CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 263

_id 2f1a
authors Dabney, M.K., Wright, J.C. and Sanders, D.H.
year 1999
title Virtual Reality and the Future of Publishing Archaeological Excavations: the multimedia publication of the prehistoric settlement on Tsoungiza at Ancient Nemea
source New York: The Metropolitan Museum of Art
summary The Nemea Valley Archaeological Project is a study of settlement and land use in a regional valley system in Greece extending from the Upper Paleolithic until the present. Active field research was conducted by four teams between 1981 and 1990. The first component was a regional archaeological survey. Second, and closely related to the first, was a social anthropological study of modern settlement and land use. Next was a team assigned to excavate the succession of prehistoric settlements of Ancient Nemea on Tsoungiza. Last, historical ecologists, a palynologist, and a geologist formed the environmental component of the research. As a result of advances in electronic publishing, plans for the final publication of the Nemea Valley Archaeological Project have evolved. Complete publication of the excavation of the prehistoric settlements of Ancient Nemea on Tsoungiza will appear in an interactive multimedia format on CD/DVD in Fall 2000. This project is planned to be the first electronic publication of the American School of Classical Studies at Athens. We have chosen to publish in electronic format because it will meet the needs and interests of a wider audience, including avocational archaeologists, advanced high school and college students, graduate students, and professional archaeologists. The multimedia format on CD/DVD will permit the inclusion of text, databases, color and black-and-white images, two and three-dimensional graphics, and videos. This publication is being developed in cooperation with Learning Sites, Inc., which specializes in interactive three-dimensional reconstructions of ancient worlds http://www.learningsites.com. The Nemea Valley Archaeological Project is particularly well prepared for the shift towards electronic publishing because the project's field records were designed for and entered in computer databases from the inception of the project. Attention to recording precise locational information for all excavated objects enables us to place reconstructions of objects in their reconstructed architectural settings. Three-dimensional images of architectural remains and associated features will appear both as excavated and as reconstructed. Viewers will be able to navigate these images through the use of virtual reality. Viewers will also be able to reference all original drawings, photographs, and descriptions of the reconstructed architecture and objects. In this way a large audience will be able to view architectural remains, artifacts, and information that are otherwise inaccessible.
series other
last changed 2003/04/23 15:14

_id sigradi2016_499
id sigradi2016_499
authors Crivelli, Juliana de Mello; Vizioli, Simone Helena Tanoue
year 2016
title Gamificaç?o na educaç?o patrimonial: Escola Álvaro Gui?o (SP-BR) [Gamification in patrimonial education: Escola Álvaro Gui?o (SP-BR)]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.860-864
summary This article integrates works developed in the Núcleo de Apoio em Pesquisa em Estudos de Linguagem em Arquitetura e Cidade (N.elac) of the Instituto de Arquitetura e Urbanismo da Universidade de S?o Paulo, and aims to evaluate the contribution of the game as an auxiliary instrument to the patrimonial education (Horta, Grunberg & Monteiro, 1999). Games present themselves as one of the constitutive elements of culture, and many are the authors that discuss the theme. Between them, Huizinga, 2000; Callois, 1990 and Broug?re, 2004. The developed game is an interactive narrative inside a building listed as herritage by the Conselho Municipal de Defesa do Patrimônio Histórico, Arquitetônico, Artístico e Turístico (CONDESPHAASC): the Escola Estadual Dr. Álvaro Gui?o.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ab63
authors Gross, Mark D.
year 1990
title Relational Modeling: A Basis for Computer-Assisted Design
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 123-136
summary Today's computer assisted design (CAD) systems automate traditional ways of working with tracing paper and pencil, but they cannot represent the rules and relationships of a design. As hardware becomes faster and memory less expensive, more sophisticated fundamental software technologies will be adopted. This shift in the basis of CAD will provide powerful capabilities and offer new ways to think about designing. Recently parametric design, a technique for describing a large class of designs with a small description in code, has become a focus of attention in architectural computing. In parametric CAD systems, design features are identified and keyed to a number of input variables. Changes in the input values result in variations of the basic design. Based on conventional software technologies, parametric design has been successfully applied in many design domains including architecture and is supported by several commercial CAD packages. A weakness of parametric techniques is the need to predetermine which properties are input parameters to be varied and which are to be derived. Relational modeling is a simple and powerful extension of parametric design that overcomes this weakness. By viewing relations as reversible rather than one-way, any set of properties can be chosen as input parameters. For example, a relational model that calculates the shadow length of a given building can also be used to calculate the building height given a desired shadow length. In exercising a relational model the designer is not limited to a pre-selected set of input variables but can explore and experiment freely with changes in all parts of the model. Co is a relational modeling environment under development on the Macintosh-II computer, and Co-Draw, a prototype CAD program based on Co. Co's relationaI engine and object-oriented database provide a powerful basis for modeling design relations. Co-Draw's interactive graphics offer a flexible medium for design exploration. Co provides tools for viewing and editing design models in various representations, including spreadsheet cards, tree and graph structures, as well as plan and elevation graphics. Co's concepts and architecture are described and the implications for design education are discussed.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id c0a3
authors Harfmann, Anton C. and Chen, Stuart S.
year 1989
title Component Based Computer Aided Learning for Students of Architecture and Civil Engineering
source New Ideas and Directions for the 1990’s [ACADIA Conference Proceedings] Gainsville (Florida - USA) 27-29 October 1989, pp. 193-208
doi https://doi.org/10.52842/conf.acadia.1989.193
summary The paper describes the methodology and the current efforts to develop an interdisciplinary computer aided learning system for architects and civil engineers. The system being developed incorporates a component oriented relational database with an existing interactive 3-dimensional modeling system developed in the School of Architecture and Planning at SUNY Buffalo. The software will be used in existing courses in architecture and civil engineering as a teaching aid to help students understand the complex 3-dimensional interrelationships of structural components. Initial implementation has focused on the modeling of the components and assemblies for a lowrise steel frame structure. Current implementation efforts are focusing on the capability to view connections in various ways including the ability to "explode" a connection to better understand the sequence of construction and load paths. Appropriate codes, limit states of failure and specific data will be linked to each specific component in an expert system shell so that the system can offer feedback about a student generated connection and perhaps offer other possible connections a library of standard connections. Future expansion of the system will include adding other "systems" of a building, such as mechanical, electrical, plumbing, enclosure etc., to help students visualize the integration of the various parts.
series ACADIA
email
last changed 2022/06/07 07:49

_id a2b9
authors Helsel, S.K. and Roth, J.P.
year 1990
title Virtual Reality, theory, practice and promise
source Meckler, London
summary On the creation of highly interactive, computer-based multimedia environments in which the user becomes a participant with the computer in a "virtually real" world. Essentially, the volume is a republication of articles published in the summer 1990 issue of Multimedia review, plus an additional previously unpublished article on metaphysics, a directory of companies and individuals working with virtual reality concepts and technology, and a suggested readings list.
series other
last changed 2003/04/23 15:14

_id a23f
authors Jordan, J. Peter (Ed.)
year 1990
title From Research to Practice [Conference Proceedings]
source ACADIA Conference Proceedings / Big Sky (Montana - USA) 4-6 October 1990, 231 p.
doi https://doi.org/10.52842/conf.acadia.1990
summary For the tenth time in as many years, the Association for Computer-Aided Design in Architecture (ACADIA) has invited architectural educators and professionals to discuss their activities and interests related to computer-aided architectural design. This annual meeting has grown from a small group representing a handful of schools to a conference with international participation. For the fifth time, the papers presented at this annual conference have been collected and published in a bound volume as the conference proceedings. In organizing these meetings, ACADIA must be viewed has having firmly established itself as a valuable forum for those who are interested and active in this area. Moreover, the proceedings of these conferences have become an important record for documenting the progress of ideas and activities in this field. This organization and its annual conferences have been a critical influence on my own professional development. The first conference I attended, ACADIA '86, confirmed a nagging suspicion that courses in computer-aided design (CAD) offered at the university level should be more than vendor training. Papers and conversations at subsequent conferences have reinforced this conviction and strengthened my commitment to CAD education which does more than convey electronic drawing technology. At the same time, I have been frustrated at the apparent lack of communication between those involved in these activities in architectural education and the average professional practice. With some notable exceptions, architects are only beginning to make basic computer-aided drafting pay for itself. In many small offices, "The CAD Computer" remains more decoration and status symbol than useful tool. While it can be argued that the economics of computer-aided drafting have only recently become attractive, it must be admitted that many members of ACADIA are actively involved in the development and use of computer applications which are significantly more challenging. In the short run, most of these activities will go largely unnoticed by the community of practicing architects. This situation raises a number of questions on the value of the work produced by members of ACADIA. One can (and many do) challenge the worth of "design" research produced by academia to those in professional practice. However, it is a fundamental mistake to insist that such work be of immediate and direct relevance to the profession. In fact, some presentations at the ACADIA conferences have focused solely on the pedagogical environment (which may be of some intellectual interest) but do not even attempt to address professional design issues. Other work may serve as the basis for further activities which may result in useful applications at some future point in time. Such work is strategic in nature and should not be expected to bear fruit for many years. These are the *natural" products of a university environment and, indeed, may be what the university does best. Still, design professionals remain indifferent (if not somewhat hostile) to these endeavors. The central dilemma resides in the ongoing debate about the fundamental goals of professional education. A number of design professionals believe that architectural education should follow more of a “trade school” model where a professional degree program becomes solely a process of acquiring (and practicing) a set of skills which are directly and immediately useful upon graduation. Today these people stiR closely examine the drafting skill of any recent graduate, but they are also likely to demanding expertise on AutoCAD. It is my view that this position tends to deprecate the image of architects and depreciate the economic status of the profession. On the other hand, there is a similar minority in architectural academia who teach because they are unable or unwilling to deal with the very real complexities and challenges of professional practice. These instructors tend to focus on obscure theory and academic credentials while discounting the importance of professional development. For most who participate in this discussion, it is becoming increasingly clear that professional competency must be founded on an effective marriage of intellectual theory and practical expertise. This must lead to the conclusion that CAD research must recognize and give serious consideration to the professional agenda in a substantive manner without abandoning those activities which deal with strategic and pedagogical issues.
series ACADIA
email
more http://www.acadia.org
last changed 2022/06/07 07:49

_id e5d0
authors Lowe, John P.
year 1994
title Computer-Aided-Design in the Studio Setting: A Paradigm Shift in Architectural Education
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 230
doi https://doi.org/10.52842/conf.ecaade.1994.x.g6j
summary The introduction of the personal computer in 1982 set forth a revolution that will continue to transform the profession of Architecture. Most architectural practices in America have embraced this revolution realizing the potentials of the computer. However, education seems to have been slower accepting the potentials and challenges of computers. Computer technology will change the design studio setting and therefore the fundamental way architects are educated. The Department of Architecture at Kansas State University has made a commitment to move toward a computer based design studio. In the fall of 1990, discussions began among the faculty to search for the placement of a computer studio within the five year program. Curriculum, staffing, and funding were issues that had to be overcome to make this commitment work. The strategy that was adopted involved placing the computer studio at the fourth year level in phase one. Phase two will progress as more staff are trained on the computer and course work was adapted to accommodate other year levels for a computer based design studios. Funding was a major obstacle. The decision was made to move from a position of being the primary suppliers of computing technology to one of support for student purchased computers. This strategy alleviated the department from maintaining and upgrading the technology. There was great enthusiasm and support from the faculty as a whole for the use of computers in the studio setting. However, the pedagogical impacts of such a change are just beginning to be realized.

series eCAADe
last changed 2022/06/07 07:50

_id e167
authors McMillan, T.
year 1990
title Multimedia and education
source Computer Graphics World. v13, 10, 68-72
summary Image-based rendering is a powerful new approach for generating real-time photorealistic computcr ghraphics - lt can provide convinc-ing animations without any cxplicit geomeric representation. We, use the P lenoptic functionf of Adelson and Bergen to provide a concise problem statement for Imagc-based rendering paradigms. such as morphing and view interpolation.The Plenoptic function is a paramparameterized function for describing everything that is visible from a given point in space. We present an image-based rendering system based on sampling, reconstructing, and resampling the, Plenoptic function. ln addition we introduce a novel visible surface algorithm and a geometric invariant for cylindrical projections that is equivalent to the epipolar constraint defined for planar projections.
series journal paper
last changed 2003/04/23 15:50

_id 0565
authors Oxman, Robert and Oxman, Rivka
year 1990
title The Computability of Architectural Knowledge
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 171-185
summary In an important contribution to the theoretical foundation of design computing, Mitchell noted "an increasingly urgent need to establish a demonstrably sound, comprehensive, rigorously formalized theoretical foundation upon which to base practical software development efforts" (Mitchell, 1986). In this paper we propose such a theoretical framework. A basic assumption of this work is that the advancement of design computing is dependent upon the emergence of a rigorous formulation of knowledge in design. We present a model of knowledge in architectural design which suggests a promising conceptual basis for dealing with knowledge in computer-aided design systems. We require models which can represent the formal knowledge and manipulative operations of the designer in all of their complexity-that is formal models rather than just geometric models. Shape Grammars (Stiny,1980) represent an example of such models, and constitute a relatively high level of design knowledge as compared to, for example, use of symmetry operations to generate simple formal configurations. Building upon an understanding of the classes of design knowledge as the conceptual basis for formal modeling systems may contribute a new realization of the potential of the medium for design. This will require a comprehensive approach to the definition of architectural and design knowledge. We consider here the implications of a well-defined body of architectural and design knowledge for design education and the potential mutual interaction-in a knowledge-rich environment-of design learning and CAAD learning. The computational factors connected with the representation of design knowledge and its integration in design systems are among the key problems of CAAD. Mitchell's model of knowledge in design incorporates formal knowledge in a comprehensive, multi-level, hierarchical structure in which types of knowledge are correlated with computational concepts. In the main focus of this paper we present a structured, multi-level model of design knowledge which we discuss with respect to current architectural theoretical considerations. Finally, we analyze the computational and educational relevance of such models.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 0278
authors Saalman, Howard
year 1990
title Goodness and Value in the Structure of Cognitive Processes
source Journal of Architectural Education Summer, 1990. vol. 43: pp. 3-7. includes bibliography.
summary This paper had its origins in a course entitled 'Basic Concepts in Architecture' which the author has been teaching for about ten years at Carnegie Mellon University. The course is designed to give architects a basis for understanding notions like process (including the architectural process), for developing functioning theories to determine the 'goodness' of things (including their own designs), in short, an approach to problems of cognition, of perception and of response to perceptions. They become aware, perhaps for the first time, of the precise significance of numbers in their design work, including the dreaded demons of 'nothing' and 'infinity.' They learn the meaning of time: it is the sum of perceptions involved in any process, including the process of getting to know things. Control over the design process is what architects must have so they can function effectively, and make the right decisions. Learning about these things is the goal of the course
keywords design process, architecture, education, cognition, perception, performance, control
series CADline
last changed 1999/02/12 15:09

_id 450c
authors Akin, Ömer
year 1990
title Computational Design Instruction: Toward a Pedagogy
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 302-316
summary The computer offers enormous potential both in and out of the classroom that is realized only in limited ways through the applications available to us today. In the early days of the computer it was generally argued that it would replace the architect. When this idea became obsolete, the prevailing opinion of proponents and opponents alike shifted to the notion of the computer as merely adding to present design capabilities. This idea is so ingrained in our thinking that we still speak of "aiding" design with computers. It is clear to those who grasp the real potential of this still new technology - as in the case of many other major technological innovations - that it continues to change the way we design, rather than to merely augment or replace human designers. In the classroom the computer has the potential to radically change three fundamental ingredients: student, instruction, and instructor. It is obvious that changes of this kind spell out a commensurate change in design pedagogy. If the computer is going to be more than a passive instrument in the design studio, then design pedagogy will have to be changed, fundamentally. While the practice of computing in the studio continues to be a significant I aspect of architectural education, articulation of viable pedagogy for use in the design studio is truly rare. In this paper the question of pedagogy in the CAD studio will be considered first. Then one particular design studio taught during Fall 1988 at Carnegie Mellon University will be presented. Finally, we shall return to issues of change in the student, instruction, and instructor, as highlighted by this particular experience.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id eb5f
authors Al-Sallal, Khaled A. and Degelman, Larry 0.
year 1994
title A Hypermedia Model for Supporting Energy Design in Buildings
source Reconnecting [ACADIA Conference Proceedings / ISBN 1-880250-03-9] Washington University (Saint Louis / USA) 1994, pp. 39-49
doi https://doi.org/10.52842/conf.acadia.1994.039
summary Several studies have discussed the limitations of the available CAAD tools and have proposed solutions [Brown and Novitski 1987, Brown 1990, Degelman and Kim 1988, Schuman et al 1988]. The lack of integration between the different tasks that these programs address and the design process is a major problem. Schuman et al [1988] argued that in architectural design many issues must be considered simultaneously before the synthesis of a final product can take place. Studies by Brown and Novitski [1987] and Brown [1990] discussed the difficulties involved with integrating technical considerations in the creative architectural process. One aspect of the problem is the neglect of technical factors during the initial phase of the design that, as the authors argued, results from changing the work environment and the laborious nature of the design process. Many of the current programs require the user to input a great deal of numerical values that are needed for the energy analysis. Although there are some programs that attempt to assist the user by setting default values, these programs distract the user with their extensive arrays of data. The appropriate design tool is the one that helps the user to easily view the principal components of the building design and specify their behaviors and interactions. Data abstraction and information parsimony are the key concepts in developing a successful design tool. Three different approaches for developing an appropriate CAAD tool were found in the literature. Although there are several similarities among them, each is unique in solving certain aspects of the problem. Brown and Novitski [1987] emphasize the learning factor of the tool as well as its highly graphical user interface. Degelman and Kim [1988] emphasize knowledge acquisition and the provision of simulation modules. The Windows and Daylighting Group of Lawrence Berkeley Laboratory (LBL) emphasizes the dynamic structuring of information, the intelligent linking of data, the integrity of the different issues of design and the design process, and the extensive use of images [Schuman et al 19881, these attributes incidentally define the word hypermedia. The LBL model, which uses hypermedia, seems to be the more promising direction for this type of research. However, there is still a need to establish a new model that integrates all aspects of the problem. The areas in which the present research departs from the LBL model can be listed as follows: it acknowledges the necessity of regarding the user as the center of the CAAD tool design, it develops a model that is based on one of the high level theories of human-computer interaction, and it develops a prototype tool that conforms to the model.

series ACADIA
email
last changed 2022/06/07 07:54

_id 4d0d
authors Angelil, Mark
year 1990
title Experiments as Modus Operandi
source Journal of Architectural Education. November, 1990. Vol. 44: pp. 37-48 : 9 p. of ill
summary Architecture has for too long focused on the presentation of pristine objects and the presentation in drawing form. A critical understanding of the field, however, necessitates a reevaluation of the roles of the process involved in the production of building. Rather than emphasizing surface appearances, an architecture rooted in process aims ultimately at revealing the fundamental and deep structures inherent within the making of architecture. One of the primary tasks of the process is to provoke intuition and ingenuity - and the awareness that both are founded on knowledge - and that knowledge must be applied with imagination. The experiment presented here developed sequentially with a defined structure to the process of design, moving gradually from the abstract into the concrete, thereby attempting and understanding of what Roland Barthes identified as 'concrete abstraction.'
keywords design process, architecture, knowledge, experimentation
series CADline
last changed 1999/02/12 15:07

_id 6a30
authors Bonn, Markus
year 1989
title Modeling Architectural Forms through Replacement Operations
source New Ideas and Directions for the 1990’s [ACADIA Conference Proceedings] Gainsville (Florida - USA) 27-29 October 1989, pp. 103-130
doi https://doi.org/10.52842/conf.acadia.1989.103
summary Replacement operations, where an element at any topological level may be replaced by another element at the same or different topological level, are defined. Their potential as design tools which may be incorporated in a CAD system is investigated and demonstrated through the experimental implementation of two such operations in MARCOS, a Modeling Architectural Compositions System. MARCOS has been written in C. It is highly interactive and runs on an Apple Macintosh IIx. The two operations which have been implemented are the face -> volume and volume -> volume replacements. They were chosen for their potential as generators of architectural forms. Examples of architectural compositions produced through the use of replacement operations are also illustrated.
series ACADIA
email
last changed 2022/06/07 07:54

_id 235d
authors Catalano, Fernando
year 1990
title The Computerized Design Firm
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 317-332
summary This paper is not just about the future of computerized design practice. It is about what to do today in contemplation of tomorrow-the issues of computercentered practice and the courses of action open to us can be discerned by the careful observer. The realities of computerized design practice are different from the issues on which design education still fixes its attention. To educators, the present paper recommends further clinical research on computerized design firms and suggests that case studies on the matter be developed and utilized as teaching material. Research conducted by the author of this paper indicates that a new form of design firm is emerging-the computerized design firm-totally supported and augmented by the new information technology. The present paper proceeds by introducing an abridged case study of an actual totally electronic, computerized design practice. Then, the paper concentrates on modelling the computerized design firm as an intelligent system, indicating non-trivial changes in its structure and strategy brought about by the introduction of the new information technology into its operations - among other considerations, different strategies and diverse conceptions of management and workgroup roles are highlighted. In particular, this paper points out that these structural and strategic changes reflect back on the technology of information with pressures to redirect present emphasis on the individual designer, working alone in an isolated workstation, to a more realistic conception of the designer as a member of an electronic workgroup. Finally, the paper underlines that this non-trivial conception demands that new hardware and software be developed to meet the needs of the electronic workgroup - which raises issues of human-machine interface. Further, it raises the key issues of how to represent and expose knowledge to users in intelligent information - sharing systems, designed to include not only good user interfaces for supporting problem-solving activities of individuals, but also good organizational interfaces for supporting the problem-solving activities of groups. The paper closes by charting promising directions for further research and with a few remarks about the computerized design firm's (near) future.
series CAAD Futures
last changed 1999/04/03 17:58

_id 91c4
authors Checkland, P.
year 1981
title Systems Thinking, Systems Practice
source John Wiley & Sons, Chichester
summary Whether by design, accident or merely synchronicity, Checkland appears to have developed a habit of writing seminal publications near the start of each decade which establish the basis and framework for systems methodology research for that decade."" Hamish Rennie, Journal of the Operational Research Society, 1992 Thirty years ago Peter Checkland set out to test whether the Systems Engineering (SE) approach, highly successful in technical problems, could be used by managers coping with the unfolding complexities of organizational life. The straightforward transfer of SE to the broader situations of management was not possible, but by insisting on a combination of systems thinking strongly linked to real-world practice Checkland and his collaborators developed an alternative approach - Soft Systems Methodology (SSM) - which enables managers of all kinds and at any level to deal with the subtleties and confusions of the situations they face. This work established the now accepted distinction between hard systems thinking, in which parts of the world are taken to be systems which can be engineered, and soft systems thinking in which the focus is on making sure the process of inquiry into real-world complexity is itself a system for learning. Systems Thinking, Systems Practice (1981) and Soft Systems Methodology in Action (1990) together with an earlier paper Towards a Systems-based Methodology for Real-World Problem Solving (1972) have long been recognized as classics in the field. Now Peter Checkland has looked back over the three decades of SSM development, brought the account of it up to date, and reflected on the whole evolutionary process which has produced a mature SSM. SSM: A 30-Year Retrospective, here included with Systems Thinking, Systems Practice closes a chapter on what is undoubtedly the most significant single research programme on the use of systems ideas in problem solving. Now retired from full-time university work, Peter Checkland continues his research as a Leverhulme Emeritus Fellow. "
series other
last changed 2003/04/23 15:14

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 298e
authors Dave, Bharat and Woodbury, Robert
year 1990
title Computer Modeling: A First Course in Design Computing
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 61-76
summary Computation in design has long been a focus in our department. In recent years our faculty has paid particular attention to the use of computation in professional architectural education. The result is a shared vision of computers in the curriculum [Woodbury 1985] and a set of courses, some with considerable historyland others just now being initiated. We (Dave and Woodbury) have jointly developed and at various times over the last seven years have taught Computer Modeling, the most introductory of these courses. This is a required course for all the incoming freshmen students in the department. In this paper we describe Computer Modeling: its context, the issues and topics it addresses, the tasks it requires of students, and the questions and opportunities that it raises. Computer Modeling is a course about concepts, about ways of explicitly understanding design and its relation to computation. Procedural skills and algorithmic problem solving techniques are given only secondary emphasis. In essential terms, the course is about models, of design processes, of designed objects, of computation and of computational design. Its lessons are intended to communicate a structure of such models to students and through this structure to demonstrate a relationship between computation and design. It is hoped that this structure can be used as a framework, around which students can continue to develop an understanding of computers in design.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 0faa
authors Duelund Mortensen, Peder
year 1991
title THE FULL-SCALE MODEL WORKSHOP
source Proceedings of the 3rd European Full-Scale Modelling Conference / ISBN 91-7740044-5 / Lund (Sweden) 13-16 September 1990, pp. 10-11
summary The workshop is an institution, available for use by the public and established at the Laboratory of Housing in the Art Academy's school of Architecture for a 3 year trial period beginning April 1985. This resumé contains brief descriptions of a variety of representative model projects and an overview of all projects carried out so far, including the pilot projects from 1983 and planned projects to and including January 1987. The Full Scale Model Workshop builds full size models of buildings, rooms and parts of buildings. The purpose of the Full Scale Model Workshop is to promote communication among building's users. The workshop is a tool in an attempt to build bridges between theory and practice in research, experimentation and communication of research results. New ideas and experiments of various sorts can be tried out cheaply, quickly and efficiently through the building of full scale models. Changes can be done on the spot as a planned part of the project and on the basis of ideas and experiments achieved through the model work itself. Buildings and their space can thus be communicated directly to all involved persons, regardless of technical background or training in evaluation of building projects.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 15:23

_id 3207
authors Emmerik, Maarten J.G.M. van
year 1990
title Interactive design of parameterized 3D models by direct manipulation
source Delft University of Technology
summary The practical applicability of a computer-aided design system is strongly influenced by both the user interface and the internal model representation. A well designed user interface facilitates the communication with the system by offering an intuitive environment for for specification and representation of model information. An internal model representation, capable of storing geometric, topological and hierarchical dependencies between components in a model, increases the efficiency of the system by facilitating modification and elaboration of the model during the different stages of the design process. The subject of this thesis is the integration of a high level parameterized model representation with direct manipulation interface techniques for the design of three-dimensional objects. A direct manipulation interface enables the user to specify a model by interaction on a graphical representation, as an alternative for an abstract and error-prone apha-numerical dialogue style. A high level model representation is obtained by using a procedural modeling language with general purpose control structures, including arithmetic and logical expressions, repetition, conditionals, functions and procedures, and dedicated data types such as coordinate systems, geometric primitives and geometric constraints. The language interpreter is interconnected with a graphical interface, an incremental constraint solver and a geometrical modeler, using visual programming techniques. The developed techniques are implemented in a modeling system called GeoNode. The system incorporates paradigms of object-oriented design, with respect to both the user interface and to the system implementation. The applicability of the presented techniques is illustrated by examples in application domains such as solid modeling, kinematic analysis, feature modeling and top-down design.
keywords CAD/CAM
series thesis:PhD
last changed 2003/02/12 22:37

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 13HOMELOGIN (you are user _anon_557520 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002