CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 218

_id 218a
authors Ervin, Stephen M.
year 1991
title Intra-Medium and Inter-Media Constraints
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 365-380
summary Designers work with multiple representations in a variety of media to express and explore different kinds of knowledge. The advantages of multi-media in design are well- known, and exemplified by the current interest in 'hyper-media' approaches to knowledge exploration. A principal activity in working between views in one medium (e.g. plan, section and perspective drawings), or between different representations (diagrams, maps, graphs, pictures, e.g.) is extrapolating decisions made in one view or medium over to others, so that some consistency is maintained, and implications can be explored. The former kind of consistency maintenance (intra-medium) is beginning to be well understood techniques for constraint expression., satisfaction and propagation are starting to appear in 'smart CAD' systems. The latter kind of consistency maintenance inter-media.) is different, less well understood, and will require new mechanisms for constraint management and exploration. Experiments, hypotheses, and solutions in this direction will be central to any effort that seeks to explain, emulate or assist the integrative, synthetic reasoning that characterizes environmental design and planning. This paper examines some of the characteristics and advantages of intra and inter-media constraint exploration, describes a prototype "designers workstation" and some experiments in the context of landscape planning and design, and lays out some directions for development of these ideas in future computer aided design systems.
series CAAD Futures
last changed 1999/04/07 12:03

_id cb47
authors Kalay, Yehuda E.
year 1991
title Computational Modalities of Evaluation and Prediction in Design
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 271-284
summary Evaluation can be defined as measuring the fit between achieved (or expected) performances and stated criteria. It is complicated by the multi-criteria and multi-level modalities of design, where an overall balance of performances is preferred to maximizing the performance of a few characteristics, and where evaluation must be performed at different design phases, each characterized by a different informational profile. Each design modality requires a different approach to evaluation: the Multi-Criteria modality requires evaluation of a proposed solution at a particular design phase from multiple points of view, while the Multi-Level modality requires the evaluation of a particular performance characteristic at several different design phases. This paper discusses the multi-modal nature of evaluation and prediction in design, exemplified by some of the approaches that have been proposed to support them computationally. It then argues for the need to develop an integrated, multi-modal design evaluation paradigm.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 2619
authors Otero, E.
year 1996
title EVALUATION OF THE OSLD HOUSING SYSTEM
source Full-Scale Modeling in the Age of Virtual Reality [6th EFA-Conference Proceedings]
summary In the production of low-income housing, one of the factors that most affects the low cost of each unit is its mass production. When it comes to building a proposed design it must have been sufficiently studied and evaluated. When designing low-income housing it is convenient to exhaust all the possibilities of simulation in order to produce a prototype that, once built, has reduced the risk of errors. Simulations allow to improve the prototype before proceeding to build it. The Real Scale Model (RSM) has proved to be a better simulation tool than computer generated models or 1:10 scale models. It allows to reproduce and evaluate perceptual experiences as well as being user friendly because most of the spatial variables can be represented. This research is another example of the use and effectiveness of the RSM in the field of design and architectural research.

A Real Scale Model of the basic unit was built by the students of the course Spatial Design Ability dictated by the LEE. The model was first evaluated empty and then a furnishing solution was proposed, built and evaluated. These evaluations were done by another group of students of the Faculty of Architecture and Planning using the Psychological Impressions Measuring Test (IMIP) developed by Luis La Scalea (1991). This test was designed to measure people’s psychological impressions produced by a space, and consists of a semantic differential structured by eleven pairs of opposing adjectives set on a scale of seven levels. The results of this first evaluation were analysed used to modify the prototype which was evaluated again in order to produce a final layout.

keywords Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa/
last changed 2004/05/04 14:41

_id a233
authors Rosenman, M.A., Gero, J.S. and Oxman, R.E.
year 1991
title What's in a Case: The Use of Case Bases, Knowledge Bases, and Databases in Design
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 285-300
summary Design experience can be classified into generalized or compiled knowledge and specific knowledge. Generalized design knowledge has been introduced into computer-aided design in the form of rules, frames and more recently, design prototypes. Case-based reasoning is a well-defined paradigm in artificial intelligence and has obvious scope for its use in design reasoning. This paper explores case-based reasoning in design and argues for the integration of both specific and generalized design knowledge. This integration allows for characterizing what is in a case by drawing upon the schema developed for design prototypes. Finally, the paper argues that the addition of precedent knowledge, in the form of case bases, to knowledge bases and CAD databases will further extend the experience-based capabilities of design systems.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 2560
authors Alkhoven, Patricia
year 1991
title The Reconstruction of the Past: The Application of New Techniques for Visualization and Research in Architectural History
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 549-566
summary This paper focuses on the visualization of historical architecture. The application of new Computer-Aided- Architectural-Design techniques for visualization on micro computers provides a technique for reconstructing and analyzing architectural objects from the past. The pilot project describes a case study in which the historical transformation of a town will be analyzed by using three- dimensional CAD models in combination with bitmap textures. The transformation of the historic town will be visualized in a space-time computer model in which bitmap textures enable us to display complex and relatively large architectural objects in detail. This three-dimensional descriptive model allows us to survey and analyze the history of architecture in its reconstructed context. It also provides a medium for researching the dynamics of urban management, since new combinations and arrangements with the individual architectural objects can be created. In this way, a new synthesis of the graphic material can reveal typologies and the architectural ordering system of a town.
keywords 3D City modeling
series CAAD Futures
last changed 2003/11/21 15:15

_id 019c
authors Beyer, Horst A. and Streilein, André
year 1991
title Data Generation for CAAD with Digital Photogrammetry
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 583-594
summary The rapid advances in sensor technology and processing hardware make the development of a Digital Photogrammetric System for Architectural Photogrammetry possible. This system is able to acquire images with sufficient resolution for Architectural Photogrammetry. Geometric and topologic information for a CAAD-System can be derived with manual and/or semi-automated methods. This paper describes the current status of such a system which is under development at the Institute of Geodesy and Photogrammetry in cooperation with the Chair of Architecture and CAAD, both at the Swiss Federal Institute of Technology in Zurich.
series CAAD Futures
last changed 2003/11/21 15:16

_id 0b1c
authors Bridges, Alan
year 1991
title Computer Exercises in Architectural Design Theory
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
doi https://doi.org/10.52842/conf.ecaade.1991.x.f9w
summary This paper discusses how architectural theory may be taught using computer based exercises to explore the practical application of those theories. The particular view of architecture developed is, necessarily, a restricted one but the objectives behind the exercises are slightly different to those that a pure architectural theorist or historian might have The formal teaching of architectural theory and composition has not been very fashionable in Schools of Architecture for several years now: indeed there is a considerable inbuilt resistance in students to the application of any form of rules or procedures. There is however a general interest in computing and this can be utilised to advantage. In concentrating on computer applications in design eclectic use has been made of a number of architectural examples ranging from Greek temples to the work of modern deconstructionists. Architectural theory since Vitruvius is littered with attempts to define universal theories of design and this paper certainly does not presume to anything so grand: I have merely looked at buildings, compared them and noted what they have in common and how that might relate to computer-aided design. I have ignored completely any sociological, philosophical or phenomenological questions but would readily agree with the criticism that Cartesian rationality is not, on its own, a sufficient base upon which to build a theory of design. However I believe there is merit in articulating design by separating it from other concerns and making it a subject of study in its own right. Work in design research will provide the models and intellectual structures to facilitate discourse about design and might be expected to benefit the development of design skills by providing material that could be formally taught and debated in a way that is removed from the ephemeral "fashionable designer" debate. Of course, some of the ideas discussed here may prove to be equally ephemeral but that does not entirely negate their value.

series eCAADe
email
last changed 2022/06/07 07:50

_id 0aba
authors Carrara, Gianfranco, Kalay, Yehuda E. and Novembri, Gabriele
year 1991
title Intelligent Systems for Supporting Architectural Design
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 191-202
summary Design can be considered a process leading to the definition of a physical form that achieves a certain predefined set of objectives. The process comprises three distinct operations: (1) definition of the desired set of performance criteria (design goals); (2) production of alternative design solutions; (3) evaluation of the expected performances of alternative design solutions, and comparing them to predefined criteria. Difficulties arise in performing each one of the three operations, as well as in combining them into a purposeful, unified process. First, it is difficult to define the desired performance criteria prior to and independently of, the search for an acceptable solution that achieves them, since many aspects of the desired criteria can only be discovered through the search for an acceptable solution. Furthermore, the search for such a solution may well alter the definition of these criteria, as new criteria and incompatibilities between existing criteria are discovered. Second the generation of a design solution is a task demanding creativity, judgement, and experience, all three of which are difficult to define, teach, and otherwise capture in some explicit manner. Third, it is difficult to evaluate the expected performances of alternative design solutions and to compare them to the predefined criteria. Design parameters interact with each other in complex ways, which cause effects and side effects. Predicting the expected performances of even primary effects involves extrapolating non-physical characteristics from the proposed solution's physical organization, a process which relies on a host of assumptions (physical, sociological, psychological, etc.) and hence is seldom a reliable measure. A fourth problem arises from the need to coordinate the three operations in an iterative process that will converge on an acceptable design solution in reasonable time. Computational techniques that were developed in the past to assist designers in performing the above mentioned activities have shown limitations and proved inadequate to a large degree. In this paper we discuss the work in progress aimed at developing an intelligent support system for building and architectural design, which will be able to play a decisive role in the definition, evaluation and putting into effect of the design choices.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 00bc
authors Chen, Chen-Cheng
year 1991
title Analogical and inductive reasoning in architectural design computation
source Swiss Federal Institute of Technology, ETH Zurich
summary Computer-aided architectural design technology is now a crucial tool of modern architecture, from the viewpoint of higher productivity and better products. As technologies advance, the amount of information and knowledge that designers can apply to a project is constantly increasing. This requires development of more advanced knowledge acquisition technology to achieve higher functionality, flexibility, and efficient performance of the knowledge-based design systems in architecture. Human designers do not solve design problems from scratch, they utilize previous problem solving episodes for similar design problems as a basis for developmental decision making. This observation leads to the starting point of this research: First, we can utilize past experience to solve a new problem by detecting the similarities between the past problem and the new problem. Second, we can identify constraints and general rules implied by those similarities and the similar parts of similar situations. That is, by applying analogical and inductive reasoning we can advance the problem solving process. The main objective of this research is to establish the theory that (1) design process can be viewed as a learning process, (2) design innovation involves analogical and inductive reasoning, and (3) learning from a designer's previous design cases is necessary for the development of the next generation in a knowledge-based design system. This thesis draws upon results from several disciplines, including knowledge representation and machine learning in artificial intelligence, and knowledge acquisition in knowledge engineering, to investigate a potential design environment for future developments in computer-aided architectural design. This thesis contains three parts which correspond to the different steps of this research. Part I, discusses three different ways - problem solving, learning and creativity - of generating new thoughts based on old ones. In Part II, the problem statement of the thesis is made and a conceptual model of analogical and inductive reasoning in design is proposed. In Part III, three different methods of building design systems for solving an architectural design problem are compared rule-based, example-based, and case-based. Finally, conclusions are made based on the current implementation of the work, and possible future extensions of this research are described. It reveals new approaches for knowledge acquisition, machine learning, and knowledge-based design systems in architecture.
series thesis:PhD
email
last changed 2003/05/10 05:42

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id e717
authors De Vries, Mark and Wagter, Harry
year 1991
title The First CAAD Package (sketch based cad)
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 497-510
summary In this paper a theory will be presented that can be used to develop a new type of CAD program. It supports architectural design and can be applied to the earliest stages of the design process. The theory is based on architectural knowledge and describes how sketched input can be used for CAAD programs. The theoretical backgrounds will be explained briefly.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id f85d
authors Geraedts, Rob P and Pollalis, Spiro N.
year 2001
title Remote Teaching in Design Education - Educational and Organizational Issues and Experiences
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 305-310
doi https://doi.org/10.52842/conf.ecaade.2001.305
summary The Department of Real Estate and Project Management (BMVB) of the Faculty of Architecture at the Delft University of Technology has been working closely with Professor Spiro N. Pollalis of Harvard University, Graduate School of Design in Cambridge, USA since 1991. His case-based interactive seminars about the management of the design & construction process have been highly appreciated by many generations of students. In Spring 2000, Pollalis suggested to extend the scope of his involvement by introducing a remote teaching component, the subject of his research in the last few years. As Information and Communication Technology (ICT) in the Design and Construction Industry is part of his lectures, it was appropriate to provide the students with a first hand experience on the subject. In the following experiment, the teacher would remain in his office at Harvard while the interactive work and discussion sessions with 130 students in a full lecture room would take place in Delft as planned. The consequences this experiment has had for the course, for the techniques and facilities used, how teachers and students experienced these, and which conclusions and recommendations can be made, are the topics of this paper.
keywords Remote Teaching, Design & Construction Education, And ICT
series eCAADe
last changed 2022/06/07 07:51

_id 2eb4
authors Johnson, Robert E.
year 1991
title ESP - An Expert System for Property Revitalization
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 425-442
summary This paper reports on the development of a knowledge based system that can help to assess the reuse potential of idle industrial property. It does not take the place of the architect or engineer, but allows for strategic design factors to be considered in very early and important property redesign and revitalization decisions. The idea is predicated on the judgment that there is a relatively systematic approach to evaluating the reuse potential of vacant property. A frame based approach together with a series of "if-then" rules are used to represent the knowledge domain and procedures required to perform a feasibility analysis. Rules for assessing the impact of the regional economy, industrial market trends, building configuration, building design strategies and the impact of building codes are included in this manner. A prototype of this system system has been implemented on both an Apple Macintosh computer using AAIS Prolog and an IBM AT compatible using Arity/Prolog.
series CAAD Futures
last changed 1999/04/07 12:03

_id diss_kuo
id diss_kuo
authors Kuo, C.J.
year 1999
title Unsupervised Dynamic Concurrent Computer-Aided Design Assistant
source Los Angeles: UCLA
summary The increasing capability of computer-aided architectural design systems has strengthened the role that the computer plays in the workplace. Due to the complexity of developing new techniques and research, these systems are undertaken mostly by scientists and engineers without significant architectural input (Willey, 1991). The design concept of these systems may be based on a well-defined and well-understood process, which is not yet realized in architectural design (Galle, 1994). The output of such research may not be easily adapted into the design process. Most of the techniques assume a complete understanding of the design space (Gero and Maher, 1987) (Willey, 1991). The description or construction of the design space is always time and space consuming, and the result can never be complete due to the ever-changing nature of architectural design. This research intends to initiate a solution for the above problems. The proposed system is an unsupervised-dynamic-concurrent-computer-aided-design assistant. The “unsupervised” means the learning process is not supervised by the user because it is against the designer's nature to “think-aloud” in the design studio and it also increases the work load. It is dynamic because the size of the knowledge base is constantly changing. Concurrent means that there are multiple procedures active simultaneously. This research focuses on learning the operational knowledge from an individual designer and reapplying it in future designs. A computer system for this experiment is constructed. It is capable of The preliminary result shows a positive feedback from test subjects. The purpose of this research is to suggest a potent computational frame within which future developments may flourish.
series thesis:PhD
last changed 2003/11/28 07:37

_id a113
authors Milne, Murray
year 1991
title Design Tools: Future Design Environments for Visualizing Building Performance
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 485-496
summary In the future of Computer Aided Architectural Design (CAAD), architects clearly need more than just computer aided design and drafting systems (CAD). Unquestionably CAD systems continue to become increasingly powerful, but there is more to designing a good building than its three-dimensional existence, especially in the eyes of all the non-architects of the world: users, owners, contractors, regulators, environmentalists. The ultimate measure of a building's quality has something to do with how well it behaves over time. Predictions about its performance have many different dimensions; how much it costs to build, to operate, and to demolish; how comfortable it is; how effectively people can perform their functions in it; how much energy it uses or wastes. Every year dozens of building performance simulation programs are being written that can predict performance over time along any of these dimensions. That is why the need for both CAD systems and performance predictors can be taken for granted, and why instead it may be more interesting to speculate about the need for 'design tools'. A design tool can be defined as a piece of software that is easy and natural for architects to use, that easily accommodates three-dimensional representations of the building, and that-predicts something useful about a building's performance. There are at least five different components of design tools that will be needed for the design environment of the future.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id a395
authors Mitchell, W.J., Liggett, R.S., Pollalis, S.N. and Tan, M.
year 1991
title Integrating Shape Grammars and Design Analysis
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 17-32
summary This paper demonstrates how design problems can be solved by combining a shape grammar to generate alternatives with standard engineering analysis procedures to test them. It provides a detailed worked example, and discusses practical applications of the idea in design teaching.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 2914
authors Mortola, Elena and Giangrande, Alessandro
year 1991
title An Evaluation Module for "An Interface for Designing" (AID)- A Procedure based on Trichotomic Segmentation
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 139-154
summary The paper illustrates a model used to construct the evaluation module for "An Interface for Designing" (AID), a system to aid architectural design. The model can be used at the end of every cycle of analysis-synthesis-evaluation in the intermediate phases of design development. With the aid of this model it is possible to evaluate the quality of a project in overall terms to establish whether the project is acceptable, whether it should be elaborated ex-novo or whether it is necessary to begin a new cycle to improve it. In this last case it is also possible to evaluate the effectiveness of the possible actions and strategies for improvement. T he model is based on a procedure of trichotomic segmentation, developed within the MCDA (Multi- Criteria Decision Aid), which uses the outranking relation to compare the project with some evaluation profiles taken as projects for reference. In the paper an example of the application of the model in the teaching field will also be described.
series CAAD Futures
last changed 1999/04/07 12:03

_id e2d1
authors Oxman, Rivka E. and Oxman, Robert M.
year 1991
title Refinement and Adaptation: Two Paradigms of Form Generation in CAAD
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 313-328
summary Within a transformational paradigm of form generation, refinement and adaptation are presented as two distinct concepts which can provide formalisms for encoding design knowledge. Refinement and adaptation are treated as syntactical models of form generation. Computational formal analysis is proposed as a method for the study and modelling of refinement and adaptation in design. Employing the analytical method we demonstrate that formal transformations are dependent upon their membership in classes of architectural designs. Computational issues inform generation through refinement and adaptation are identified.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id ef46
authors Petrovic, I.
year 1991
title Integrative Knowledge-Based Design Systems : A View
source The Computer Integrated Future, CIB W78 Seminar September, 1991. Unnumbered : ill. includes bibliography.
summary The paper describes a recent project whose objective was to redesign GIMSEX-PERT, an existing architectural knowledge- based design system developed in 1987. Its critical generative problems appeared to be the rigid structure and limited evaluation criteria. The project's outcome is DESTOOLS, based on the 'object-oriented-methodology' inspired by the traditional trial-and-error approach. It includes a set of interchangeable design methods that can be applied interactively by any desired sequence, producing or transforming a GIMS Building System object. Such 'moderately- loose' system structure offers flexibility in use, avoids pitfalls of knowledge-based design systems with rigid structure, and is applicable in design research, education and practice
keywords knowledge base, design, architecture, methods, systems, education, practice, integration, evaluation
series CADline
last changed 2003/06/02 13:58

_id ecaade2023_281
id ecaade2023_281
authors Prokop, Šimon, Kubalík, Jiøí and Kurilla, Lukáš
year 2023
title Neural Networks for Estimating Wind Pressure on Complex Double-Curved Facades
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 639–647
doi https://doi.org/10.52842/conf.ecaade.2023.2.639
summary Due to their complex geometry, it is challenging to assess wind effects on the freeform, double-curved building facades. The traditional building code EN 1991-1-4 (730035) only accounts for basic shapes such as cubes, spheres, and cylinders. Moreover, even though wind tunnel measurements are considered to be more precise than other methods, they are still limited by the number of measurement points that can be taken. This limitation, combined with the time and resources required for the analysis, can limit the ability to fully capture detailed wind effects on the whole complex freeform shape of the building. In this study, we propose the use of neural network models trained to predict wind pressure on complex double-curved facades. The neural network is a powerful data-driven machine learning technique that can, in theory, learn an approximation of any function from data, making it well-suited for this application. Our approach was empirically evaluated using a set of 31 points measured in the wind tunnel on a 3D printed model in 1:300 scale of the real architectural design of a concert hall in Ostrava. The results of this evaluation demonstrate the effectiveness of our neural network method in estimating wind pressures on complex freeform facades.
keywords wind pressure, double-curved façade, neural network
series eCAADe
email
last changed 2023/12/10 10:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 10HOMELOGIN (you are user _anon_491066 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002