CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 220

_id diss_hensen
id diss_hensen
authors Hensen, J.L.M.
year 1991
title On the Thermal Interaction of Building Structure and Heating and Ventilating System
source Eindhoven University of Technology
summary In this dissertation, developments in the field of building performance evaluation tools are described. The subject of these tools is the thermal interaction of building structure and heating and ventilating system. The employed technique is computer simulation of the integrated, dynamic system comprising the occupants, the building and its heating and ventilating system. With respect to buildings and the heating and ventilating systems which service them, the practical objective is ensuring thermal comfort while using an optimum amount of fuel. While defining the optimum had to be left for other workers, the issue of thermal comfort is addressed here. The conventional theory of thermal comfort in conditions characteristic for dwellings and offices assumes steady-state conditions. Yet thermal conditions in buildings are seldom steady, due to the thermal interaction between building structure, climate, occupancy, and auxiliary systems. A literature rewiew is presented regarding work on thermal comfort specifically undertaken to examine what fluctuations in indoor climate may be acceptable. From the results, assessment criteria are defined. Although its potentials reach beyond the area of Computer Aided Building Design, a description is given of building and plant energy simulation within the context of the CABD field of technology. Following an account of the present state-of-the-art, the choice for starting from an existing energy simulation environment (ESPR) is justified. The main development areas of this software platform - within the present context - are identified as: fluid flow simulation, plant simulation, and their integration with the building side of the overall problem domain. In the field of fluid flow simulation, a fluid flow network simulation module is described. The module is based on the mass balance approach, and may be operated either in standalone mode or from within the integrated building and plant energy simulation system. The program is capable of predicting pressures and mass flows in a user-defined building / plant network comprising nodes (ie building zones, plant components, etc) and connections (ie air leakages, fans, pipes, ducts, etc), when subjected to flow control (eg thermostatic valves) and / or to transient boundary conditions (eg due to wind). The modelling and simulation techniques employed to predict the dynamic behaviour of the heating and ventilating system, are elaborated. The simultaneous approach of the plant and its associated control is described. The present work involved extensions to the ESPR energy simulation environment with respect to robustness of the program, and with respect to additional plant simulation features, supported plant component models and control features. The coupling of fluid flow, plant side energy and mass, and building side energy simulation into one integrated program is described. It is this "modular-simultaneous" technique for the simulation of combined heat and fluid flow in a building / plant context, which enables an integral approach of the thermal interaction of building structure and heating and ventilating system.

A multi stage verification and validation methodology is described, and its applicability to the present work is demonstrated by a number of examples addressing each successive step of the methodology. A number of imaginary and real world case studies are described to demonstrate application of the present work both in a modelling orientated context and in a building engineering context. Then the general conclusions of the present work are summarized. Next and finally, there are recommendations towards possible future work in the areas of: theory, user interface, software structure, application, and technology transfer.

series thesis:PhD
last changed 2003/12/15 14:43

_id f9bd
authors Amor, R.W.
year 1991
title ICAtect: Integrating Design Tools for Preliminary Architectural Design
source Wellington, New Zealand: Computer Science Department, Victoria University
summary ICAtect is a knowledge based system that provides an interface between expert systems, simulation packages and CAD systems used for preliminary architectural design. This thesis describes its structure and development.The principal work discussed in this thesis involves the formulation of a method for representing a building. This is developed through an examination of a number of design tools used in architectural design, and the ways in which each of these describe a building.Methods of enabling data to be transferred between design tools are explored. A Common Building Model (CBM), forming the core of the ICAtect system, is developed to represent the design tools knowledge of a building. This model covers the range of knowledge required by a large set of disparate design tools used by architects at the initial design stage.Standard methods of integrating information from the tools were examined, but required augmentation to encompass the unusual constraints found in some of the design tools. The integration of the design tools and the CBM is discussed in detail, with example methods developed for each type of design tool. These example methods provide a successful way of moving information between the different representations. Some problems with mapping data between very different representations were encountered in this process, and the solutions or ideas for remedies are detailed. A model for control and use of ICAtect is developed in the thesis, and the extensions to enable a graphical user interface are discussed.The methods developed in this thesis demonstrate the feasibility of an integrated system of this nature, while the discussion of future work indicates the scope and potential power of ICAtect.
series other
last changed 2003/04/23 15:14

_id ea6b
authors Boeve, Eddy
year 1991
title Modelling Interaction Tools in the Views Architecture IV. Design Tools
source First Moscow International HCI'91 Workshop Proceedings 1991 p.183
summary Views is a user-interface system in which the user interface is a layer above applications, guaranteeing consistency of the interface, and with a data-layer implementing external object representations, allowing exchange of objects between applications without loss of structure. Although Views offers an architecture to deal with user-interface aspects on a high level, in this report is shown that also low level interaction can be modelled with the architecture provided.
series other
last changed 2002/07/07 16:01

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 2e03
authors Diederiks, H.J. and van Staveren, R.J.
year 1991
title Dynamic Information System for Modelling of Design Processes
source Computer Integrated Future, CIB W78 Seminar. september, 1991
summary Unnumbered : ill. DINAMO is a Dynamic Information System for Modelling of Design Processes. It is intended for use along with product models, data management systems and existing applications. In DINAMO a programming user can define processes. These processes are represented by graphs. The graphs are characterized by nodes and relations between nodes. Each node in a graph represents a task, and each relation can be restricted to conditions. So the way in which a process is actually being performed, that is, the actual path to be evaluated through the graph, can depend on certain conditions. Processes and functions (=software modules) are available to the user as tasks. A consuming user can activate tasks; the DINAMO system regulates the dispatch of the tasks, conform the process and function definitions. Tasks are collected on sheets; sheets are collected in a task box. A task box can be regarded as a certain environment, determined by the programming user. A consuming user can choose between the environments which are available at that moment. With the DINAMO system software and process definitions can be re-used in a simple way
keywords design process, modeling, graphs, information, relations, software
series CADline
last changed 2003/06/02 13:58

_id sigradi2016_710
id sigradi2016_710
authors Duarte, Rovenir Bertola; Lepri, Louisa Savignon; Sanches, Malu Magalh?es
year 2016
title Objectile e o projeto paramétrico [Objectile and parametric design]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.149-156
summary The objectile was a concept developed by Deleuze and Cache in the 80s. It treats the object as a variable and anticipates the society of obsolescence, an inquiry about the contemporary life of the object (marketing, function, representation, modeling, production and consumption). This concept deals with the object where“... fluctuation of the norm replaces the permanence of a law; where the object assumes a place in a continuum by variation” (Deleuze, 1991, p.38). This paper proposes to think objectile as the object of the architectural design, on three types of approximations between design and objectile: (a) Objectile as variable of the design, (b) Objectile as a design variable, and (c) Objectile as architecture (variable architecture). The second approximation (b) enables to discuss the conception of continuous design with power to cross other projects - a meta-design. The main aspect of this meta-design is the variability, another way of control based on concepts of patterns and modulations; however, objectile can mean the release of mind for new types of thought and new kinds of design based on “continuum by variation”: meta-design.
keywords Objectile; parametric design; Gilles Deleuze; Modulado; Digital design
series SIGRADI
email
last changed 2021/03/28 19:58

_id 8f20
authors Hannus, Matti, Jarvinen, Heikki and Astrom, Gunnar
year 1991
title Exchange of Product Data of Prefabricated Concrete Structures
source The Computer Integrated Future, CIB W78 Seminar. September, 1991. Unnumbered : ill
summary As part of efforts to adopt manufacturing automation in a scattered organizational structure the Finnish precast concrete industry has initiated the development of a number of solutions for data exchange. Guidelines concerning various aspects of using computers in the design/manufacturing process were defined in a manual which was widely distributed to involved parties. Standardized neutral file formats for data exchange between dissimilar computer systems were developed for three kinds of data: 1) drawings, 2) tables (e.g. bills of materials) and 3) product model-based data. Translator programs were developed for a number of common CAD-systems as well as a set of software tools to the users of standardized exchange files and software developers. The result of these developments have been widely adopted by fabricators, designers and software developers
keywords CAD, communication, product modeling, standards
series CADline
last changed 2003/06/02 13:58

_id 4196
authors Pols, Albert A.J.
year 1991
title Conceptual Modelling of Building Assemblies : Bridging the Gap Between Building Data and Design Integrity
source The Computer Integrated Future, CIB W78 Seminar. September, 1991. Unnumbered : ill. includes bibliography
summary Improved models and methods for building representation are needed for more effective support of design integrity checking and control. A 'generic' object-oriented approach to product modelling allows multiple design representations to be described as different views of a common, gradually evolving building product model. The product model provides the capability to generate, in successive design iterations, a coherent description of the form, structure and dimensions of the building and its assemblies and components. Associated technological and administrative data can be included in or associated with the product description
keywords product modeling, building, database, semantics, integration
series CADline
last changed 2003/06/02 13:58

_id b5be
authors Stok, Leon
year 1991
title Architectural synthesis and optimization of digital systems
source Eindhoven University of Technology
summary High level synthesis means going from an functional specification of a digits-system at the algorithmic level to a register transfer level structure. Different appli-cations will ask for different design styles. Despite this diversity in design styles many tasks in the synthesis will be similar. There is no need to write a new synthesis system for each design style. The best way to go seems a decomposition of the high level synthesis problems in several well defined subproblems. How the problem is decomposed depends heavily on a) the type of network architecture chosen, b) the constraints applied to the design and c) on the functional description itself. From this architecture style, the constraints and the functional description a synthesis scheme can be derived. Once this scheme is fixed, algorithms can be chosen which fit into this scheme and solve the subproblems in a fast and, when possible, optimal way. To support such a synthesis philosophy, a framework is needed in which all design information can be stored in a unique way during the various phases of the design process. This asks for a design data base capable of handling all design information with a formally defined interface to all design tools. This thesis gives a formal way to describe both the functional representation, the register transfer level structure and the controller and the relations between all three of them. Special attention has been paid to the efficient representation of mutual exclusive operations and array accesses. The scheduling and allocation problems are defined as mappings between these formal representations. Both the existing synthesis algorithms and the new algorithms described in this thesis fit into this framework. Three new allocation algorithms are presented in this thesis: an algorithm for optimal register allocation in cyclic data flow graphs, an exact polynomial algorithm to do the module allocation and a new scheme to minimize the number of interconnections during all stages of the data path allocation. Cyclic data flow graphs result from high level behavioral descriptions that contain loops. Algorithms for register allocation in high level synthesis published up till now, only considered loop free data flow graphs, When these algorithms are applied to data flow graphs with loops, unnecessary register transfer operations are introduced. A new algorithm is presented that performs a minimal register allocation and eliminates all superfluous register transfer operations. The problem is reformulated as a multicommodity network flow problem for which very efficient solutions exist. Experiments on a benchmark set have shown that in all test cases all register transfers could be eliminated at no increase in register cost. Only heuristic algorithms appeared in literature to solve the module allocation problem. The module allocation problem is usually defined as a clique cover problem on a so-called module allocation graph. It is shown that, under certain conditions, the module allocation graph belongs to the special class of comparability graphs. A polynomial time algorithm can optimally find a clique cover of such a graph. Even when interconnect weights are taken into account, this can be solved exactly. This problem can be transformed into a maximal cost network flow problem, which can be solved exactly in polynomial time. An algorithm is described which solves the module allocation problem with interconnect weights exactly, with a complexity O(kn2), where n is the number of operations In previous research, interconnection was optimized when the module allocation for the operations and the register allocation for the variables already had been done. However, the amount of multiplexing and interconnect are crucial factors to both the delay and the area of a circuit. A new scheme is presented to minimize the number of interconnections during the data path allocation. This scheme first groups all values based on their read and write times. Values belonging to the same group can share a register file. This minimizes the number of data transfers with different sources and destinations. Secondly, registers are allocated for each group separately. Finally the interconnect allocation is done. During the interconnect allocation, the module allocation is determined. The value grouping is based on edge coloring algorithms providing a sharp upper bound on the number of colors needed two techniques: splitting read and write phases of values and introducing serial (re-)write operations for the same value, make that even more efficient exact edge coloring algorithms can be used. It is shown that when variables are grouped into register files and operations are assigned to modules during the interconnection minimization, significant savings (20%) can be obtained in the number of local interconnections and the amount of global interconnect, at the expense of only slightly more register area.
keywords Digital Systems; Digital Systems
series thesis:PhD
email
last changed 2003/02/12 22:37

_id ca47
authors Lee, Shu Wan
year 1996
title A Cognitive Approach to Architectural Style Several Characteristics of Design Thinking in Architecture
doi https://doi.org/10.52842/conf.caadria.1996.223
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 223-226
summary Designing is a complicated human behaviour and method, and is often treated as a mysterious "black box” operation in human mind. In the early period as for theory-studying of design thinking, the way of thinking that the researchers took were mostly descriptive discussions. Therefore, they lacked direct and empirical evidence although those studies provided significant exploration of design thinking (Wang, 1995). In recent years as for the study of cognitive science, they have tried to make design "glass box”. That is to try to make the thinking processes embedded in designers publicized. That is also to externalize the design procedure which provided the design studies another theoretical basis of more accurate and deeply researched procedure (Jones, 1992). Hence the studying of design thinking has become more important and the method of designing has also progressed a lot. For example, the classification of the nature of design problem such as ill-defined and well-defined (Newell, Shaw, and Simon, 1967), and different theoretical procedure modes for different disciplines, such as viewing architectural models as conjecture-analysis models and viewing engineering models as analysis-synthesis (Cross, 1991).
series CAADRIA
last changed 2022/06/07 07:52

_id a620
authors Asanowicz, Alexander
year 1991
title Unde et Quo
doi https://doi.org/10.52842/conf.ecaade.1991.x.t1s
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
summary To begin with, I would like to say a few words about the problem of alienation of modern technologies which we also inevitably faced while starting teaching CAD at our department. Quite often nowadays a technology becomes a fetish as a result of lack of clear goals in human mind. There are multiple technologies without sense of purpose which turned into pure experiments. There is always the danger of losing purposeness and drifting toward alienation. The cause of the danger lies in forgetting about original goals while mastering and developing the technology. Eventually the original idea is ignored and a great gap appears between technical factors and creativity. We had the danger of alienation in mind when preparing the CAAD curriculum. Trying to avoid the tension between technical and creative elements we agreed not to introduce CAD too soon then the fourth year of studies and continue it for two semesters. One thing was clear - we should not teach the technique of CAD but how to design using a computer as a medium. Then we specified projects. The first was called "The bathroom I dream of" and meant to be a 2D drawing. The four introductory meetings were in fact teaching foundations of DOS, then a specific design followed with the help of AutoCAD program. In the IX semester, for example, it was "A family house" (plans, facades, perspective). "I have to follow them - I am their leader" said L.J. Peter in "The Peter's Prescription". This quotation reflects exactly the situation we find ourselves in teaching CAAD at our department. It means that ever growing students interest in CAAD made us introduce changes in the curriculum. According to the popular saying, "The more one gets the more one wants", so did we and the students feel after the first semester of teaching CAD. From autumn 1991 CAAD classes will be carried from the third year of studying for two consecutive years. But before further planning one major steep had to be done - we decided to reverse the typical of the seventies approach to the problem when teaching programming languages preceded practical goals hence discouraging many learners.

series eCAADe
email
last changed 2022/06/07 07:50

_id 9964
authors Augenbroe, G. and Winkelmann, F.
year 1991
title Integration of Simulation into the Building Design Process
source J.A. Clarke, J.W. Mitchell, and R.C. Van de Perre (eds.), Proceedings, Building Simulation '91 IBPSA Conference, pp. 367-374
summary We describe the need for a joint effort between design researchers and simulation tool developers in formulating procedures and standards for integrating simulation into the building design process. We review and discuss current efforts in the US and Europe in the development of next-generation simulation tools and design integration techniques. In particular, we describe initiatives in object-oriented simulation environments (including the US Energy 'Kernel System, the Swedish Ida system, the UK Energy Kernel System, and the French ZOOM program.) and consider the relationship of these environments to recent R&D initiatives in design integration (the COMBINE project in Europe and the AEDOT project in the US).
series other
last changed 2003/11/21 15:16

_id 27d2
authors Ayrle, Hartmut
year 1991
title Computers for Architects - Only a Tool?
doi https://doi.org/10.52842/conf.ecaade.1991.x.i9j
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
summary The paper states that, as a result of the schism between architecture as art and engineering as rationalism, the architectural community underestimates the computer as tool with a potential to substantially enlarge the possibilities of building design. It is claimed that the computer could serve as coordination tool for the ruptured design process, as a virtual workbench where all design disciplines sit together and develop their designs in enhanced conscience of what the whole design demands. The paper then concludes, that to develop such software tools, architects must participate in the development of software and may no longer be restricted to the role of applicants, especially during their universitary instruction. The corresponding research and training facilities at the University of Karlsruhe, Faculty of Architecture are described.

series eCAADe
last changed 2022/06/07 07:50

_id 22d6
authors Ballheim, F. and Leppert, J.
year 1991
title Architecture with Machines, Principles and Examples of CAAD-Education at the Technische Universität München
doi https://doi.org/10.52842/conf.ecaade.1991.x.h3w
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
summary "Design tools affect the results of the design process" - this is the starting point of our considerations about the efficient use of CAAD within architecture. To give you a short overview about what we want to say with this thesis lets have a short - an surely incomplete - trip through the fourth dimension back into the early time of civil engineering. As CAD in our faculty is integrated in the "Lehrstuhl für Hochbaustatik und Tragwerksplanung" (if we try to say it in English it would approximately be "institute of structural design"), we chose an example we are very familiar with because of its mathematical background - the cone sections: Circle, ellipse, parabola and hyperbola. If we start our trip two thousand years ago we only find the circle - or in very few cases the ellipse - in their use for the ground plan of greek or roman theaters - if you think of Greek amphitheaters or the Colosseum in Rome - or for the design of the cross section of a building - for example the Pantheon, roman aqueducts or bridges. With the rediscovery of the perspective during the Renaissance the handling of the ellipse was brought to perfection. May be the most famous example is the Capitol in Rome designed by Michelangelo Buonarotti with its elliptical ground plan that looks like a circle if the visitor comes up the famous stairway. During the following centuries - caused by the further development of the natural sciences and the use of new construction materials, i.e. cast-iron, steel or concrete - new design ideas could be realized. With the growing influence of mathematics on the design of buildings we got the division into two professions: Civil engineering and architecture. To the regret of the architects the most innovative constructions were designed by civil engineers, e.g. the early iron bridges in Britain or the famous bridges of Robert Maillard. Nowadays we are in the situation that we try to reintegrate the divided professions. We will return to that point later discussing possible solutions of this problem. But let us continue our 'historical survey demonstrating the state of the art we have today. As the logical consequence of the parabolic and hyperbolic arcs the hyperbolic parabolic shells were developed using traditional design techniques like models and orthogonal sections. Now we reach the point where the question comes up whether complex structures can be completely described by using traditional methods. A question that can be answered by "no" if we take the final step to the completely irregular geometry of cable- net-constructions or deconstructivistic designs. What we see - and what seems to support our thesis of the connection between design tools and the results of the design process - is, that on the one hand new tools enabled the designer to realize new ideas and on the other hand new ideas affected the development of new tools to realize them.

series eCAADe
more http://www.mediatecture.at/ecaade/91/ballheim_leppert.pdf
last changed 2022/06/07 07:50

_id ascaad2014_002
id ascaad2014_002
authors Burry, Mark
year 2014
title BIM and the Building Site: Assimilating digital fabrication within craft traditions
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 27-36
summary This paper outlines a particular component of very well known project: Antoni Gaudí’s Sagrada Família Basilica in Barcelona (1882– on-going but scheduled for completion in 2026). At the time of writing the realisation of the project has proceeded for 87 years since Gaudí's death (1852-1926). As a building site it has been a living laboratory for the nexus between traditional construction offsite manufacturing and digital fabrication since the computers were first introduced to the project:CAD in 1989 closely followed by CAAD two years later. More remarkably CAD/CAM commenced its significant influence in 1991 with the take-up of sem robotised stone cutting and carving. The subject of this paper is an elevated auditorium space that is one of the relatively few ‘sketchy’ areas that Gaudí bequeathed the successors for the design of his magnum opus.
series ASCAAD
email
last changed 2016/02/15 13:09

_id 0aba
authors Carrara, Gianfranco, Kalay, Yehuda E. and Novembri, Gabriele
year 1991
title Intelligent Systems for Supporting Architectural Design
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 191-202
summary Design can be considered a process leading to the definition of a physical form that achieves a certain predefined set of objectives. The process comprises three distinct operations: (1) definition of the desired set of performance criteria (design goals); (2) production of alternative design solutions; (3) evaluation of the expected performances of alternative design solutions, and comparing them to predefined criteria. Difficulties arise in performing each one of the three operations, as well as in combining them into a purposeful, unified process. First, it is difficult to define the desired performance criteria prior to and independently of, the search for an acceptable solution that achieves them, since many aspects of the desired criteria can only be discovered through the search for an acceptable solution. Furthermore, the search for such a solution may well alter the definition of these criteria, as new criteria and incompatibilities between existing criteria are discovered. Second the generation of a design solution is a task demanding creativity, judgement, and experience, all three of which are difficult to define, teach, and otherwise capture in some explicit manner. Third, it is difficult to evaluate the expected performances of alternative design solutions and to compare them to the predefined criteria. Design parameters interact with each other in complex ways, which cause effects and side effects. Predicting the expected performances of even primary effects involves extrapolating non-physical characteristics from the proposed solution's physical organization, a process which relies on a host of assumptions (physical, sociological, psychological, etc.) and hence is seldom a reliable measure. A fourth problem arises from the need to coordinate the three operations in an iterative process that will converge on an acceptable design solution in reasonable time. Computational techniques that were developed in the past to assist designers in performing the above mentioned activities have shown limitations and proved inadequate to a large degree. In this paper we discuss the work in progress aimed at developing an intelligent support system for building and architectural design, which will be able to play a decisive role in the definition, evaluation and putting into effect of the design choices.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 00bc
authors Chen, Chen-Cheng
year 1991
title Analogical and inductive reasoning in architectural design computation
source Swiss Federal Institute of Technology, ETH Zurich
summary Computer-aided architectural design technology is now a crucial tool of modern architecture, from the viewpoint of higher productivity and better products. As technologies advance, the amount of information and knowledge that designers can apply to a project is constantly increasing. This requires development of more advanced knowledge acquisition technology to achieve higher functionality, flexibility, and efficient performance of the knowledge-based design systems in architecture. Human designers do not solve design problems from scratch, they utilize previous problem solving episodes for similar design problems as a basis for developmental decision making. This observation leads to the starting point of this research: First, we can utilize past experience to solve a new problem by detecting the similarities between the past problem and the new problem. Second, we can identify constraints and general rules implied by those similarities and the similar parts of similar situations. That is, by applying analogical and inductive reasoning we can advance the problem solving process. The main objective of this research is to establish the theory that (1) design process can be viewed as a learning process, (2) design innovation involves analogical and inductive reasoning, and (3) learning from a designer's previous design cases is necessary for the development of the next generation in a knowledge-based design system. This thesis draws upon results from several disciplines, including knowledge representation and machine learning in artificial intelligence, and knowledge acquisition in knowledge engineering, to investigate a potential design environment for future developments in computer-aided architectural design. This thesis contains three parts which correspond to the different steps of this research. Part I, discusses three different ways - problem solving, learning and creativity - of generating new thoughts based on old ones. In Part II, the problem statement of the thesis is made and a conceptual model of analogical and inductive reasoning in design is proposed. In Part III, three different methods of building design systems for solving an architectural design problem are compared rule-based, example-based, and case-based. Finally, conclusions are made based on the current implementation of the work, and possible future extensions of this research are described. It reveals new approaches for knowledge acquisition, machine learning, and knowledge-based design systems in architecture.
series thesis:PhD
email
last changed 2003/05/10 05:42

_id bd3b
id bd3b
authors Clayton, Mark J. and Weisenthal, Howard
year 1991
title Enhancing the Sketchbook
doi https://doi.org/10.52842/conf.acadia.1991.113
source Reality and Virtual Reality [ACADIA Conference Proceedings / ISBN 1-880250-00-4] Los Angeles (California - USA) October 1991, pp. 113-125
summary The architect's sketchbook has been virtually untouched by the march of fashions and theories throughout history. The sketchbook, from its modem beginnings in guild lodge books through the travel journals of Beaux-Arts and Modern architects, has remained the repository for observations and ideas waiting to be synthesized into architecture. However, new opportunities offered by computing technology provide ways to advance the sketchbook, transforming it from a personal log of experiences slowly being buried under a lifetime of work, into a vital, interactive information environment supporting design activity. This is not to argue that the computer may replace the artist's hand and pencil, but that the computer can be used to organize and structure the artifacts of design activities Commonly embodied in sketches and notes.
series ACADIA
email
last changed 2022/06/07 07:56

_id ga9921
id ga9921
authors Coates, P.S. and Hazarika, L.
year 1999
title The use of genetic programming for applications in the field of spatial composition
source International Conference on Generative Art
summary Architectural design teaching using computers has been a preoccupation of CECA since 1991. All design tutors provide their students with a set of models and ways to form, and we have explored a set of approaches including cellular automata, genetic programming ,agent based modelling and shape grammars as additional tools with which to explore architectural ( and architectonic) ideas.This paper discusses the use of genetic programming (G.P.) for applications in the field of spatial composition. CECA has been developing the use of Genetic Programming for some time ( see references ) and has covered the evolution of L-Systems production rules( coates 1997, 1999b), and the evolution of generative grammars of form (Coates 1998 1999a). The G.P. was used to generate three-dimensional spatial forms from a set of geometrical structures .The approach uses genetic programming with a Genetic Library (G.Lib) .G.P. provides a way to genetically breed a computer program to solve a problem.G. Lib. enables genetic programming to define potentially useful subroutines dynamically during a run .* Exploring a shape grammar consisting of simple solid primitives and transformations. * Applying a simple fitness function to the solid breeding G.P.* Exploring a shape grammar of composite surface objects. * Developing grammarsfor existing buildings, and creating hybrids. * Exploring the shape grammar of abuilding within a G.P.We will report on new work using a range of different morphologies ( boolean operations, surface operations and grammars of style ) and describe the use of objective functions ( natural selection) and the "eyeball test" ( artificial selection) as ways of controlling and exploring the design spaces thus defined.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id cdb1
authors Cornick, T., Noble, B. and Hallahan, C.
year 1991
title The Limitations of Current Working Practices on the Development of Computer Integrating Modelling in Construction
source computer Integrated Future, CIB W78 Seminar. Calibre, The Netherlands: Eindhoven University of Technology, september, 1991. Unnumbered. includes bibliography
summary For the construction Industry to improve its processes through the application computer-based systems, traditional working practices must first change to support the integrated control of design and construction. Current manual methods of practice accept the limitations of man to process a wide range of building performance and production information simultaneously. However when these limitations are removed, through the applications of computer systems, the constraints of manual methods need no longer apply. The first generation of computer applications to the Construction Industry merely modelled the divided and sequential processes of manual methods i.e. drafting, specification writing, engineering and quantity calculations, estimating, billing, material ordering data-bases and activity planning. Use of these systems raises expectations that connections within the computer between the processes modelled can actually be made and faster and more integrated information processing be achieved. 'Linking' software is then developed. The end result of this approach was that users were able to produce information faster, present it in an impressive manner but, in reality, no perceived improvement in actual building performance, production economy or efficiency was realized. A current government sponsored Teaching Company Programme with a UK design and build company is addressing the problem of how real economic benefit can be realized through improvement in, amongst other things, their existing computer applications. This work is being carried out by both considering an academic conceptual model of how 'designing for production' can be achieved in computer applications and what is immediately realizable in practice by modelling the integration of a limited number of knowledge domains to which computers are already being applied. i.e. billing from design, estimating and buying. This paper describes each area of work and how they are impacting on each other
keywords construction, building process, integration
series CADline
last changed 2003/06/02 13:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 10HOMELOGIN (you are user _anon_691241 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002