CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 261

_id 8c92
authors Vinograd, T. and Flores, F.
year 1990
title Understanding Computers and Cognition: A New Foundation for Design
source Alex Publishing Corporation
summary Winograd and Flores' `Understanding Computers and Cognition' proposes that the rationalist tradition in AI must be replaced by a hermeneutic approach. Associating the rationalist tradition with the goal of building a human mind, the authors propose that a hermeneutic approach must adopt the goal of constructing prostheses which magnify the human mind. This paper argues that what AI needs is not so much a hermeneutic approach as a better appreciation of biology and psychology. Understanding Computers and Cognition is a groundbreaking book that presents an important new approach to understanding what computers do and how their functioning is related to human language, thought and action.
series other
last changed 2003/04/23 15:14

_id f586
authors Gabriel, G. and Maher, M.L.
year 2000
title Analysis of design communication with and without computer mediation
source Proceedings of Co-designing 2000, pp. 329-337
summary With recent developments in CAD and communication technologies, the way we visualise and communicate design representations is changing. A matter of great interest to architects, practitioners and researchers alike, is how computer technology might affect the way they think and work. The concern is not about the notion of 'support' alone, but about ensuring that computers do not disrupt the design process and collaborative activity already going on (Bannon and Schmidt, 1991). Designing new collaborative tools will then have to be guided by a better understanding of how collaborative work is accomplished and by understanding what resources the collaborators use and what hindrances they encounter in their work (Finholt et al., 1990). Designing, as a more abstract notion, is different than having a business meeting using video conferencing. In design it is more important to 'see' what is being discussed rather than 'watch' the other person(s) involved in the discussion. In other words the data being conveyed might be of more importance than the method with which it is communicated (See Kvan, 1994). Similarly, we believe that by using text instead of audio as a medium for verbal communication, verbal representations can then be recorded alongside graphical representations for later retrieval and use. In this paper we present the results of a study on collaborative design in three different environments: face-to-face (FTF), computer-mediated using video conferencing (CMCD-a), and computer-mediated using "talk by typing" (CMCD-b). The underlying aim is to establish a clearer notion of the collaborative needs of architects using computer-mediation. In turn this has the potential in assisting developers when designing new collaborative tools and in assisting designers when selecting an environment for a collaborative session.
series other
last changed 2003/04/23 15:50

_id 0565
authors Oxman, Robert and Oxman, Rivka
year 1990
title The Computability of Architectural Knowledge
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 171-185
summary In an important contribution to the theoretical foundation of design computing, Mitchell noted "an increasingly urgent need to establish a demonstrably sound, comprehensive, rigorously formalized theoretical foundation upon which to base practical software development efforts" (Mitchell, 1986). In this paper we propose such a theoretical framework. A basic assumption of this work is that the advancement of design computing is dependent upon the emergence of a rigorous formulation of knowledge in design. We present a model of knowledge in architectural design which suggests a promising conceptual basis for dealing with knowledge in computer-aided design systems. We require models which can represent the formal knowledge and manipulative operations of the designer in all of their complexity-that is formal models rather than just geometric models. Shape Grammars (Stiny,1980) represent an example of such models, and constitute a relatively high level of design knowledge as compared to, for example, use of symmetry operations to generate simple formal configurations. Building upon an understanding of the classes of design knowledge as the conceptual basis for formal modeling systems may contribute a new realization of the potential of the medium for design. This will require a comprehensive approach to the definition of architectural and design knowledge. We consider here the implications of a well-defined body of architectural and design knowledge for design education and the potential mutual interaction-in a knowledge-rich environment-of design learning and CAAD learning. The computational factors connected with the representation of design knowledge and its integration in design systems are among the key problems of CAAD. Mitchell's model of knowledge in design incorporates formal knowledge in a comprehensive, multi-level, hierarchical structure in which types of knowledge are correlated with computational concepts. In the main focus of this paper we present a structured, multi-level model of design knowledge which we discuss with respect to current architectural theoretical considerations. Finally, we analyze the computational and educational relevance of such models.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 298e
authors Dave, Bharat and Woodbury, Robert
year 1990
title Computer Modeling: A First Course in Design Computing
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 61-76
summary Computation in design has long been a focus in our department. In recent years our faculty has paid particular attention to the use of computation in professional architectural education. The result is a shared vision of computers in the curriculum [Woodbury 1985] and a set of courses, some with considerable historyland others just now being initiated. We (Dave and Woodbury) have jointly developed and at various times over the last seven years have taught Computer Modeling, the most introductory of these courses. This is a required course for all the incoming freshmen students in the department. In this paper we describe Computer Modeling: its context, the issues and topics it addresses, the tasks it requires of students, and the questions and opportunities that it raises. Computer Modeling is a course about concepts, about ways of explicitly understanding design and its relation to computation. Procedural skills and algorithmic problem solving techniques are given only secondary emphasis. In essential terms, the course is about models, of design processes, of designed objects, of computation and of computational design. Its lessons are intended to communicate a structure of such models to students and through this structure to demonstrate a relationship between computation and design. It is hoped that this structure can be used as a framework, around which students can continue to develop an understanding of computers in design.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id e892
authors Kacmar, Charles John
year 1990
title PROXHY: a Process -Oriented Extensible Hypertext Architecture
source Texas A&M University
summary This research describes a new architecture for hypertext environments. The architecture merges the process, object-oriented, and hypertext models to provide hypertext services to object-based, distributed, application components. Through this architecture, applications are integrated to form a comprehensive hypertext computing environment, allowing links to connect applications or objects in different applications. The architecture separates hypertext and application functionality so that multiple applications can use the facilities of a common hypertext layer. The design of the architecture is such that components can be extended or tailored in order to support future applications, multimedia objects, or the needs of specific applications or users. The process-based, object-oriented framework allows objects of arbitrary complexity to live and interact in a hypertext world. Additionally, the protocol and facilities which support component interaction provide location transparency, arbitrary object granularity, and parallel computation over a network. This dissertation provides a conceptual model of hypertext and a general architecture for hypertext system construction. Related literature from object-oriented programming, operating systems, multimedia applications, and database is discussed in terms of the architecture. A hypertext data model, computational model, and hypertext system taxonomy are used to discuss the capabilities of current hypertext systems. Interaction scenarios are provided in order to illustrate object interaction and the distribution of work among the components of the architecture. A prototype system, implemented to demonstrate the feasibility of the architecture, is discussed. The prototype illustrates all aspects of the architecture including distributed application and hypertext components, cross-application linking, and anchors acting as proxy objects for applications. Application scenarios, problems and limitations, and future research issues provide an understanding of the power of the architecture and its potential for impacting the design of next-generation hypertext systems.  
series thesis:PhD
last changed 2003/02/12 22:37

_id 8833
authors Kalay, Yehuda E., Swerdloff, Lucien M. and Majkowski, Bruce R. (et al)
year 1990
title Process and Knowledge in Design Computation
source Journal of Architectural Education. February, 1990. includes bibliography
summary The challenge of understanding the many facets of design has been a central issue in attempting to computationally define design processes and knowledge. The historical progression of computers in design has been characterized by high aspirations repeatedly humbled by the complexity of design problems. Fundamental questions concerning the role and impact of computers in design should be re-examined in light of new developments in Computer-Aided Design (CAD) and Artificial Intelligence (AI), and the progressive understanding of design itself. At the heart of these issues must lie a mutual understanding of the respective traits of design and computation, and the balance of interaction between them. In this paper two avenues, expressed in terms of mappings between design and computation, are explored with the intention of clarifying the relationship between the theories of design and computation. First, the relationship between models of the design process and computational search strategies is explored. Several paradigms (problem solving, puzzle making, and constraint satisfying), which demonstrate a breadth of approaches to modeling design, are presented along with their computational implications. Second, relationships between design knowledge and computational representation schemes are discussed. Emphasis is placed on drawing from cognitive and computational knowledge representation schemes to represent design knowledge. Finally, some thoughts on integrating these design models and knowledge representation schemes into computer systems to assist designers are discussed
keywords design process, knowledge, representation, architecture
series CADline
email
last changed 2003/06/02 13:58

_id 0278
authors Saalman, Howard
year 1990
title Goodness and Value in the Structure of Cognitive Processes
source Journal of Architectural Education Summer, 1990. vol. 43: pp. 3-7. includes bibliography.
summary This paper had its origins in a course entitled 'Basic Concepts in Architecture' which the author has been teaching for about ten years at Carnegie Mellon University. The course is designed to give architects a basis for understanding notions like process (including the architectural process), for developing functioning theories to determine the 'goodness' of things (including their own designs), in short, an approach to problems of cognition, of perception and of response to perceptions. They become aware, perhaps for the first time, of the precise significance of numbers in their design work, including the dreaded demons of 'nothing' and 'infinity.' They learn the meaning of time: it is the sum of perceptions involved in any process, including the process of getting to know things. Control over the design process is what architects must have so they can function effectively, and make the right decisions. Learning about these things is the goal of the course
keywords design process, architecture, education, cognition, perception, performance, control
series CADline
last changed 1999/02/12 15:09

_id c12b
authors Sakr, Yasser H. and Johnson, Robert E.
year 1991
title Computer-Aided Architectural Design Strategies: One Size Does Not Fit All
source Reality and Virtual Reality [ACADIA Conference Proceedings / ISBN 1-880250-00-4] Los Angeles (California - USA) October 1991, pp. 15-31
doi https://doi.org/10.52842/conf.acadia.1991.015
summary The practice of architecture is in the midst of significant change and an increasingly uncertain future. Socio-economic factors external to the profession are forcing firms to develop new strategies for delivering design services. Overlaying these external changes is the uncertainty resulting from the inevitable introduction of information technology, which is only beginning to have an impact on the profession. Some advocates see the emergence of a new form of design firm -the computerized design firm - as an intelligent organization structured around electronic work groups with powerful computation and communications tools (Catalano 1990). On the other hand, many practitioners still see CADD as an expensive technology whose primary result leads to an increase in overhead costs. But some practitioners and researchers (Coyne, 1991) recognize both the potential and, problems that computer-aided design presents to the profession. This research presents a framework for understanding how changing information technology might be appropriately integrated into the design firm. It argues that design is an increasingly diverse enterprise, and that this diversity must be understood in order to effectively integrate information technology. The study is divided into three sections. The first section develops an overview of major social, economic, and structural changes within the profession. The second section discusses two alternative approaches that have been utilized to integrate information technology into firms. The third part presents a framework for understanding how information technology may have an impact on strategies for structuring and organizing architectural firms.
series ACADIA
last changed 2022/06/07 07:56

_id 450c
authors Akin, Ömer
year 1990
title Computational Design Instruction: Toward a Pedagogy
source The Electronic Design Studio: Architectural Knowledge and Media in the Computer Era [CAAD Futures ‘89 Conference Proceedings / ISBN 0-262-13254-0] Cambridge (Massachusetts / USA), 1989, pp. 302-316
summary The computer offers enormous potential both in and out of the classroom that is realized only in limited ways through the applications available to us today. In the early days of the computer it was generally argued that it would replace the architect. When this idea became obsolete, the prevailing opinion of proponents and opponents alike shifted to the notion of the computer as merely adding to present design capabilities. This idea is so ingrained in our thinking that we still speak of "aiding" design with computers. It is clear to those who grasp the real potential of this still new technology - as in the case of many other major technological innovations - that it continues to change the way we design, rather than to merely augment or replace human designers. In the classroom the computer has the potential to radically change three fundamental ingredients: student, instruction, and instructor. It is obvious that changes of this kind spell out a commensurate change in design pedagogy. If the computer is going to be more than a passive instrument in the design studio, then design pedagogy will have to be changed, fundamentally. While the practice of computing in the studio continues to be a significant I aspect of architectural education, articulation of viable pedagogy for use in the design studio is truly rare. In this paper the question of pedagogy in the CAD studio will be considered first. Then one particular design studio taught during Fall 1988 at Carnegie Mellon University will be presented. Finally, we shall return to issues of change in the student, instruction, and instructor, as highlighted by this particular experience.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id b66a
authors Dvorak, Robert W.
year 1989
title CAD Tools for Systems Theory and Bottom Up Design
source New Ideas and Directions for the 1990’s [ACADIA Conference Proceedings] Gainsville (Florida - USA) 27-29 October 1989, pp. 209-226
doi https://doi.org/10.52842/conf.acadia.1989.209
summary The use of CAD is investigated in the teaching of systems theory to a fourth year group of design students. A comparison is made between the CAD group using MacArchitrion and a non-CAD group using traditional design methods. The paper includes a discussion of the meaning of systems design theories, relates the CAD and non-CAD student design methods and illustrates the results. It also includes recommendations for improvements so the computer can become more effective in this type of design teaching. Finally, it concludes with recommendations from the students at the end of the semester project. The basic premise for the CAD design group is that computers should encourage students to understand and use systems design theory.
series ACADIA
last changed 2022/06/07 07:55

_id 8e10
authors Hosny, Samir S., Sanvido, Victor E. and Kalisperis, Loukas N.
year 1990
title A Framework for an Integrated Computer-Aided Architectural Design Decision Support System
source Pennsylvania State University, January, 1990. 33 p. : ill. includes bibliography
summary This paper presents the 'ICAAD.DSS' conceptual model, which provides a framework for an integrated computer-aided architectural design (CAAD) decision support system. The model is based on a unified approach to computing in architecture which in turn is based on a holistic view of the architectural design process. The proposed model shifts the focus from product to process, and views the design problem as a goal-oriented, problem solving activity that allows a design team to identify strategies and methodologies in the search for design solutions. This paper introduces a new environment for the use and integration of computers in the architectural design process
keywords CAD, integration, design methods, architecture, design process, decision making, problem solving
series CADline
last changed 2003/06/02 10:24

_id 6960
authors Langendorf, Richard
year 1986
title Alternative Models of Architectural Practice: The Impact of Computers -- 1990 and 2000
source ACADIA Workshop ‘86 Proceedings - Houston (Texas - USA) 24-26 October 1986, pp. 7-27
doi https://doi.org/10.52842/conf.acadia.1986.007
summary Though many architectural firms have only recently begun to use computers, and most firms still do not use computers for design, it is likely that by the turn of the century computers will have transformed architectural practice. First this paper assesses the likelihood of change by examining the potential use of computers in architectural practice, summarizing technology forecasts for computer hardware, software, and standards. -However, because there is an opportunity, architectural firms will not necessarily computerize. Next is a brief review of impediments to change and the process of organizational adaptation of new technology. Finally, the paper concludes with a number of forecasts in architectural practice in 1990 and 2000. A variety of professional practice options are defined, with the suggestion that there will be increasing experimentation and diversity within the profession. Finally, the implications of these changes are explored for architectural education.
series ACADIA
last changed 2022/06/07 07:52

_id aea2
authors Laurel, B. (ed.)
year 1990
title The Art of Human-Computer Interface Design
source New York: Addison-Wesley.
summary Human-computer interface design is a new discipline. So new in fact, that Alan Kay of Apple Computer quipped that people "are not sure whether they should order it by the yard or the ton"! Irrespective of the measure, interface design is gradually emerging as a much-needed and timely approach to reducing the awkwardness and inconveniences of human-computer interaction. "Increased cognitive load", "bewildered and tired users" - these are the byproducts of the "plethora of options and the interface conventions" faced by computer users. Originally, computers were "designed by engineers, for engineers". Little or no attention was, or needed to be, paid to the interface. However, the pervasive use of the personal computer and the increasing number and variety of applications and programs has given rise to a need to focus on the "cognitive locus of human-computer interaction" i.e. the interface. What is the interface? Laurel defines the interface as a "contact surface" that "reflects the physical properties of the interactors, the functions to be performed, and the balance of power and control." (p.xiii) Incorporated into her definition are the "cognitive and emotional aspects of the user's experience". In a very basic sense, the interface is "the place where contact between two entities occurs." (p.xii) Doorknobs, steering wheels, spacesuits-these are all interfaces. The greater the difference between the two entities, the greater the need for a well-designed interface. In this case, the two very different entities are computers and humans. Human-conputer interface design looks at how we can lessen the effects of these differences. This means, for Laurel, empowering users by providing them with ease of use. "How can we think about it so that the interfaces we design will empower users?" "What does the user want to do?" These are the questions Laurel believes must be asked by designers. These are the questions addressed directly and indirectly by the approximately 50 contributors to The Art of Human-Computer Interface Design. In spite of the large number of contributors to the book and the wide range of fields with which they are associated, there is a broad consensus on how interfaces can be designed for empowerment and ease of use. User testing, user contexts, user tasks, user needs, user control: these terms appear throughout the book and suggest ways in which design might focus less on the technology and more on the user. With this perspective in mind, contributor D. Norman argues that computer interfaces should be designed so that the user interacts more with the task and less with the machine. Such interfaces "blend with the task", and "make tools invisible" so that "the technology is subervient to that goal". Sellen and Nicol insist on the need for interfaces that are 'simple', 'self-explanatory', 'adaptive' and 'supportive'. Contributors Vertelney and Grudin are interested in interfaces that support the contexts in which many users work. They consider ways in which group-oriented tasks and collaborative efforts can be supported and aided by the particular design of the interface. Mountford equates ease of use with understating the interface: "The art and science of interface design depends largely on making the transaction with the computer as transparent as possible in order to minimize the burden on the user".(p.248) Mountford also believes in "making computers more powerful extensions of our natural capabilities and goals" by offering the user a "richer sensory environment". One way this can be achieved according to Saloman is through creative use of colour. Saloman notes that colour can not only impart information but that it can be a useful mnemonic device to create associations. A richer sensory environment can also be achieved through use of sound, natural speech recognition, graphics, gesture input devices, animation, video, optical media and through what Blake refers to as "hybrid systems". These systems include additional interface features to control components such as optical disks, videotape, speech digitizers and a range of devices that support "whole user tasks". Rich sensory environments are often characteristic of game interfaces which rely heavily on sound and graphics. Crawford believes we have a lot to learn from the design of games and that they incorporate "sound concepts of user interface design". He argues that "games operate in a more demanding user-interface universe than other applications" since they must be both "fun" and "functional".
series other
last changed 2003/04/23 15:14

_id 1c3b
authors Rubinger, Morton
year 1989
title Will CAD Survive Designers?
source New Ideas and Directions for the 1990’s [ACADIA Conference Proceedings] Gainsville (Florida - USA) 27-29 October 1989, pp. 159-173
doi https://doi.org/10.52842/conf.acadia.1989.159
summary Discussion about the future of CAD often focuses on hardware and software. But that is the wrong emphasis. Future directions for CAD should be considered from the point of view of what is of value to architectural design. This paper is mainly concerned with the needs of architectural design education. For CAD to develop effectively, design education must first address some existing problems which threaten the future of CAD. These problems result mainly from conflicts between traditional design values and needs of using computers. For computers to aid design, software designers need a clearer picture of what design is. But there is no single acceptable meaning of design. Instead several different yet coherent meanings with historical roots are suggested. Each of these directions have different implications for the development of CAD.
series ACADIA
last changed 2022/06/07 07:56

_id a021
authors Woodbury, Robert F.
year 1990
title Variations in Solids : A Declarative Treatment
source Computers and Graphics. April, 1990. Vol. 14: 40 p. : ill. includes bibliography
summary Underlying the notions of variational geometry, design prototypes, features, and representation of assemblies seems to be a common concept of variations. This paper develops the core of a monotonically declarative system for variations on solids. It introduces a set of language constructs that are the basis for ASCEND, an object oriented equation solving language. It presents equations for representing certain spatial relationships between primitive geometric elements. Using plex grammar notation it develops a set of Euler operators that are monotonic in the strict sense required by the ASCEND language. These operators are collectively shown to generate representations for all plane models of 2-manifold objects and to generate only such representations. Finally it presents the core of a system for variations using the ASCEND language to implement both equation models and the new Euler operators
keywords prototypes, features, assemblies, representation, solid modeling, OOPS, languages, Euler operators, systems
series CADline
email
last changed 2003/06/02 13:58

_id 7449
authors Medero Rocha, Isabel A. and Danckwardt, Voltaire
year 2000
title Projeto Missões, Computação Gráfica - Multimídia da Reconstituição Computadorizada da Redução de São Miguel Arcanjo no Rio Grande do Sul - Brasil ("Missões" Project, Computer Graphics and Multimedia of the "Redução de São Miguel Arcanjo" Digital Reconstruction (Rio Grande do Sul, Brazil))
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 191-193
summary The Project Missions - Graphical Computation, recoups in a graphical and digital the pictures of the Church and the Reduction of São Miguel Arcanjo/RS/Brasil, allowing to the public a virtual stroll through the set at the time of its foundation in 1687. Initiate in 1990, the design refers the appropriation and implementation of the new computational technologies. The 3D model allows the dynamic visualization of the set, through aerial sights and walkthrough animations into the main streets and the inward of the central ship of the church. For the generation of the model, it was followed the principles of the architectural composition to decompose the parts, to be shaped, defining the architectural and composition elements. This COMPACT DISC, is one of the some midias of the Design Missions - Graphical Computation. In this proposal, the music was developed especially for the COMPACT DISC, looks for to reflect the poetical aspect of the interaction between light, shadow, of the inwards and exteriors, attenuating the technology of a virtual environment. In the integration between the art and the technology its recovered virtually, the poetical way, the memory of one of the icons of the identity of the Rio Grande do Sul, with the objective to keep alive, for the new generations, a patrimony that practically in ruins would have the souvenir of its lost real picture in the time.
series SIGRADI
email
last changed 2016/03/10 09:55

_id ga0222
id ga0222
authors Rocha, A. Medero and Danckwardt, Voltaire
year 2002
title Projeto Missões, Computação Gráfica Multimídia da Reconstituição Computadorizada da Redução de São Miguel Arcanjo no Rio Grande do Sul - Brasil
source International Conference on Generative Art
summary The Design Missions - Graphical Computation, recoups in a graphical and digital the pictures of the Church and the Reduction of São Miguel Arcanjo, RS, Brasil, allowing to the public a virtual stroll through the set at the time of its foundation in 1687. Initiate in 1990, the design refers the appropriation and implementation of the new computational technologies. The 3D model allows the dynamic visualization of the set, through aerial sights and walkthrough animations into the main streets and the inward of the central ship of the church. For the generation of the model, it was followed the principles of the architectural composition to decompose the parts, to be shaped, defining the architectural and composition elements. This COMPACT DISC, is one of the some medias of the Design Missions - Graphical Computation. In this proposal, the music was developed especially for the COMPACT DISC, looks for to reflect the poetical aspect of the interaction between light, shadow, of the inwards and exteriors, attenuating the technology of a virtual environment. In the integration between the art and the technology its recovered virtually, the poetical way, the memory of one of the icons of the identity of the Rio Grande do Sul, with the objective to keep alive, for the new generations, a patrimony that practically in ruins would have the souvenir of its lost real picture in the time.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id caadria2006_047
id caadria2006_047
authors SHAI YESHAYAHU, A.; B. MARIA VERA
year 2006
title CUT, COPY, PASTE SOCIETY
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 47-52
doi https://doi.org/10.52842/conf.caadria.2006.x.g1r
summary You and I were not born in the 1990’s thus our experience about the true modalities of circulation and communication that have substantially transformed the methods that form and inform us today, are not really “pure”. Why? Because we know how slow time was before the communication boom of this last decade and because some of us still believe that we must read to be inform and thus, visit a bookstore, library or friends house and get peeks inside a subject of matter. So experiencing life as we bypass the book _ that’s a story of a brand new era! Taking note of the enormous changes this era brings, is fundamental to our current pedagogic undertakings. We seek data about the differences that lie in the way individuals, which never knew a world before or between analogue and digital zones, process information. It signals a dramatic shift in cognitive realms that is deeply imbedded in our emerging socio-economic spheres. So, you say “hypothesizing that economic, technologic, and cultural fluxes fabricate new means to learn and think, is not a fresh idea”_ True. But, it led us to ask one fundamental question _What are the upcoming learning habits employed by the “post digital” society? We noted that the post digital generation is an avid cut, copy, paste society that is able to extract information from infinite resources and mix, remix in diversified modes, through time and in real-time. We think these abilities are strengths, which will permit students to multitask yet they strongly differ from the academic agendas that are concerned with meditative processes and qualitative interdisciplinary task. As aspiring academics interested in the reconfiguration of current pedagogic formats we seek a creative intervention for future design generations, one that can benefit both the upheavals of the cultural world and the integrity of the academic setting where a pedagogy that links extended fields of knowledge with shifting cognitive habits can emerge. In this arena where cognition plays an important role, our goals are challenging and difficult, especially in the beginning years when the foundations set forward leaves lasting impressions. Thus, letting go of familiar grounds and tuning to continual alterations of the immediate surroundings enables us to seek means that facilitate important readings for our current learning/teaching processes. Demystifying changes and embracing differences as design potentials for new interventions are basic programmatic elements that permit us to incorporate a rigorous research agenda in the design exercises. Our presentation will project the current state of our teaching modality and provide examples of current studio work. It will demonstrate how everyday rituals, journeys and research observations, are documented by a society that heralds a new academic setting.
series CAADRIA
email
last changed 2022/06/07 07:50

_id 5da8
authors Tokman, Leyla Y.
year 2001
title Collaborative e-Design
source DCNET'2000: Design Computing on the Net'2000, Organized by Key Centre of Design Computing and Cognition, University of Sydney ve the International Journal of Design Computing
summary In early 1900’s, successful architects who have a strong influencewith not only their ideas on architecture but also their own work gave desk criticism ‘the form of one-on-one conversation’ in their atelier or studio. Being in these studios was a big opportunity for limited number of accepted students. The architectural education in the first half of 1900’s has many other parallels to education from the other professions. Developments in computer technology have been created a new medium in architectural design and education since 1960’s. Today, Computer technology and communication technology together (Information Technology- IT) help architects and students communicate ideas. This is a big opportunity for architecture candidates in 1990’s comparing with the candidates in 1900âs. One of the main changes is desk criticism from ‘the form of one-on-one conversation’ to ‘the form of multiple consultants’. That means today, not only students but also professionals can develop projects together with any adviser/ partner at any time and at any place where IT can be accessible. Moreover, This collaboration for synchronous - asynchronous studies in virtual environments also brings the equal opportunity to the students from not only developed countries but also developing countries. Students and professionals can share and enhance different ideas, progression of design decisions in educational view and practice view. In this study, some experiences will be shared on design computing and also some new visions/ conceptual models of design computing in collaborative environments will be offered.
keywords Collaborative Design, Computing, Information Technology, Participation, Opportunity, Network, Team Design
series journal paper
email
more http://www.arch.usyd.EDU.AU/kcdc/journal/vol3/dcnet/tokman
last changed 2003/05/15 21:45

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 13HOMELOGIN (you are user _anon_65634 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002