CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 32

_id ca50
authors Ayrle, Hartmut
year 1991
title XNET2 - Methodical Design of Local Area Networks in Buildings - An Application of the A4 Intelligent Design Tool
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 443-450
summary XNET2 is a prototype program, that helps network planners to design Ethernet-conform data-networks for sites and buildings. It is implemented as an example application of the ARMILLA4 Intelligent Design Tool under Knowledge Craft. It is based on a knowledge acquisition phase with experts from DECsite, the network-branch of DEC. The ARMILLA Design Tool is developed on the basis of Fritz Haller's ARMILLA ' a set of geometrical and operational rules for the integration of technical ductwork into a building's construction.
series CAAD Futures
last changed 2003/11/21 15:16

_id fd70
authors Goldman, Glenn and Zdepski, Michael Stephen (Eds.)
year 1991
title Reality and Virtual Reality [Conference Proceedings]
source ACADIA Conference Proceedings / ISBN 1-880250-00-4 / Los Angeles (California - USA) October 1991, 236 p.
doi https://doi.org/10.52842/conf.acadia.1991
summary During the past ten years computers in architecture have evolved from machines used for analytic and numeric calculation, to machines used for generating dynamic images, permitting the creation of photorealistic renderings, and now, in a preliminary way, permitting the simulation of virtual environments. Digital systems have evolved from increasing the speed of human operations, to providing entirely new means for creating, viewing and analyzing data. The following essays illustrate the growing spectrum of computer applications in architecture. They discuss developments in the simulation of future environments on the luminous screen and in virtual space. They investigate new methods and theories for the generation of architectural color, texture, and form. Authors address the complex technical issues of "intelligent" models and their associated analytic contents. There are attempts to categorize and make accessible architects' perceptions of various models of "reality". Much of what is presented foreshadows changes that are taking place in the areas of design theory, building sciences, architectural graphics, and computer research. The work presented is both developmental, evolving from the work done before or in other fields, and unique, exploring new themes and concepts. The application of computer technology to the practice of architecture has had a cross disciplinary effect, as computer algorithms used to generate the "unreal" environments and actors of the motion picture industry are applied to the prediction of buildings and urban landscapes not yet in existence. Buildings and places from history are archeologically "re-constructed" providing digital simulations that enable designers to study that which has previously (or never) existed. Applications of concepts from scientific visualization suggest new methods for understanding the highly interrelated aspects of the architectural sciences: structural systems, environmental control systems, building economics, etc. Simulation systems from the aerospace industry and computer media fields propose new non-physical three-dimensional worlds. Video compositing technology from the television industry and the practice of medicine are now applied to the compositing of existing environments with proposed buildings. Whether based in architectural research or practice, many authors continue to question the development of contemporary computer systems. They seek new interfaces between human and machine, new methods for simulating architectural information digitally, and new ways of conceptualizing the process of architectural design. While the practice of architecture has, of necessity, been primarily concerned with increasing productivity - and automation for improved efficiency, it is clear that university based studies and research continue to go beyond the electronic replication of manual tasks and study issues that can change the processes of architectural design - and ultimately perhaps, the products.
series ACADIA
email
more http://www.acadia.org
last changed 2022/06/07 07:49

_id 85f9
authors Brisson, E., Debras, P. and Poyet, Patrice
year 1991
title A First Step Towards an Intelligent Integrated Design System in the Building Field
source computer Integrated Future, CIB W78 Seminar. September, 1991. Unnumbered pages : ill. includes bibliography
summary This article presents the work the Knowledge Base Group is achieving towards the integration of Artificial Intelligence based facilities in the Building design process. After an overview of the current state of the integrated design process, the context and the technical guidelines to realize computer integrated software in the building design field is described. Then some tools are presented to model the knowledge (the HBDS method) and to implement such model in our Mips home-made knowledge modeling software platform (including object-oriented database management facilities, expert system reasoning facilities, hypertext edition facilities, 3D-design and 3D-view modules...). Finally the authors describe the Quakes application devoted to assess detached house anti-seismic capabilities during the design process. A deep conceptual model considers all the semantic entities (columns, resistant panels, openings, ...) involved in the anti-seismic expertise. Using both this conceptual model description of a detached house and the 3D design tool, they input the project. Then the seismic expertise is driven in a divide and conquer approach and records the alleged configuration recognized automatically linked to the corresponding section of the building regulation
keywords AI, design, knowledge, software, integration, building, CAD, structures
series CADline
last changed 2003/06/02 13:58

_id 0aba
authors Carrara, Gianfranco, Kalay, Yehuda E. and Novembri, Gabriele
year 1991
title Intelligent Systems for Supporting Architectural Design
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 191-202
summary Design can be considered a process leading to the definition of a physical form that achieves a certain predefined set of objectives. The process comprises three distinct operations: (1) definition of the desired set of performance criteria (design goals); (2) production of alternative design solutions; (3) evaluation of the expected performances of alternative design solutions, and comparing them to predefined criteria. Difficulties arise in performing each one of the three operations, as well as in combining them into a purposeful, unified process. First, it is difficult to define the desired performance criteria prior to and independently of, the search for an acceptable solution that achieves them, since many aspects of the desired criteria can only be discovered through the search for an acceptable solution. Furthermore, the search for such a solution may well alter the definition of these criteria, as new criteria and incompatibilities between existing criteria are discovered. Second the generation of a design solution is a task demanding creativity, judgement, and experience, all three of which are difficult to define, teach, and otherwise capture in some explicit manner. Third, it is difficult to evaluate the expected performances of alternative design solutions and to compare them to the predefined criteria. Design parameters interact with each other in complex ways, which cause effects and side effects. Predicting the expected performances of even primary effects involves extrapolating non-physical characteristics from the proposed solution's physical organization, a process which relies on a host of assumptions (physical, sociological, psychological, etc.) and hence is seldom a reliable measure. A fourth problem arises from the need to coordinate the three operations in an iterative process that will converge on an acceptable design solution in reasonable time. Computational techniques that were developed in the past to assist designers in performing the above mentioned activities have shown limitations and proved inadequate to a large degree. In this paper we discuss the work in progress aimed at developing an intelligent support system for building and architectural design, which will be able to play a decisive role in the definition, evaluation and putting into effect of the design choices.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 467d
authors Eastman, Charles M.
year 1991
title A Data Model Analysis of Modularity and Extensibility in Building Databases
source February, 1991. Report No. 16: This paper uses data modeling techniques to define how database schemas for an intelligent integrated architectural CAD system can be made extensible. It reviews the product data modeling language EDM, then applies it to define a part of an architectural data model. Extensions are then investigated, regarding how users could integrate various design-specific packages into a uniquely configured system
summary Both extension by substituting one technology for another and by adding a new evaluation application, are considered. Data modeling allows specification of a CAD database and identification of the kind of modularization that will work and what problems may arise
keywords database, building, modeling, CAD, integration, systems, architecture, design
series CADline
email
last changed 2003/05/17 10:15

_id cf2009_poster_43
id cf2009_poster_43
authors Oh, Yeonjoo; Ellen Yi-Luen Do, Mark D Gross, and Suguru Ishizaki
year 2009
title Delivery Types And Communication Modalities In The Flat-Pack Furniture Design Critic
source T. Tidafi and T. Dorta (eds) Joining Languages Cultures and Visions: CAADFutures 2009 CD-Rom
summary A computer-based design critiquing system analyzes a proposed solution and offers critiques (Robbins 1998). Critiques help designers identify problems as well as opportunities to improve their designs. Compared with human critics, today’s computer-based critiquing systems deliver feedback in quite restricted manner. Most systems provide only negative evaluations in text; whereas studio teachers critique by interpreting the student’s design, introducing new ideas, demonstrating and giving examples, and offering evaluations (Bailey 2004; Uluoglu 2000) using speech, writing, and drawing to communicate (Anthony 1991; Schön 1983). This article presents a computer-based critiquing system, Flat-pack Furniture Design Critic (FFDC). This system supports multiple delivery types and modalities, adapting the typical system architecture of constraint-based intelligent tutors (Mitrovic et al. 2007).
keywords Critiquing system, design critiquing
series CAAD Futures
type poster
email
last changed 2009/07/08 22:12

_id 29c2
authors Ozel, Filiz
year 1991
title An Intelligent Simulation Approach in Simulating Dynamic Processes in Architectural Environments
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 177-190
summary The implications of object-oriented data models and rule-based reasoning systems is being researched in a wide variety of application areas ranging from VLSI circuit design (Afsannanesh et al 1990) to architectural environments (Coyne et al 1990). The potential of this approach in the development of discrete event simulations is also being scrutinized (Birtwistle et al 1986). Such computer models are usually called "expert simulations" or "intelligent simulations". Typically rule-basing in such models allows the definition of intelligent-objects that can reason about the simulated dynamic processes through an inferencing system. The major advantage of this approach over traditional simulation languages is its ability to provide direct reference to real world objects and processes. The simulation of dynamic processes in architectural environments poses an additional Problem of resolving the interaction of architectural objects with other objects such as humans, water, smoke etc., depending on the process simulated. Object-oriented approach promises potential in solving this specific problem. The first part of this paper addresses expert simulation approach within the context of architectural settings, then the second part summarizes work done in the application of such an approach to an emergency egress simulation.
series CAAD Futures
last changed 1999/04/07 12:03

_id c12b
authors Sakr, Yasser H. and Johnson, Robert E.
year 1991
title Computer-Aided Architectural Design Strategies: One Size Does Not Fit All
source Reality and Virtual Reality [ACADIA Conference Proceedings / ISBN 1-880250-00-4] Los Angeles (California - USA) October 1991, pp. 15-31
doi https://doi.org/10.52842/conf.acadia.1991.015
summary The practice of architecture is in the midst of significant change and an increasingly uncertain future. Socio-economic factors external to the profession are forcing firms to develop new strategies for delivering design services. Overlaying these external changes is the uncertainty resulting from the inevitable introduction of information technology, which is only beginning to have an impact on the profession. Some advocates see the emergence of a new form of design firm -the computerized design firm - as an intelligent organization structured around electronic work groups with powerful computation and communications tools (Catalano 1990). On the other hand, many practitioners still see CADD as an expensive technology whose primary result leads to an increase in overhead costs. But some practitioners and researchers (Coyne, 1991) recognize both the potential and, problems that computer-aided design presents to the profession. This research presents a framework for understanding how changing information technology might be appropriately integrated into the design firm. It argues that design is an increasingly diverse enterprise, and that this diversity must be understood in order to effectively integrate information technology. The study is divided into three sections. The first section develops an overview of major social, economic, and structural changes within the profession. The second section discusses two alternative approaches that have been utilized to integrate information technology into firms. The third part presents a framework for understanding how information technology may have an impact on strategies for structuring and organizing architectural firms.
series ACADIA
last changed 2022/06/07 07:56

_id ecaade2010_040
id ecaade2010_040
authors Akdag, Suzan Girginkaya; Cagdas, Gulen; Guney, Caner
year 2010
title Analyzing the Changes of Bosphorus Silhouette
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.815-823
doi https://doi.org/10.52842/conf.ecaade.2010.815
wos WOS:000340629400087
summary Due to improving technology and global competition today sky is the only limit for high towers of metropolitan areas. The increase in number of high rise has been ruining the silhouette of cities all over the world like Istanbul, whose identity and image have also been destroyed by skyscrapers dominating the seven slopes on which it was once built. The urbanization in Istanbul has somehow become homogenous and destructive over the topography. Despite of raising debates on the critical issue now and then, no analytical approach has ever been introduced. The research therefore, aims to analyze the change of Bosphorus silhouette caused by the emergence of high rise blocks in Zincirlikuyu-Maslak route since it was defined as a Central Business District and a high rise development area by Bosphorus Conservation Law in 1991. ArcGIS Desktop software and its analyst extensions are used for mapping, analyzing and evaluating the urban development within years. The application is considered to be the initial step for a decision support system which will assist in assigning ground for high rise buildings in Istanbul.
keywords GIS; Bosphorus; Silhouette analysis; High rise buildings
series eCAADe
email
last changed 2022/06/07 07:54

_id 22d6
authors Ballheim, F. and Leppert, J.
year 1991
title Architecture with Machines, Principles and Examples of CAAD-Education at the Technische Universität München
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
doi https://doi.org/10.52842/conf.ecaade.1991.x.h3w
summary "Design tools affect the results of the design process" - this is the starting point of our considerations about the efficient use of CAAD within architecture. To give you a short overview about what we want to say with this thesis lets have a short - an surely incomplete - trip through the fourth dimension back into the early time of civil engineering. As CAD in our faculty is integrated in the "Lehrstuhl für Hochbaustatik und Tragwerksplanung" (if we try to say it in English it would approximately be "institute of structural design"), we chose an example we are very familiar with because of its mathematical background - the cone sections: Circle, ellipse, parabola and hyperbola. If we start our trip two thousand years ago we only find the circle - or in very few cases the ellipse - in their use for the ground plan of greek or roman theaters - if you think of Greek amphitheaters or the Colosseum in Rome - or for the design of the cross section of a building - for example the Pantheon, roman aqueducts or bridges. With the rediscovery of the perspective during the Renaissance the handling of the ellipse was brought to perfection. May be the most famous example is the Capitol in Rome designed by Michelangelo Buonarotti with its elliptical ground plan that looks like a circle if the visitor comes up the famous stairway. During the following centuries - caused by the further development of the natural sciences and the use of new construction materials, i.e. cast-iron, steel or concrete - new design ideas could be realized. With the growing influence of mathematics on the design of buildings we got the division into two professions: Civil engineering and architecture. To the regret of the architects the most innovative constructions were designed by civil engineers, e.g. the early iron bridges in Britain or the famous bridges of Robert Maillard. Nowadays we are in the situation that we try to reintegrate the divided professions. We will return to that point later discussing possible solutions of this problem. But let us continue our 'historical survey demonstrating the state of the art we have today. As the logical consequence of the parabolic and hyperbolic arcs the hyperbolic parabolic shells were developed using traditional design techniques like models and orthogonal sections. Now we reach the point where the question comes up whether complex structures can be completely described by using traditional methods. A question that can be answered by "no" if we take the final step to the completely irregular geometry of cable- net-constructions or deconstructivistic designs. What we see - and what seems to support our thesis of the connection between design tools and the results of the design process - is, that on the one hand new tools enabled the designer to realize new ideas and on the other hand new ideas affected the development of new tools to realize them.

series eCAADe
more http://www.mediatecture.at/ecaade/91/ballheim_leppert.pdf
last changed 2022/06/07 07:50

_id 0b1c
authors Bridges, Alan
year 1991
title Computer Exercises in Architectural Design Theory
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
doi https://doi.org/10.52842/conf.ecaade.1991.x.f9w
summary This paper discusses how architectural theory may be taught using computer based exercises to explore the practical application of those theories. The particular view of architecture developed is, necessarily, a restricted one but the objectives behind the exercises are slightly different to those that a pure architectural theorist or historian might have The formal teaching of architectural theory and composition has not been very fashionable in Schools of Architecture for several years now: indeed there is a considerable inbuilt resistance in students to the application of any form of rules or procedures. There is however a general interest in computing and this can be utilised to advantage. In concentrating on computer applications in design eclectic use has been made of a number of architectural examples ranging from Greek temples to the work of modern deconstructionists. Architectural theory since Vitruvius is littered with attempts to define universal theories of design and this paper certainly does not presume to anything so grand: I have merely looked at buildings, compared them and noted what they have in common and how that might relate to computer-aided design. I have ignored completely any sociological, philosophical or phenomenological questions but would readily agree with the criticism that Cartesian rationality is not, on its own, a sufficient base upon which to build a theory of design. However I believe there is merit in articulating design by separating it from other concerns and making it a subject of study in its own right. Work in design research will provide the models and intellectual structures to facilitate discourse about design and might be expected to benefit the development of design skills by providing material that could be formally taught and debated in a way that is removed from the ephemeral "fashionable designer" debate. Of course, some of the ideas discussed here may prove to be equally ephemeral but that does not entirely negate their value.

series eCAADe
email
last changed 2022/06/07 07:50

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ga9921
id ga9921
authors Coates, P.S. and Hazarika, L.
year 1999
title The use of genetic programming for applications in the field of spatial composition
source International Conference on Generative Art
summary Architectural design teaching using computers has been a preoccupation of CECA since 1991. All design tutors provide their students with a set of models and ways to form, and we have explored a set of approaches including cellular automata, genetic programming ,agent based modelling and shape grammars as additional tools with which to explore architectural ( and architectonic) ideas.This paper discusses the use of genetic programming (G.P.) for applications in the field of spatial composition. CECA has been developing the use of Genetic Programming for some time ( see references ) and has covered the evolution of L-Systems production rules( coates 1997, 1999b), and the evolution of generative grammars of form (Coates 1998 1999a). The G.P. was used to generate three-dimensional spatial forms from a set of geometrical structures .The approach uses genetic programming with a Genetic Library (G.Lib) .G.P. provides a way to genetically breed a computer program to solve a problem.G. Lib. enables genetic programming to define potentially useful subroutines dynamically during a run .* Exploring a shape grammar consisting of simple solid primitives and transformations. * Applying a simple fitness function to the solid breeding G.P.* Exploring a shape grammar of composite surface objects. * Developing grammarsfor existing buildings, and creating hybrids. * Exploring the shape grammar of abuilding within a G.P.We will report on new work using a range of different morphologies ( boolean operations, surface operations and grammars of style ) and describe the use of objective functions ( natural selection) and the "eyeball test" ( artificial selection) as ways of controlling and exploring the design spaces thus defined.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 0faa
authors Duelund Mortensen, Peder
year 1991
title THE FULL-SCALE MODEL WORKSHOP
source Proceedings of the 3rd European Full-Scale Modelling Conference / ISBN 91-7740044-5 / Lund (Sweden) 13-16 September 1990, pp. 10-11
summary The workshop is an institution, available for use by the public and established at the Laboratory of Housing in the Art Academy's school of Architecture for a 3 year trial period beginning April 1985. This resumé contains brief descriptions of a variety of representative model projects and an overview of all projects carried out so far, including the pilot projects from 1983 and planned projects to and including January 1987. The Full Scale Model Workshop builds full size models of buildings, rooms and parts of buildings. The purpose of the Full Scale Model Workshop is to promote communication among building's users. The workshop is a tool in an attempt to build bridges between theory and practice in research, experimentation and communication of research results. New ideas and experiments of various sorts can be tried out cheaply, quickly and efficiently through the building of full scale models. Changes can be done on the spot as a planned part of the project and on the basis of ideas and experiments achieved through the model work itself. Buildings and their space can thus be communicated directly to all involved persons, regardless of technical background or training in evaluation of building projects.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 15:23

_id a607
authors Durisch, Peter and Anderheggen, Edoardo
year 1991
title Leaving the Planar Universe
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 521-534
summary A computer program is presented which generates realistic images of planned buildings embedded in their future environment through photomontage. The planar universe of conventional photomontaging is extended to three dimensions. During an interactive preprocessing step, a three- dimensional model of the building's environment is created: Geometrical data is retrieved photogrammetrically from a number of site photographs. Atmospheric parameters and the relative weights of the components of natural daylight are also retrieved from the photographs. The final image, combining the artificial model of the building and the photographs of its surroundings, is rendered by an extended ray-tracing algorithm in three-dimensional object space.
series CAAD Futures
last changed 1999/04/07 12:03

_id e949
authors Eastman, Charles M.
year 1991
title Modeling of Buildings : Evolution and Concepts
source Computer Integrated Future, CIB W78 Seminar September, 1991. Unnumbered : ill. includes bibliography.
summary This presentation reviews the concepts of building modeling as they evolved historically, through research and previous and current products. It points out some limitations of current systems and concepts and identifies some additional ones that will probably be integrated into an eventual production quality building model
keywords building, modeling, architecture, design, CAD
series CADline
email
last changed 2003/05/17 10:15

_id 68c8
authors Flemming, U., Coyne, R. and Fenves, S. (et al.)
year 1994
title SEED: A Software Environment to Support the Early Phases in Building Design
source Proceeding of IKM '94, Weimar, Germany, pp. 5-10
summary The SEED project intends to develop a software environment that supports the early phases in building design (Flemming et al., 1993). The goal is to provide support, in principle, for the preliminary design of buildings in all aspects that can gain from computer support. This includes using the computer not only for analysis and evaluation, but also more actively for the generation of designs, or more accurately, for the rapid generation of design representations. A major motivation for the development of SEED is to bring the results of two multi-generational research efforts focusing on `generative' design systems closer to practice: 1. LOOS/ABLOOS, a generative system for the synthesis of layouts of rectangles (Flemming et al., 1988; Flemming, 1989; Coyne and Flemming, 1990; Coyne, 1991); 2. GENESIS, a rule-based system that supports the generation of assemblies of 3-dimensional solids (Heisserman, 1991; Heisserman and Woodbury, 1993). The rapid generation of design representations can take advantage of special opportunities when it deals with a recurring building type, that is, a building type dealt with frequently by the users of the system. Design firms - from housing manufacturers to government agencies - accumulate considerable experience with recurring building types. But current CAD systems capture this experience and support its reuse only marginally. SEED intends to provide systematic support for the storing and retrieval of past solutions and their adaptation to similar problem situations. This motivation aligns aspects of SEED closely with current work in Artificial Intelligence that focuses on case-based design (see, for example, Kolodner, 1991; Domeshek and Kolodner, 1992; Hua et al., 1992).
series other
email
last changed 2003/04/23 15:14

_id ea2f
authors Heisserman, Jeff A.
year 1991
title Generative geometric design and boundary solid grammars
source Carnegie Mellon University, Department of Architecture
summary This thesis explores the automatic generation of solid models based on a grammatical paradigm. It introduces a formalism, boundary solid grammars, for this purpose. In this formalism, a set of geometric rules is applied to an initial solid model to generate a language or family of solids. A rule may match on a portion of the boundary of a solid, and then modify the solid or add new solids. Genesis is presented as an implementation of the formalism. A number of grammars have been constructed to demonstrate the concepts and usefulness of the formalism. These grammars generate simple geometric forms including snodakes, recursive octahedra, “fractal” mountains, and spirals. Another grammar generates stereo lithography support structures. Queen Anne houses have been characterized with a more extensive grammar. Grammars are also being developed to generate housings for small computers and structural designs for high rise buildings. The thesis introduces the unary shape operations and a new paradigm for solid modeling, The unary shape operations take models that may have self-intersections, interpret the models consid- ering the given geometry and face orientations, and produce valid models. Local operations, the unary shape operations, and Boolean operations are used together within a valid modeling scheme. The thesis introduces a new boundary representation for manifold and nonmanifold solids, the generalized split-edge representation. It describes generalized Euler operations which manipulate the topology of the nonmanifold representation. Finally, the thesis presents a form of the Euler- Poincare equation that characterizes the relationship between elements of nonmanifold surfaces of solids.
series thesis:PhD
last changed 2003/02/12 22:37

_id diss_hensen
id diss_hensen
authors Hensen, J.L.M.
year 1991
title On the Thermal Interaction of Building Structure and Heating and Ventilating System
source Eindhoven University of Technology
summary In this dissertation, developments in the field of building performance evaluation tools are described. The subject of these tools is the thermal interaction of building structure and heating and ventilating system. The employed technique is computer simulation of the integrated, dynamic system comprising the occupants, the building and its heating and ventilating system. With respect to buildings and the heating and ventilating systems which service them, the practical objective is ensuring thermal comfort while using an optimum amount of fuel. While defining the optimum had to be left for other workers, the issue of thermal comfort is addressed here. The conventional theory of thermal comfort in conditions characteristic for dwellings and offices assumes steady-state conditions. Yet thermal conditions in buildings are seldom steady, due to the thermal interaction between building structure, climate, occupancy, and auxiliary systems. A literature rewiew is presented regarding work on thermal comfort specifically undertaken to examine what fluctuations in indoor climate may be acceptable. From the results, assessment criteria are defined. Although its potentials reach beyond the area of Computer Aided Building Design, a description is given of building and plant energy simulation within the context of the CABD field of technology. Following an account of the present state-of-the-art, the choice for starting from an existing energy simulation environment (ESPR) is justified. The main development areas of this software platform - within the present context - are identified as: fluid flow simulation, plant simulation, and their integration with the building side of the overall problem domain. In the field of fluid flow simulation, a fluid flow network simulation module is described. The module is based on the mass balance approach, and may be operated either in standalone mode or from within the integrated building and plant energy simulation system. The program is capable of predicting pressures and mass flows in a user-defined building / plant network comprising nodes (ie building zones, plant components, etc) and connections (ie air leakages, fans, pipes, ducts, etc), when subjected to flow control (eg thermostatic valves) and / or to transient boundary conditions (eg due to wind). The modelling and simulation techniques employed to predict the dynamic behaviour of the heating and ventilating system, are elaborated. The simultaneous approach of the plant and its associated control is described. The present work involved extensions to the ESPR energy simulation environment with respect to robustness of the program, and with respect to additional plant simulation features, supported plant component models and control features. The coupling of fluid flow, plant side energy and mass, and building side energy simulation into one integrated program is described. It is this "modular-simultaneous" technique for the simulation of combined heat and fluid flow in a building / plant context, which enables an integral approach of the thermal interaction of building structure and heating and ventilating system.

A multi stage verification and validation methodology is described, and its applicability to the present work is demonstrated by a number of examples addressing each successive step of the methodology. A number of imaginary and real world case studies are described to demonstrate application of the present work both in a modelling orientated context and in a building engineering context. Then the general conclusions of the present work are summarized. Next and finally, there are recommendations towards possible future work in the areas of: theory, user interface, software structure, application, and technology transfer.

series thesis:PhD
last changed 2003/12/15 14:43

_id 2d77
authors Korte, Michael
year 1991
title CASOB - Simultaneous Surveying and Drawing
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
doi https://doi.org/10.52842/conf.ecaade.1991.x.t7p
summary Accurate planning and economical building within an existing structure require a complex building analysis based upon detailed scale plans. Work has shown unsatisfactory of measuring tools: (1.) Recording of measurements with meterrule and measuring tape often results in mistakes and wasted time. Since the data is not digitalized the measurements cannot be used by a CAD system. (2.) Commercially available CAD software is made only for new planning but not for planning with an existing structure. Up till now architects who predominantly work with existing structures were not able to take advantage of products in the software- and hardware market which would satisfy their needs. The problems already begin with the search for appropriate tools for the surveying of existing structures and the simplest possible transfer of the data to a CAD System. There is an increased demand for quality surveying of existing structures. In Germany, far more than 60 % of all construction planning is related to existing structures. Due to the special situation in the five new states this percentage will grow significantly. Other countries will find themselves in a similar situation. A large number of precise and analytical surveys of existing structures will be needed in a relative short time. Time pressure and stress factors at construction sites call for quality planning and economical construction which can only be accomplished with reliable and exact surveying of structures. Frustrating experiences in the field have led me to develop systems for the surveying of existing structures. With CASOB (Computer Aided Surveying of Buildings) we have a tool today that simultaneously surveys and creates a CAD compatible drawing.

series eCAADe
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1HOMELOGIN (you are user _anon_757516 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002