CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 221

_id 1839
authors Papamichael, Konstantinos Michael
year 1991
title Design process and knowledge possibilities and limitations of computer-aided design
source University of California, Berkeley
summary An attempt to determine how computers can be used to assist designers resulted in the development of a design theory, according to which design is 'feeling and thinking while acting.' Design is theorized as living through one's imagination, however being continuously affected by real life itself. The design process is decomposed into elementary activities that are characterized with respect to the nature of knowledge requirements and the degree to which they can be specified and delegated to computers. The results are considered as criteria to determine possibilities and limitations of computer-aided design. An integration of a variety of computer applications tools is proposed towards the design and development of a computer-based Design Support Environment (DSE), that is applicable to any design domain. The proposed DSE automates all specifiable and delegable design activities, while assisting with the nondelegable ones through appropriate user interface. A DSE demonstration prototype is also presented in the Appendix. This prototype addresses the design of fenestration and electric lighting systems of office spaces with respect to comfort, energy and cost.
series thesis:PhD
email
last changed 2003/02/24 20:32

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 0aba
authors Carrara, Gianfranco, Kalay, Yehuda E. and Novembri, Gabriele
year 1991
title Intelligent Systems for Supporting Architectural Design
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 191-202
summary Design can be considered a process leading to the definition of a physical form that achieves a certain predefined set of objectives. The process comprises three distinct operations: (1) definition of the desired set of performance criteria (design goals); (2) production of alternative design solutions; (3) evaluation of the expected performances of alternative design solutions, and comparing them to predefined criteria. Difficulties arise in performing each one of the three operations, as well as in combining them into a purposeful, unified process. First, it is difficult to define the desired performance criteria prior to and independently of, the search for an acceptable solution that achieves them, since many aspects of the desired criteria can only be discovered through the search for an acceptable solution. Furthermore, the search for such a solution may well alter the definition of these criteria, as new criteria and incompatibilities between existing criteria are discovered. Second the generation of a design solution is a task demanding creativity, judgement, and experience, all three of which are difficult to define, teach, and otherwise capture in some explicit manner. Third, it is difficult to evaluate the expected performances of alternative design solutions and to compare them to the predefined criteria. Design parameters interact with each other in complex ways, which cause effects and side effects. Predicting the expected performances of even primary effects involves extrapolating non-physical characteristics from the proposed solution's physical organization, a process which relies on a host of assumptions (physical, sociological, psychological, etc.) and hence is seldom a reliable measure. A fourth problem arises from the need to coordinate the three operations in an iterative process that will converge on an acceptable design solution in reasonable time. Computational techniques that were developed in the past to assist designers in performing the above mentioned activities have shown limitations and proved inadequate to a large degree. In this paper we discuss the work in progress aimed at developing an intelligent support system for building and architectural design, which will be able to play a decisive role in the definition, evaluation and putting into effect of the design choices.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 00bc
authors Chen, Chen-Cheng
year 1991
title Analogical and inductive reasoning in architectural design computation
source Swiss Federal Institute of Technology, ETH Zurich
summary Computer-aided architectural design technology is now a crucial tool of modern architecture, from the viewpoint of higher productivity and better products. As technologies advance, the amount of information and knowledge that designers can apply to a project is constantly increasing. This requires development of more advanced knowledge acquisition technology to achieve higher functionality, flexibility, and efficient performance of the knowledge-based design systems in architecture. Human designers do not solve design problems from scratch, they utilize previous problem solving episodes for similar design problems as a basis for developmental decision making. This observation leads to the starting point of this research: First, we can utilize past experience to solve a new problem by detecting the similarities between the past problem and the new problem. Second, we can identify constraints and general rules implied by those similarities and the similar parts of similar situations. That is, by applying analogical and inductive reasoning we can advance the problem solving process. The main objective of this research is to establish the theory that (1) design process can be viewed as a learning process, (2) design innovation involves analogical and inductive reasoning, and (3) learning from a designer's previous design cases is necessary for the development of the next generation in a knowledge-based design system. This thesis draws upon results from several disciplines, including knowledge representation and machine learning in artificial intelligence, and knowledge acquisition in knowledge engineering, to investigate a potential design environment for future developments in computer-aided architectural design. This thesis contains three parts which correspond to the different steps of this research. Part I, discusses three different ways - problem solving, learning and creativity - of generating new thoughts based on old ones. In Part II, the problem statement of the thesis is made and a conceptual model of analogical and inductive reasoning in design is proposed. In Part III, three different methods of building design systems for solving an architectural design problem are compared rule-based, example-based, and case-based. Finally, conclusions are made based on the current implementation of the work, and possible future extensions of this research are described. It reveals new approaches for knowledge acquisition, machine learning, and knowledge-based design systems in architecture.
series thesis:PhD
email
last changed 2003/05/10 05:42

_id cdb1
authors Cornick, T., Noble, B. and Hallahan, C.
year 1991
title The Limitations of Current Working Practices on the Development of Computer Integrating Modelling in Construction
source computer Integrated Future, CIB W78 Seminar. Calibre, The Netherlands: Eindhoven University of Technology, september, 1991. Unnumbered. includes bibliography
summary For the construction Industry to improve its processes through the application computer-based systems, traditional working practices must first change to support the integrated control of design and construction. Current manual methods of practice accept the limitations of man to process a wide range of building performance and production information simultaneously. However when these limitations are removed, through the applications of computer systems, the constraints of manual methods need no longer apply. The first generation of computer applications to the Construction Industry merely modelled the divided and sequential processes of manual methods i.e. drafting, specification writing, engineering and quantity calculations, estimating, billing, material ordering data-bases and activity planning. Use of these systems raises expectations that connections within the computer between the processes modelled can actually be made and faster and more integrated information processing be achieved. 'Linking' software is then developed. The end result of this approach was that users were able to produce information faster, present it in an impressive manner but, in reality, no perceived improvement in actual building performance, production economy or efficiency was realized. A current government sponsored Teaching Company Programme with a UK design and build company is addressing the problem of how real economic benefit can be realized through improvement in, amongst other things, their existing computer applications. This work is being carried out by both considering an academic conceptual model of how 'designing for production' can be achieved in computer applications and what is immediately realizable in practice by modelling the integration of a limited number of knowledge domains to which computers are already being applied. i.e. billing from design, estimating and buying. This paper describes each area of work and how they are impacting on each other
keywords construction, building process, integration
series CADline
last changed 2003/06/02 13:58

_id e717
authors De Vries, Mark and Wagter, Harry
year 1991
title The First CAAD Package (sketch based cad)
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 497-510
summary In this paper a theory will be presented that can be used to develop a new type of CAD program. It supports architectural design and can be applied to the earliest stages of the design process. The theory is based on architectural knowledge and describes how sketched input can be used for CAAD programs. The theoretical backgrounds will be explained briefly.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 6064
authors Kramel, Herbert and Chen, Chen-Cheng
year 1991
title BAU: A Knowledge-Based System for the Investigation of a Basic Architectural Unit
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 329-346
summary The control of incremental complexities within an evolutionary design process has been a serious concern in both architectural education and practice. One method of examining this problem is to first define a "basic architectural unit" and a design environment which is composed of multiple units. Different levels of detail will be added to the unit as the design process continues. Secondly, a related computer program called BAU is introduced, which demonstrates that a computer is a meaningful tool for helping the architect to investigate the consequence of a design problem. Thirdly, both the domain expert's and the knowledge engineer's experiences during the development of BAU are described. Finally, the future direction of this research will be discussed.
series CAAD Futures
last changed 1999/04/07 12:03

_id diss_kuo
id diss_kuo
authors Kuo, C.J.
year 1999
title Unsupervised Dynamic Concurrent Computer-Aided Design Assistant
source Los Angeles: UCLA
summary The increasing capability of computer-aided architectural design systems has strengthened the role that the computer plays in the workplace. Due to the complexity of developing new techniques and research, these systems are undertaken mostly by scientists and engineers without significant architectural input (Willey, 1991). The design concept of these systems may be based on a well-defined and well-understood process, which is not yet realized in architectural design (Galle, 1994). The output of such research may not be easily adapted into the design process. Most of the techniques assume a complete understanding of the design space (Gero and Maher, 1987) (Willey, 1991). The description or construction of the design space is always time and space consuming, and the result can never be complete due to the ever-changing nature of architectural design. This research intends to initiate a solution for the above problems. The proposed system is an unsupervised-dynamic-concurrent-computer-aided-design assistant. The “unsupervised” means the learning process is not supervised by the user because it is against the designer's nature to “think-aloud” in the design studio and it also increases the work load. It is dynamic because the size of the knowledge base is constantly changing. Concurrent means that there are multiple procedures active simultaneously. This research focuses on learning the operational knowledge from an individual designer and reapplying it in future designs. A computer system for this experiment is constructed. It is capable of The preliminary result shows a positive feedback from test subjects. The purpose of this research is to suggest a potent computational frame within which future developments may flourish.
series thesis:PhD
last changed 2003/11/28 07:37

_id c5ad
authors Shaviv, Edna and Peleg, Uriel J.
year 1991
title An Integrated KB-CAAD System for the Design of Solar and Low Energy Buildings
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 465-484
summary A knowledge-based computer-aided architectural design system (KB-CAAD) for the design and evaluation of solar and low energy buildings is presented. The KB-CAAD system is based on the, integration of knowledge-based and procedural simulation methods with any available CAAD system for building representation. The knowledge base contains the heuristic rules for the design of passive solar buildings. Whenever possible, the knowledge base guides the designer through the decision making process. Yet, if the rules of thumb are not acceptable for the particular design problem, the KB-CAAD system guides the architect by using a procedural simulation model. We demonstrate by means of a case study, that not only does the KB-CAAD system lead to the design of better solar buildings, but that this process requires less time and labor than the process of building presentations by means of standard available CAAD systems.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id avocaad_2001_20
id avocaad_2001_20
authors Shen-Kai Tang
year 2001
title Toward a procedure of computer simulation in the restoration of historical architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the field of architectural design, “visualization¨ generally refers to some media, communicating and representing the idea of designers, such as ordinary drafts, maps, perspectives, photos and physical models, etc. (Rahman, 1992; Susan, 2000). The main reason why we adopt visualization is that it enables us to understand clearly and to control complicated procedures (Gombrich, 1990). Secondly, the way we get design knowledge is more from the published visualized images and less from personal experiences (Evans, 1989). Thus the importance of the representation of visualization is manifested.Due to the developments of computer technology in recent years, various computer aided design system are invented and used in a great amount, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and collaboration, etc. (Lawson, 1995; Liu, 1996). The conventional media are greatly replaced by computer media, and the visualization is further brought into the computerized stage. The procedure of visual impact analysis and assessment (VIAA), addressed by Rahman (1992), is renewed and amended for the intervention of computer (Liu, 2000). Based on the procedures above, a great amount of applied researches are proceeded. Therefore it is evident that the computer visualization is helpful to the discussion and evaluation during the design process (Hall, 1988, 1990, 1992, 1995, 1996, 1997, 1998; Liu, 1997; Sasada, 1986, 1988, 1990, 1993, 1997, 1998). In addition to the process of architectural design, the computer visualization is also applied to the subject of construction, which is repeatedly amended and corrected by the images of computer simulation (Liu, 2000). Potier (2000) probes into the contextual research and restoration of historical architecture by the technology of computer simulation before the practical restoration is constructed. In this way he established a communicative mode among archeologists, architects via computer media.In the research of restoration and preservation of historical architecture in Taiwan, many scholars have been devoted into the studies of historical contextual criticism (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000). Clues that accompany the historical contextual criticism (such as oral information, writings, photographs, pictures, etc.) help to explore the construction and the procedure of restoration (Hung, 1995), and serve as an aid to the studies of the usage and durability of the materials in the restoration of historical architecture (Dasser, 1990; Wang, 1998). Many clues are lost, because historical architecture is often age-old (Hung, 1995). Under the circumstance, restoration of historical architecture can only be proceeded by restricted pictures, written data and oral information (Shi, 1989). Therefore, computer simulation is employed by scholars to simulate the condition of historical architecture with restricted information after restoration (Potier, 2000). Yet this is only the early stage of computer-aid restoration. The focus of the paper aims at exploring that whether visual simulation of computer can help to investigate the practice of restoration and the estimation and evaluation after restoration.By exploring the restoration of historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example), this study aims to establish a complete work on computer visualization, including the concept of restoration, the practice of restoration, and the estimation and evaluation of restoration.This research is to simulate the process of restoration by computer simulation based on visualized media (restricted pictures, restricted written data and restricted oral information) and the specialized experience of historical architects (Potier, 2000). During the process of practicing, communicates with craftsmen repeatedly with some simulated alternatives, and makes the result as the foundation of evaluating and adjusting the simulating process and outcome. In this way we address a suitable and complete process of computer visualization for historical architecture.The significance of this paper is that we are able to control every detail more exactly, and then prevent possible problems during the process of restoration of historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 86c1
authors Shih, Shen-Guan
year 1991
title Case-based Representation and Adaptation in Design
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 301-312
summary By attempting to model the raw memory of experts, case-based reasoning is distinguished from traditional expert systems, which compile experts' knowledge into rules before new problems are given. A case-based reasoning system processes new problems with the most similar prior experiences available, and adapts the prior solutions to solve new problems. Case-based representation, of design knowledge utilizes the desirable features of the selected case as syntax rules to adapt the case to a new context. As a central issue of the paper, three types of adaptation aimed at topological modifications are described. The first type - casebased search - can be viewed as a localized search process. It follows the syntactical structure of the case to search for variations which provide the required functionality. Regarding the complexity of computation, it is recognized that when a context sensitive grammar is used to describe the desirable features, the search process become intractable. The second type of adaptation can be viewed as a process of self-organization, in which context-sensitive grammars play an essential role. Evaluations have to be simulated by local interaction among design primitives. The third type is called direct transduction. A case is translated directly to another structure according to its syntax by some translation functions. A direct transduction is not necessarily a composition of design operators and thus, a crosscontextual mapping is possible. As a perspective use of these adaptation methods, a CAD system which provides designers with the ability to modify the syntactical structure of a group of design elements, according to some concerned semantics, would support designers better than current CAD systems.
series CAAD Futures
last changed 1999/04/07 12:03

_id 2c7b
authors Stenvert, Ronald
year 1993
title The Vector-drawing as a Means to Unravel Architectural Communication in the Past
source [eCAADe Conference Proceedings] Eindhoven (The Netherlands) 11-13 November 1993
doi https://doi.org/10.52842/conf.ecaade.1993.x.q9a
summary Unlike in painting, in architecture one single person never controls the whole process between conception and realization of a building. Ideas of what the building will eventually look like, have to be conveyed from patron to the actual builders, by way of drawings. Generally the architect is the key-figure in this process of communication of visual ideas. Nowadays many architects design their new buildings by using computers and Computer-Aided (Architectural) Design programs like AutoCad and VersaCAD. Just like traditional drawings, all these computer drawings are in fact vector-drawings; a collection of geometrical primitives like lines, circle segments etc. identified by the coordinates of their end points. Vector-based computer programs can not only be used to design the future, but also as a means to unravel the architectural communication in the past. However, using the computer as an analyzing tool for a better comprehension of the past is not as simple as it seems. Historical data from the past are governed by unique features of date and place. The complexity of the past combined with the straightforwardness of the computer requires a pragmatic and basic approach in which the computer acts as a catalytic agent, enabling the scholar to arrive manually at his own - computer-assisted - conclusions. From this it turns out that only a limited number of projects of a morphological kind are suited to contribute to new knowledge, acquired by the close-reading of the information gained by way of meaningful abstraction. An important problem in this respect is how to obtain the right kind of architectural information. All four major elements of the building process - architect, design, drawing and realization - have their own different and gradually shifting interpretations in the past. This goes especially for the run-of-the-mill architecture which makes up the larger part of the historical urban environment. Starting with the architect, one has to realize that only a very limited part of mainstream architecture was designed by architects. In almost all other cases the role of the patron and the actual builder exceeds that of the architect, even to the extent that they designed buildings themselves. The position of design and drawing as means of communication also changed in the past. Until the middle of the nineteenth century drawings were not the chief means of communication between architects and builders, who got the gist of the design from a model, or, encountering problems, simply asked the architect or supervisor. From the nineteenth century onwards the use of drawings became more common, but almost never represented the building entirely "as built". In 1991 I published my Ph.D. thesis: Constructing the past: computerassisted architectural-historical research: the application of image-processing using the computer and Computer-Aided Design for the study of the urban environment, illustrated by the use of treatises in seventeenth-century architecture (Utrecht 1991). Here, a reconstruction of this historical communication process will be presented on the basis of a project studying the use of the Classical orders as prescribed in various architectural treatises, compared to the use of the orders in a specific group of still existing buildings in The Netherlands dating from the late sixteenth and entire seventeenth century. Comparisons were made by using vector-drawings. Both the illustrations in the the treatises and actual buildings were "translated" into computer-drawings and then analyzed.

series eCAADe
last changed 2022/06/07 07:50

_id c93d
authors Zreik, Khaldoun
year 1991
title What Could Artificial Intelligence Know about the Knowledge Involved in the Design Process?
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 395-410
summary The nature of the knowledge involved in the design process is very specific and it is incompletely known. Its control becomes very complicated owing to the large number of dynamic parameters and functions which define the relationships between one another. So we consider two relevant facts: 1.) all knowledge involved in the design process could not have been foreseen; 2.) the help of computer technology in this domain is badly oriented. Two major questions will be posed here: a. what kind of design knowledge do designers explicitly master? b. and which parts of it can computer technology represent today? // This paper aims to build a simple panorama of the knowledge involved in the architectural design process. Actors, resources and corresponding classifications of this knowledge and also its dynamic distribution will be presented. This paper also throws light upon how important are artificial intelligence sciences and tools for the improvement of the design process computability.
series CAAD Futures
last changed 1999/04/07 12:03

_id f9bd
authors Amor, R.W.
year 1991
title ICAtect: Integrating Design Tools for Preliminary Architectural Design
source Wellington, New Zealand: Computer Science Department, Victoria University
summary ICAtect is a knowledge based system that provides an interface between expert systems, simulation packages and CAD systems used for preliminary architectural design. This thesis describes its structure and development.The principal work discussed in this thesis involves the formulation of a method for representing a building. This is developed through an examination of a number of design tools used in architectural design, and the ways in which each of these describe a building.Methods of enabling data to be transferred between design tools are explored. A Common Building Model (CBM), forming the core of the ICAtect system, is developed to represent the design tools knowledge of a building. This model covers the range of knowledge required by a large set of disparate design tools used by architects at the initial design stage.Standard methods of integrating information from the tools were examined, but required augmentation to encompass the unusual constraints found in some of the design tools. The integration of the design tools and the CBM is discussed in detail, with example methods developed for each type of design tool. These example methods provide a successful way of moving information between the different representations. Some problems with mapping data between very different representations were encountered in this process, and the solutions or ideas for remedies are detailed. A model for control and use of ICAtect is developed in the thesis, and the extensions to enable a graphical user interface are discussed.The methods developed in this thesis demonstrate the feasibility of an integrated system of this nature, while the discussion of future work indicates the scope and potential power of ICAtect.
series other
last changed 2003/04/23 15:14

_id ca50
authors Ayrle, Hartmut
year 1991
title XNET2 - Methodical Design of Local Area Networks in Buildings - An Application of the A4 Intelligent Design Tool
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 443-450
summary XNET2 is a prototype program, that helps network planners to design Ethernet-conform data-networks for sites and buildings. It is implemented as an example application of the ARMILLA4 Intelligent Design Tool under Knowledge Craft. It is based on a knowledge acquisition phase with experts from DECsite, the network-branch of DEC. The ARMILLA Design Tool is developed on the basis of Fritz Haller's ARMILLA ' a set of geometrical and operational rules for the integration of technical ductwork into a building's construction.
series CAAD Futures
last changed 2003/11/21 15:16

_id 27d2
authors Ayrle, Hartmut
year 1991
title Computers for Architects - Only a Tool?
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
doi https://doi.org/10.52842/conf.ecaade.1991.x.i9j
summary The paper states that, as a result of the schism between architecture as art and engineering as rationalism, the architectural community underestimates the computer as tool with a potential to substantially enlarge the possibilities of building design. It is claimed that the computer could serve as coordination tool for the ruptured design process, as a virtual workbench where all design disciplines sit together and develop their designs in enhanced conscience of what the whole design demands. The paper then concludes, that to develop such software tools, architects must participate in the development of software and may no longer be restricted to the role of applicants, especially during their universitary instruction. The corresponding research and training facilities at the University of Karlsruhe, Faculty of Architecture are described.

series eCAADe
last changed 2022/06/07 07:50

_id 8db6
authors Bijl, Aart
year 1991
title On Knowing - Feeling and Expression
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 157-176
summary The basic assumptions for CAD, and for any use of computers, are re-examined. They refer to how we know things, how we think of knowledge being represented, and the impact of representation techniques on evolution of knowledge. Japan offers stimulating clues on how we might regard the usefulness of computers, and these are explained. Evocative illustrations are presented, to show a direction for future developments.
series CAAD Futures
last changed 2003/11/21 15:16

_id 85f9
authors Brisson, E., Debras, P. and Poyet, Patrice
year 1991
title A First Step Towards an Intelligent Integrated Design System in the Building Field
source computer Integrated Future, CIB W78 Seminar. September, 1991. Unnumbered pages : ill. includes bibliography
summary This article presents the work the Knowledge Base Group is achieving towards the integration of Artificial Intelligence based facilities in the Building design process. After an overview of the current state of the integrated design process, the context and the technical guidelines to realize computer integrated software in the building design field is described. Then some tools are presented to model the knowledge (the HBDS method) and to implement such model in our Mips home-made knowledge modeling software platform (including object-oriented database management facilities, expert system reasoning facilities, hypertext edition facilities, 3D-design and 3D-view modules...). Finally the authors describe the Quakes application devoted to assess detached house anti-seismic capabilities during the design process. A deep conceptual model considers all the semantic entities (columns, resistant panels, openings, ...) involved in the anti-seismic expertise. Using both this conceptual model description of a detached house and the 3D design tool, they input the project. Then the seismic expertise is driven in a divide and conquer approach and records the alleged configuration recognized automatically linked to the corresponding section of the building regulation
keywords AI, design, knowledge, software, integration, building, CAD, structures
series CADline
last changed 2003/06/02 13:58

_id caadria2007_659
id caadria2007_659
authors Chen, Zi-Ru
year 2007
title The Combination of Design Media and Design Creativity _ Conventional and Digital Media
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
doi https://doi.org/10.52842/conf.caadria.2007.x.w5x
summary Creativity is always interested in many fields, in particular, creativity and design creativity have many interpretations (Boden, 1991; Gero and Maher, 1992, 1993; Kim, 1990; Sternberg, 1988; Weisberg, 1986). In early conceptual design process, designers used large number of sketches and drawings (Purcell and Gero, 1998). The sketch can inspire the designer to increase the creativity of the designer’s creations(Schenk, 1991; Goldschmidt, 1994; Suwa and Tversky, 1997). The freehand sketches by conventional media have been believed to play important roles in processes of the creative design thinking(Goldschmidt, 1991; Schon and Wiggins, 1992; Goel, 1995; Suwa et al., 2000; Verstijnen et al., 1998; Elsas van and Vergeest, 1998). Recently, there are many researches on inspiration of the design creativity by digital media(Liu, 2001; Sasada, 1999). The digital media have been used to apply the creative activities and that caused the occurrenssce of unexpected discovery in early design processes(Gero and Maher, 1993; Mitchell, 1993; Schmitt, 1994; Gero, 1996, 2000; Coyne and Subrahmanian, 1993; Boden, 1998; Huang, 2001; Chen, 2001; Manolya et al. 1998; Verstijinen et al., 1998; Lynn, 2001). In addition, there are many applications by combination of conventional and digital media in the sketches conceptual process. However, previous works only discussed that the individual media were related to the design creativity. The cognitive research about the application of conceptual sketches design by integrating both conventional and digital media simultaneously is absent.
series CAADRIA
email
last changed 2022/06/07 07:50

_id eb51
authors Coyne, Richard
year 1996
title CAAD, Curriculum and Controversy
source Education for Practice [14th eCAADe Conference Proceedings / ISBN 0-9523687-2-2] Lund (Sweden) 12-14 September 1996, pp. 121-130
doi https://doi.org/10.52842/conf.ecaade.1996.121
summary This paper brings some of the debate within educational theory to bear on CAAD teaching, outlining the contributions of conservatism, critical theory, radical hermeneutics and pragmatism. The paper concludes by recommending that CAAD teaching move away from conservative concepts of teaching, design and technology to integrate it into the studio. In a highly illuminating book on education theory, Shaun Gallagher (1991) outlines four current views on education that correspond to four major positions in contemporary social theory and philosophy. I will extend these categories to a consideration of attitudes to information technology, and the teaching of computing in architecture. These four positions are conservatism, critical theory, radical hermeneutics, and pragmatism. I will show how certain issues cluster around them, how each position provides the focus of various discursive practices, or intellectual conversations in contemporary thinking, and how information technology is caught up in those conversations. These four positions are not "cognitive styles," but vigorously argued domains of debate involving writers such as Gadamer, Habermas and Derrida about the theory of interpretation. The field of interpretation is known as hermeneutics, which is concerned less with epistemology and knowledge than with understanding. Interpretation theory applies to reading texts, interpreting the law, and appreciating art, but also to the application of any practical task, such as making art, drawing, defining and solving problems, and design (Coyne and Snodgrass, 1995). Hermeneutics provides a coherent focus for considering many contemporary issues and many domains of practice. I outline what these positions in education mean in terms of CAAD (computer-aided architectural design) in the curriculum.

series eCAADe
email
more http://www.caad.ac.uk/~richard
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 11HOMELOGIN (you are user _anon_196935 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002