display (Kramer 1994a, 1994b, 1995), and on the representation of high-dimensional data sets (Kramer 1991a & Kramer & Ellison, 1991b). The design focus of this paper is partly a response to the others who, like myself, have primarily employed single fundamental acoustic variables such as pitch or loudness to represent single data streams. These simple representations have framed three challenges: Behavioral and Cognitive Science-Can sonifications created with complex sounds changing simultaneously in several dimensions facilitate the formation of a stronger internal auditory image, or audiation, than would be produced by simpler sonifications? Human Factors and Applications-Would such a stronger internal image of the data prove to be more useful from the standpoint of conveying information? Technology and Design-How might these richer displays be constructed? This final question serves as a starting point for this paper. After years of cautious sonification research I wanted to explore the creation of more interesting and compelling representations.
series other
last changed 2003/04/23 15:50

_id 8bf3
authors McCullough, M., Mitchell, W.J. and Purcell, P. (Eds.)
year 1990
title The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [Conference Proceedings]
source International Conference on Computer-Aided Architectural Design 1989/ ISBN 0-262-13254-0] (Massachusetts / USA), 1989, 505 p.
summary Design is the computation of shape information that is needed to guide fabrication or construction of artifacts. But it is not so straightforward as, say, the computation of numerical information required to balance a checkbook. This is partly because algebras of shapes are not as well understood and precisely formalized as algebras of numbers, partly because the rules for carrying out shape computations tend to be fluid and ill defined and partly because the predicates that must be satisfied to achieve successful termination are often complex and difficult to specify. For centuries architects have carried out shape computations by hand, using informal procedures and the simplest of tools. Over the last two decades though, they have made increasing use of more formal procedures executed by computers. It is still too early to be sure of the gains and losses that follow from this development, but there is no doubt that it raises some challenging questions of architectural theory and some perplexing issues for those concerned with the future of architectural education. This book frames those issues and provides a diversity of perspectives on them. Its contents were initially presented at the CAAD Futures 89 Conference-an international gathering of researchers and teachers in the field of computer-aided architectural design which was jointly sponsored by the Harvard Graduate School of Design and the MIT Department of Architecture and held in Cambridge, Massachusetts, in July 1989. There are four major sections: Theoretical Foundations, Knowledge-Based Design Tools, Information Delivery Systems, and Case Studies: Electronic Media in the Design Studio. In a representative collection of current views, over thirty extensively illustrated papers discuss the experiences of universities in the USA, Europe, Japan, Israel, Canada, and Australia, articulate present theoretical and practical concerns, provide criticism of media and methods, and suggest directions for the future. Architectural educators and architects concerned with the effect of computer technology on the design process will find here an indispensable reference and a rich source of ideas. This book was itself prepared in an electronic design studio. Composition and typography, most image collection and placement, and such editing as was practical within this publishing format, were all performed digitally using Macintosh computers at the Harvard Graduate School of Design during a period of a few weeks in 1989.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 2105
authors Sirikasem, Peerapong and Degelman, Larry 0.
year 1990
title The Use of Video-Computer Presentation Techniques to Aid in Communication Between Architect and Client
source From Research to Practice [ACADIA Conference Proceedings] Big Sky (Montana - USA) 4-6 October 1990, pp. 205-216
doi https://doi.org/10.52842/conf.acadia.1990.205
summary In an attempt to enhance the communication between architect and client, research was conducted in the use of computer modeling and video imaging techniques for the final architectural presentation process. By superimposing the painted building design from the CAD system onto a digitized image of the intended location, a composite image was achieved. These techniques have advantages in creating a realistic composite image of a proposed building design in its intended location within a short period of time. In order to provide more visual clues, a multiple view presentation format using a series of selected views (multiple views) was used. In addition, the research had further attempted to present the video- computer presentation in an animation sequence. The animation presentations were evaluated by comparing them with the multiple view presentations. Manual rendering and single viewpoint displays were also included in the comparisons in order to validate the results. Questionnaires were used to measure the capability of each presentation format to communicate the intended information to the audiences. The experiments were conducted with non-architecture subject groups in the local Bryan/College Station area.
series ACADIA
email
last changed 2022/06/07 07:56

_id 2bb6
authors Van Bakergem, Dave
year 1990
title Image Collections in the Design Studio
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 261-271
summary No matter what the medium, architects are constantly using images in all aspects of design thinking. Whether it is the perception of the environment, an image in the mind's eye, an abstract drawing or a photographic record, designers use images to conceive of, and manipulate their design ideas. Managing these image collections occurs at a variety of levels in the creative process and is dependent on the type of image that is called upon for reference. The most basic example would be the image collection residing in the mind's memory which is a result of the designer’s world experiences and the relative impressiveness of each experience. Clearly, personal memory plays a significant role in the use of imagery in design, but it is unreliable and can be abstracted in uncontrollable ways. The sketchbook and later photographic collections of the grand tour were the beginnings of efforts to manage and utilize image collections as an aid to drawing and thinking about design. Now the capacity to use electronic means of creating, altering, storing, and retrieving images will enable designers to effectively use large image collections in ways that have not been possible before. This paper describes current work at the School of Architecture at Washington University in a graduate design studio. The students use a powerful 3D modeling CAD system (HOKDraw) to design and present their studio projects. In addition, we are experimenting with an image storage and retrieval system which is directly linked to the CAD model through a relational database (INGRES). Access to the database and images is instantly available through the command language and graphic display. The CAD model in effect becomes a 3D menu to an extensive image database stored on an optical memory disc recorder. Several collections are available to the studio members: the library's slide collection which relates to the studio project, specific photographs and drawings of the project site, and personal image collections stored by individuals for their own reference. The commonly accessible images are basically background material and images collected by the students to document the site, urban context and building typology. The personal images collections are any images (drawings, photographs, published images, CAD images) created or collected by the students for purposes of informing their design thinking. This work relates to the use of precedents and typology in architecture as a point of departure as well as in development of design ideas.
series CAAD Futures
last changed 1999/04/03 17:58

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id fbeb
authors Witkin, A., Kass, M., Terzopoulos, D. and Barr, A.
year 1990
title Linking perception and graphics: modeling with dynamic constraints
source Barlow, H., Blackemore, C. and Weston-Smith, M. (eds), Images and understanding, Cambridge University Press, Cambridge, pp. 213-226
summary Images and Understanding Thoughts about Images: Ideas about Understanding How do you paint a picture of infinity? How do you dance about death? How do you draw a diagram explaining entropy? Images and Understanding explores the human problem of moving facts and ideas from one mind to another - the problems of how we see and communicate using images expressed in pictures, diagrams, words, music and dance. For artists as well as scientists discussion of this topic is timely; electronic and computing technology is expanding the means of generating and communicating images, while physiology and psychology are revealing the neural mechanisms of coding, perceiving and understanding them. The book is divided into six sections, each with an explanatory introduction followed by comprehensively illustrated contributions from internationally distinguished figures from fields as diverse as art history, choreography, psychology, computer science, and philosophy. Images and Understanding is unique in viewing the problems of imagery through the eyes of both science and art; it gives new insight into images and new ideas about understanding. Contributors
series other
last changed 2003/04/23 15:14

_id 242f
authors Goldman, Glenn and Zdepski, M. Stephen
year 1990
title Image Sampling
source From Research to Practice [ACADIA Conference Proceedings] Big Sky (Montana - USA) 4-6 October 1990, pp. 21-28
doi https://doi.org/10.52842/conf.acadia.1990.021
summary Analogous to music sampling, in which sounds from the environment are recorded, distorted and used in unique ways to create music, "image sampling" is the visual equivalent of a sound bite used to create new visual forms, textures, patterns and types of architecture. Through the use of image sam ling, a designer can accurately record and digitize images from the existing visual world: rom the physical (built or natural) context of the site, from history (a specific building " or a significant architectural monument) or from previous work produced by the designer. The digital scanning process makes design information equal and uniform, as it converts all images to dot patterns of varying color. As a result the image can be transformed through numeric operations (even when the algorithms are transparent to the end user). The recorded images can therefore be fragmented, combined, distorted, duplicated, tweened, or subjected to random automated operations. Because computer images are digital, they facilitate modification and transformation, unlike their analog counterparts. Merging video and image processing capabilities with three-dimensional modeling permits the designer to collage visual information into new and readily editable architectural proposals. Combining image samples into new architectural concepts expands the scope of potentials available to the architect and also raises fundamental questions about issues of originality, creativity, authenticity, and the nature of the design process itself. What is original work, created by the designer, and what is merely re-used? The discussion of new digital imaging eventually leads to questions about design theory and ethics, in addition to those associated with computer technology and architectural form. As one works in any new medium, including the digital environment, many questions are raised about its impacts on design. Much of what is presented in this paper are early speculations on the implications of the digital technology and its influence on architecture.
series ACADIA
email
last changed 2022/06/07 07:51

_id 09f7
authors Goldschmidt, Gabriela
year 1990
title Serial Sketching : Feedback Mechanisms in Designing
source System Research, Informatics and Cybernetics, International Conference (5th : 1990 : Baden- Baden, Germany). For Cognition in Design Session, abbreviated paper
summary Designing is seen as a process of small-step transformations of partial images of a still non-existing entity. The ultimate objective of the process is the production of sufficiently coherent and comprehensive representations of design entity, so as to allow the construction of a visual simulation of it, physically or mentally. Sketching is universally used by designers throughout the front-edge of the process as a major tool for the generation, transformation, and representation of images. Serial sketching, often executed on consecutive layers of transparent paper, allows the designer to experiment with changes while fully controlling previous versions of an image. Feedback from each version informs subsequent transformations. This typical characteristic of design behavior is explored through on-line studies quotidian design activity and is compared to modes of production in other domains
keywords design process, cognition, sketching
series CADline
last changed 1999/02/12 15:08

_id 4b09
authors Iwata, Hiroo
year 1990
title Artificial Reality with Force-Feedback : Development of Desktop Virtual Space with Compact Master Manipulator
source Computer Graphics. August, 1990. vol. 24: pp. 165-170 : ill. includes bibliography
summary A new configuration of human interface for 'artificial reality' is discussed. The paper describes a method of implementing force-feedback in a virtual space manipulation system. The system is composed of two subsystems, a real time graphic display system and a tactile input device with reaction force generator. A specialized graphic computer (Stardent TITAN) provides a real time image of the virtual space. A 9 degree-of-freedom manipulator applies reaction forces to the fingers and palm of the operator. The generated forces are calculated from a solid model of the virtual space. The performance of the system is exemplified in manipulation of virtual solids objects such as a mockup for industrial design and a 3D animated character
keywords user interface, virtual reality, computer graphics
series CADline
last changed 1999/02/12 15:08

_id a23f
authors Jordan, J. Peter (Ed.)
year 1990
title From Research to Practice [Conference Proceedings]
source ACADIA Conference Proceedings / Big Sky (Montana - USA) 4-6 October 1990, 231 p.
doi https://doi.org/10.52842/conf.acadia.1990
summary For the tenth time in as many years, the Association for Computer-Aided Design in Architecture (ACADIA) has invited architectural educators and professionals to discuss their activities and interests related to computer-aided architectural design. This annual meeting has grown from a small group representing a handful of schools to a conference with international participation. For the fifth time, the papers presented at this annual conference have been collected and published in a bound volume as the conference proceedings. In organizing these meetings, ACADIA must be viewed has having firmly established itself as a valuable forum for those who are interested and active in this area. Moreover, the proceedings of these conferences have become an important record for documenting the progress of ideas and activities in this field. This organization and its annual conferences have been a critical influence on my own professional development. The first conference I attended, ACADIA '86, confirmed a nagging suspicion that courses in computer-aided design (CAD) offered at the university level should be more than vendor training. Papers and conversations at subsequent conferences have reinforced this conviction and strengthened my commitment to CAD education which does more than convey electronic drawing technology. At the same time, I have been frustrated at the apparent lack of communication between those involved in these activities in architectural education and the average professional practice. With some notable exceptions, architects are only beginning to make basic computer-aided drafting pay for itself. In many small offices, "The CAD Computer" remains more decoration and status symbol than useful tool. While it can be argued that the economics of computer-aided drafting have only recently become attractive, it must be admitted that many members of ACADIA are actively involved in the development and use of computer applications which are significantly more challenging. In the short run, most of these activities will go largely unnoticed by the community of practicing architects. This situation raises a number of questions on the value of the work produced by members of ACADIA. One can (and many do) challenge the worth of "design" research produced by academia to those in professional practice. However, it is a fundamental mistake to insist that such work be of immediate and direct relevance to the profession. In fact, some presentations at the ACADIA conferences have focused solely on the pedagogical environment (which may be of some intellectual interest) but do not even attempt to address professional design issues. Other work may serve as the basis for further activities which may result in useful applications at some future point in time. Such work is strategic in nature and should not be expected to bear fruit for many years. These are the *natural" products of a university environment and, indeed, may be what the university does best. Still, design professionals remain indifferent (if not somewhat hostile) to these endeavors. The central dilemma resides in the ongoing debate about the fundamental goals of professional education. A number of design professionals believe that architectural education should follow more of a “trade school” model where a professional degree program becomes solely a process of acquiring (and practicing) a set of skills which are directly and immediately useful upon graduation. Today these people stiR closely examine the drafting skill of any recent graduate, but they are also likely to demanding expertise on AutoCAD. It is my view that this position tends to deprecate the image of architects and depreciate the economic status of the profession. On the other hand, there is a similar minority in architectural academia who teach because they are unable or unwilling to deal with the very real complexities and challenges of professional practice. These instructors tend to focus on obscure theory and academic credentials while discounting the importance of professional development. For most who participate in this discussion, it is becoming increasingly clear that professional competency must be founded on an effective marriage of intellectual theory and practical expertise. This must lead to the conclusion that CAD research must recognize and give serious consideration to the professional agenda in a substantive manner without abandoning those activities which deal with strategic and pedagogical issues.
series ACADIA
email
more http://www.acadia.org
last changed 2022/06/07 07:49

_id 5509
authors Koutamanis, Alexandros
year 1990
title Development of a computerized handbook of architectural plans
source Delft University of Technology
summary The dissertation investigates an approach to the development of visual / spatial computer representations for architectural purposes through the development of the computerized handbook of architectural plans (chap), a knowledge-based computer system capable of recognizing the metric properties of architectural plans. This investigation can be summarized as an introduction of computer vision to the computerization of architectural representations: chap represents an attempt to automate recognition of the most essential among conventional architectural drawings, floor plans. The system accepts as input digitized images of architectural plans and recognizes their spatial primitives (locations) and their spatial articulation on a variety of abstraction levels. The final output of chap is a description of the plan in terms of the grouping formations detected in its spatial articulation. The overall structure of the description is based on an analysis of its conformity to the formal rules of its “stylistic” context (which in the initial version of chap is classical architecture). Chapter 1 suggests that the poor performance of computerized architectural drawing and design systems is among others evidence of the necessity to computerize visual / spatial architectural representations. A recognition system such as chap offers comprehensive means for the investigation of a methodology for the development and use of such representations. Chapter 2 describes a fundamental task of chap: recognition of the position and shape of locations, the atomic parts of the description of an architectural plan in chap. This operation represents the final and most significant part of the first stage in processing an image input in machine environment. Chapter 3 moves to the next significant problem, recognition of the spatial arrangement of locations in an architectural plan, that is, recognition of grouping relationships that determine the subdivision of a plan into parts. In the absence of systematic and exhaustive typologic studies of classical architecture that would allow us to define a repertory of the location group types possible in classical architectural plans, Chapter 3 follows a bottom-up approach based on grouping relationships derived from elementary architectural knowledge and formalized with assistance from Gestalt theory and its antecedents. The grouping process described in Chapter 3 corresponds both in purpose and in structure to the derivation of a description of an image in computer vision [Marr 1982]. Chapter 4 investigates the well-formedness of the description of a classical architectural plan in an analytical manner: each relevant level (or sublevel) of the classical canon according to Tzonis & Lefaivre [1986] is transformed into a single group of criteria of well-formedness which is investigated independently. The hierarchical structure of the classical canon determines the coordination of these criteria into a sequence of cognitive filters which progressively analyses the correspondence of the descriptions derived as in Chapter 3 to the constraints of the canon. The methodology and techniques presented in the dissertation are primarily considered with respect to chap, a specific recognition system. The resulting specification of chap gives a measure of the use of such a system within the context of a computerized collection of architectural precedents and also presents several extensions to other areas of architecture. Although these extensions are not considered as verifiable claims, Chapter 5 describes some of their implications, including on the role of architectural drawing in computerized design systems, on architectural typologies, and on the nature and structure of generative systems in architecture.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id eaea2015_t1_paper05
id eaea2015_t1_paper05
authors Lobo de Carvalho, Jose Maria; Heitor, Teresa
year 2015
title The Adaptive Reuse of the Arco do Cego ancient Car-Barn Structure in Lisbon
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.61-70
summary This paper presents the example of the reconversion of an important tram station from the origins of electricity in Portugal that was still in use until the late 1990’s but became redundant since then. Its significant urban presence and the importance of preserving the memory of the old trams that were still in use some years ago in Lisbon, led to an innovative solution, combining public value and heritage protection. In 2011, the Lisbon City Council agreed to give the building and its site for university use, namely to be transformed into a student’s facility, as a study, leisure, recreational and cultural space of the IST, open 24h a day. This new university building, located just one block away from the traditional IST compound, was called IST Learning Center and extended the notion of campus outside its walls and into the city’s urban fabric.
keywords reconversion; university; tram
series EAEA
email
last changed 2016/04/22 11:52

_id e167
authors McMillan, T.
year 1990
title Multimedia and education
source Computer Graphics World. v13, 10, 68-72
summary Image-based rendering is a powerful new approach for generating real-time photorealistic computcr ghraphics - lt can provide convinc-ing animations without any cxplicit geomeric representation. We, use the P lenoptic functionf of Adelson and Bergen to provide a concise problem statement for Imagc-based rendering paradigms. such as morphing and view interpolation.The Plenoptic function is a paramparameterized function for describing everything that is visible from a given point in space. We present an image-based rendering system based on sampling, reconstructing, and resampling the, Plenoptic function. ln addition we introduce a novel visible surface algorithm and a geometric invariant for cylindrical projections that is equivalent to the epipolar constraint defined for planar projections.
series journal paper
last changed 2003/04/23 15:50

_id c1e2
authors Norman, Richard B.
year 1990
title Color Contrast and CAAD: The Seven Color Contrasts of Johannes Itten
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 469-478
summary Computer-aided architectural design is design with color - the monitor of a CAAD system is a display of color, a place where images are produced by color manipulation. The success of these images can be judged by the ability of the colors selected to communicate graphic ideas and to convey graphic information. Color as a visual phenomena intrigued the impressionist painters at the end of the nineteenth century; it was the focus of much attention at the Bauhaus in Weimar Germany. When Johannes Itten was appointed as a Master of Form at the Bauhaus in 1919, he developed "an aesthetic color theory originating in the experience and intuition of a painter". In his definitive work, Itten postulates seven ways to communicate visual information with color. "Each is unique in character and artistic value, in visual, expressive and symbolic effect, and together they constitute the fundamental resource of color design". These seven contrasts provide a lexicon of the methods by which computer images convey graphic information. The colors which form a computer image can be simply manipulated to illustrate these contrasts; today's computers make color manipulation a very simple matter. This paper is composed of short essays about each of these contrasts and how they can guide the selection of appropriate colors to convey visual intent on a picture tube. Considered together the contrasts of Itten provide a fundamental resource for electronic graphic communication.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 4e31
authors Norman, Richard B.
year 1990
title Electronic Color : The Art of Color Applied to Graphic Computing
source xiv, 186 p. : ill. (some col.) New York: Van Nostrand Reinhold, 1990. includes bibliography
summary This book offers artists an introduction to a new technology for the communication of visual ideas, and it offers scientists an introduction to principles of art that have existed forever, but made simpler to communicate because of the new technology. The 9 chapters of the book cover such topics as: The language of color (tools and teaching, the elements of design, how color speaks, electronic color as teacher); A theory of contrasts (the Bauhaus, the seven contrasts of Johannes Itten, design applications); Color models (the need for order, traditional concepts of color organization, computer color selection, inventing a color space); Electronics as a source of color (color images, the color monitor, additive and subtractive color, the automation of graphics, reproduction of the computer image); The dynamics of color (dynamics in painting, impressionism, the Albers color descriptions, color dynamics today, dynamic architectural images); Illusions of space and form (transparency, perception of space, definition of form); Color psychology (the meaning of color, the colors, color transposition, applied psychology); Color in the design process (the discovery of site, the design of buildings, the color of cities); The representation of form (automation of the construction process, intuition in drawing, intuition in design, form and color)
keywords computer graphics, color, education
series CADline
last changed 2003/06/02 13:58

_id 2a8b
authors Purcell, Patrick and Applebaum Dan
year 1990
title Light Table: An Interface To Visual Information Systems
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 229-238
summary A primary aim of the Light Table project was to see if a combination of the optical laser disc, local area networks, and interactive videographic workstation technology could bring a major visual collection, (such as the Rotch Visual Collections of the Massachusetts Institute of Technology), to a campuswide population of undergraduate users. VIS (Visual Information System) is the name being given to the new genre of information technology. Much research and development effort is currently being applied to areas where the image has a special significance, for example in architecture and planning, in graphic and fine arts, in biology, in medicine, and in photography. One particular advance in the technology of VIS has been the facility to access visual information across a distributed computer system via LAN (Local Area Networks) and video delivery systems, (such as campus TV cable). This advance allows users to retrieve images from both local and remote sources, dispatching the image search through the LAN, and receiving the images back at their workstation via dedicated channels on the campus TV cable. Light Table is the title of a system that acts as a computer-based interactive videographic interface to a variety of visual information systems described in the body of this paper. It takes its name from the traditional, back- lit, translucent light table that lecturers use to assemble and view collections of slides for talks and seminars. The component of Light Table which is being reported in greatest detail here, a software outcome called Galatea, is a versatile and robust system capable of controlling video devices in a networked environment.
series CAAD Futures
last changed 1999/04/03 17:58

_id avocaad_2001_19
id avocaad_2001_19
authors Shen-Kai Tang, Yu-Tung Liu, Yu-Sheng Chung, Chi-Seng Chung
year 2001
title The visual harmony between new and old materials in the restoration of historical architecture: A study of computer simulation
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the research of historical architecture restoration, scholars respectively focus on the field of architectural context and architectural archeology (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000) or on architecture construction and the procedure of restoration (Shi, 1988, 1989; Chiu, 1990). How to choose materials and cope with their durability becomes an important issue in the restoration of historical architecture (Dasser, 1990; Wang, 1998).In the related research of the usage and durability of materials, some scholars deem that, instead of continuing the traditional ways that last for hundreds of years (that is to replace new materials with old ones), it might be better to keep the original materials (Dasser, 1990). However, unavoidably, some of the originals are much worn. Thus we have to first establish the standard of eliminating components, and secondly to replace identical or similar materials with the old components (Lee, 1990). After accomplishing the restoration, we often unexpectedly find out that the renewed historical building is too new that the sense of history is eliminated (Dasser, 1990; Fu, 1997). Actually this is the important factor that determines the accomplishment of restoration. In the past, some scholars find out that the contrast and conflict between new and old materials are contributed to the different time of manufacture and different coating, such as antiseptic, pattern, etc., which result in the discrepancy of the sense of visual perception (Lee, 1990; Fu, 1997; Dasser, 1990).In recent years, a number of researches and practice of computer technology have been done in the field of architectural design. We are able to proceed design communication more exactly by the application of some systematic softwares, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and so on (Lawson, 1995; Liu, 1996). The application of computer technology to the research of the preservation of historical architecture is comparatively late. Continually some researchers explore the procedure of restoration by computer simulation technology (Potier, 2000), or establish digital database of the investigation of historical architecture (Sasada, 2000; Wang, 1998). How to choose materials by the technology of computer simulation influences the sense of visual perception. Liu (2000) has a more complete result on visual impact analysis and assessment (VIAA) about the research of urban design projection. The main subjects of this research paper focuses on whether the technology of computer simulation can extenuate the conflict between new and old materials that imposed on visual perception.The objective of this paper is to propose a standard method of visual harmony effects for materials in historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example).There are five steps in this research: 1.Categorize the materials of historical architecture and establish the information in digital database. 2.Get new materials of historical architecture and establish the information in digital database. 3.According to the mixing amount of new and old materials, determinate their proportion of the building; mixing new and old materials in a certain way. 4.Assign the mixed materials to the computer model and proceed the simulation of lighting. 5.Make experts and the citizens to evaluate the accomplished computer model in order to propose the expected standard method.According to the experiment mentioned above, we first address a procedure of material simulation of the historical architecture restoration and then offer some suggestions of how to mix new and old materials.By this procedure of simulation, we offer a better view to control the restoration of historical architecture. And, the discrepancy and discordance by new and old materials can be released. Moreover, we thus avoid to reconstructing ˇ§too newˇ¨ historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id avocaad_2001_20
id avocaad_2001_20
authors Shen-Kai Tang
year 2001
title Toward a procedure of computer simulation in the restoration of historical architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the field of architectural design, “visualization¨ generally refers to some media, communicating and representing the idea of designers, such as ordinary drafts, maps, perspectives, photos and physical models, etc. (Rahman, 1992; Susan, 2000). The main reason why we adopt visualization is that it enables us to understand clearly and to control complicated procedures (Gombrich, 1990). Secondly, the way we get design knowledge is more from the published visualized images and less from personal experiences (Evans, 1989). Thus the importance of the representation of visualization is manifested.Due to the developments of computer technology in recent years, various computer aided design system are invented and used in a great amount, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and collaboration, etc. (Lawson, 1995; Liu, 1996). The conventional media are greatly replaced by computer media, and the visualization is further brought into the computerized stage. The procedure of visual impact analysis and assessment (VIAA), addressed by Rahman (1992), is renewed and amended for the intervention of computer (Liu, 2000). Based on the procedures above, a great amount of applied researches are proceeded. Therefore it is evident that the computer visualization is helpful to the discussion and evaluation during the design process (Hall, 1988, 1990, 1992, 1995, 1996, 1997, 1998; Liu, 1997; Sasada, 1986, 1988, 1990, 1993, 1997, 1998). In addition to the process of architectural design, the computer visualization is also applied to the subject of construction, which is repeatedly amended and corrected by the images of computer simulation (Liu, 2000). Potier (2000) probes into the contextual research and restoration of historical architecture by the technology of computer simulation before the practical restoration is constructed. In this way he established a communicative mode among archeologists, architects via computer media.In the research of restoration and preservation of historical architecture in Taiwan, many scholars have been devoted into the studies of historical contextual criticism (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000). Clues that accompany the historical contextual criticism (such as oral information, writings, photographs, pictures, etc.) help to explore the construction and the procedure of restoration (Hung, 1995), and serve as an aid to the studies of the usage and durability of the materials in the restoration of historical architecture (Dasser, 1990; Wang, 1998). Many clues are lost, because historical architecture is often age-old (Hung, 1995). Under the circumstance, restoration of historical architecture can only be proceeded by restricted pictures, written data and oral information (Shi, 1989). Therefore, computer simulation is employed by scholars to simulate the condition of historical architecture with restricted information after restoration (Potier, 2000). Yet this is only the early stage of computer-aid restoration. The focus of the paper aims at exploring that whether visual simulation of computer can help to investigate the practice of restoration and the estimation and evaluation after restoration.By exploring the restoration of historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example), this study aims to establish a complete work on computer visualization, including the concept of restoration, the practice of restoration, and the estimation and evaluation of restoration.This research is to simulate the process of restoration by computer simulation based on visualized media (restricted pictures, restricted written data and restricted oral information) and the specialized experience of historical architects (Potier, 2000). During the process of practicing, communicates with craftsmen repeatedly with some simulated alternatives, and makes the result as the foundation of evaluating and adjusting the simulating process and outcome. In this way we address a suitable and complete process of computer visualization for historical architecture.The significance of this paper is that we are able to control every detail more exactly, and then prevent possible problems during the process of restoration of historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

For more results click below:

this is page 0show page 1show page 2show page 3HOMELOGIN (you are user _anon_350105 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002