CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 219

_id 00bc
authors Chen, Chen-Cheng
year 1991
title Analogical and inductive reasoning in architectural design computation
source Swiss Federal Institute of Technology, ETH Zurich
summary Computer-aided architectural design technology is now a crucial tool of modern architecture, from the viewpoint of higher productivity and better products. As technologies advance, the amount of information and knowledge that designers can apply to a project is constantly increasing. This requires development of more advanced knowledge acquisition technology to achieve higher functionality, flexibility, and efficient performance of the knowledge-based design systems in architecture. Human designers do not solve design problems from scratch, they utilize previous problem solving episodes for similar design problems as a basis for developmental decision making. This observation leads to the starting point of this research: First, we can utilize past experience to solve a new problem by detecting the similarities between the past problem and the new problem. Second, we can identify constraints and general rules implied by those similarities and the similar parts of similar situations. That is, by applying analogical and inductive reasoning we can advance the problem solving process. The main objective of this research is to establish the theory that (1) design process can be viewed as a learning process, (2) design innovation involves analogical and inductive reasoning, and (3) learning from a designer's previous design cases is necessary for the development of the next generation in a knowledge-based design system. This thesis draws upon results from several disciplines, including knowledge representation and machine learning in artificial intelligence, and knowledge acquisition in knowledge engineering, to investigate a potential design environment for future developments in computer-aided architectural design. This thesis contains three parts which correspond to the different steps of this research. Part I, discusses three different ways - problem solving, learning and creativity - of generating new thoughts based on old ones. In Part II, the problem statement of the thesis is made and a conceptual model of analogical and inductive reasoning in design is proposed. In Part III, three different methods of building design systems for solving an architectural design problem are compared rule-based, example-based, and case-based. Finally, conclusions are made based on the current implementation of the work, and possible future extensions of this research are described. It reveals new approaches for knowledge acquisition, machine learning, and knowledge-based design systems in architecture.
series thesis:PhD
email
last changed 2003/05/10 05:42

_id ga0010
id ga0010
authors Moroni, A., Zuben, F. Von and Manzolli, J.
year 2000
title ArTbitrariness in Music
source International Conference on Generative Art
summary Evolution is now considered not only powerful enough to bring about the biological entities as complex as humans and conciousness, but also useful in simulation to create algorithms and structures of higher levels of complexity than could easily be built by design. In the context of artistic domains, the process of human-machine interaction is analyzed as a good framework to explore creativity and to produce results that could not be obtained without this interaction. When evolutionary computation and other computational intelligence methodologies are involved, every attempt to improve aesthetic judgement we denote as ArTbitrariness, and is interpreted as an interactive iterative optimization process. ArTbitrariness is also suggested as an effective way to produce art through an efficient manipulation of information and a proper use of computational creativity to increase the complexity of the results without neglecting the aesthetic aspects [Moroni et al., 2000]. Our emphasis will be in an approach to interactive music composition. The problem of computer generation of musical material has received extensive attention and a subclass of the field of algorithmic composition includes those applications which use the computer as something in between an instrument, in which a user "plays" through the application's interface, and a compositional aid, which a user experiments with in order to generate stimulating and varying musical material. This approach was adopted in Vox Populi, a hybrid made up of an instrument and a compositional environment. Differently from other systems found in genetic algorithms or evolutionary computation, in which people have to listen to and judge the musical items, Vox Populi uses the computer and the mouse as real-time music controllers, acting as a new interactive computer-based musical instrument. The interface is designed to be flexible for the user to modify the music being generated. It explores evolutionary computation in the context of algorithmic composition and provides a graphical interface that allows to modify the tonal center and the voice range, changing the evolution of the music by using the mouse[Moroni et al., 1999]. A piece of music consists of several sets of musical material manipulated and exposed to the listener, for example pitches, harmonies, rhythms, timbres, etc. They are composed of a finite number of elements and basically, the aim of a composer is to organize those elements in an esthetic way. Modeling a piece as a dynamic system implies a view in which the composer draws trajectories or orbits using the elements of each set [Manzolli, 1991]. Nonlinear iterative mappings are associated with interface controls. In the next page two examples of nonlinear iterative mappings with their resulting musical pieces are shown.The mappings may give rise to attractors, defined as geometric figures that represent the set of stationary states of a non-linear dynamic system, or simply trajectories to which the system is attracted. The relevance of this approach goes beyond music applications per se. Computer music systems that are built on the basis of a solid theory can be coherently embedded into multimedia environments. The richness and specialty of the music domain are likely to initiate new thinking and ideas, which will have an impact on areas such as knowledge representation and planning, and on the design of visual formalisms and human-computer interfaces in general. Above and bellow, Vox Populi interface is depicted, showing two nonlinear iterative mappings with their resulting musical pieces. References [Manzolli, 1991] J. Manzolli. Harmonic Strange Attractors, CEM BULLETIN, Vol. 2, No. 2, 4 -- 7, 1991. [Moroni et al., 1999] Moroni, J. Manzolli, F. Von Zuben, R. Gudwin. Evolutionary Computation applied to Algorithmic Composition, Proceedings of CEC99 - IEEE International Conference on Evolutionary Computation, Washington D. C., p. 807 -- 811,1999. [Moroni et al., 2000] Moroni, A., Von Zuben, F. and Manzolli, J. ArTbitration, Las Vegas, USA: Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program – GECCO, 143 -- 145, 2000.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 2ecf
authors Oxman, R. and Oxman, R.
year 1991
title Building Form Modelling in Architectural Design Education
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
doi https://doi.org/10.52842/conf.ecaade.1991.x.k4c
summary The paper describes an approach to architectural design education within the tradition of grammatical studies. It exploits certain attributes of computer modelling and computer graphics programs as an environment to convey architectural knowledge. The formal representation of designs and the manipulation of these representations are proposed as architectural knowledge and one of the foundations of design. Computer-based three-dimensional formal analysis of designs is employed as a technique for the acquisition of knowledge of classes of designs. Through formal analysis certain general models of building form are postulated. The classes of building form models in architecture are elaborated, and their relation to the concept of architectural syntax is discussed. The computational significance of building form modelling is considered, and the relevance of formal modelling in design education is discussed.

series eCAADe
email
last changed 2022/06/07 07:50

_id 227a
authors Bourdeau, L., Dubois, A.-M. and Poyet, P.
year 1991
title A Common Data Model for Computer Integrated Building
source computer Integrated Future, CIB W78 Seminar. September, 1991. Unnumbered : some ill. includes bibliography
summary The connection of various building performance evaluation tools in a collaborative way is an essential request to develop true CAD systems. It is a basic requirement for the future of integrated information systems for building projects, where data concerning multiple aspects of the project can be exchanged during the different design steps. This paper deals with the on-going research concerning the generation of a common data model in the framework of a European collaborative action, the COMBINE Project, which is supported by the CEC, General Directorate XII for Research Science and Development, within the JOULE programme. The first step of the research concerns the progressive construction of a conceptual model and the paper focuses on the development of this Integrated Data Model (IDM). The paper reports on the definition of the architecture of the IDM. The main issues and the methodology of the IDM development are presented. The IDM development methodology is based on successive steps dealing with the identification of the data and context which are considered by the Design Tool Prototypes (DTP) to be connected through the IDM, the conceptual integration of this knowledge, and the implementation of the model on an appropriate software environment
keywords standards, integration, communication, building, evaluation, modeling
series CADline
last changed 2003/06/02 14:41

_id b04c
authors Goerger, S., Darken, R., Boyd, M., Gagnon, T., Liles, S., Sullivan, J. and Lawson, J.
year 1996
title Spatial Knowledge Acquisition from Maps and Virtual Environments in Complex Architectural Space
source Proc. 16 th Applied Behavioral Sciences Symposium, 22-23 April, U.S. Airforce Academy, Colorado Springs, CO., 1996, 6-10
summary It has often been suggested that due to its inherent spatial nature, a virtual environment (VE) might be a powerful tool for spatial knowledge acquisition of a real environment, as opposed to the use of maps or some other two-dimensional, symbolic medium. While interesting from a psychological point of view, a study of the use of a VE in lieu of a map seems nonsensical from a practical point of view. Why would the use of a VE preclude the use of a map? The more interesting investigation would be of the value added of the VE when used with a map. If the VE could be shown to substantially improve navigation performance, then there might be a case for its use as a training tool. If not, then we have to assume that maps continue to be the best spatial knowledge acquisition tool available. An experiment was conducted at the Naval Postgraduate School to determine if the use of an interactive, three-dimensional virtual environment would enhance spatial knowledge acquisition of a complex architectural space when used in conjunction with floor plan diagrams. There has been significant interest in this research area of late. Witmer, Bailey, and Knerr (1995) showed that a VE was useful in acquiring route knowledge of a complex building. Route knowledge is defined as the procedural knowledge required to successfully traverse paths between distant locations (Golledge, 1991). Configurational (or survey) knowledge is the highest level of spatial knowledge and represents a map-like internal encoding of the environment (Thorndyke, 1980). The Witmer study could not confirm if configurational knowledge was being acquired. Also, no comparison was made to a map-only condition, which we felt is the most obvious alternative. Comparisons were made only to a real world condition and a symbolic condition where the route is presented verbally.
series other
last changed 2003/04/23 15:50

_id 84a7
authors Kalay, Yehuda E.
year 1991
title Multi-Faceted, Dynamic Representation of Design Knowledge
source ARCC Conference on Reflections on Representations. September, 1991. [16] p. : ill. includes bibliography
summary Explicit representation of design knowledge is needed if scientific methods are to be applied in design research, and if computers are to be used in the aid of design education and practice. The representation of knowledge in general, and design knowledge in particular, have been the subject matter of computer science, design methods, and computer-aided design research for quite some time. Several models of design knowledge representation have been developed over the last 30 years, addressing specific aspects of the problem. This paper describes an approach that recognizes the multiplicity of design knowledge representation modalities and the dynamic nature of the represented knowledge. It uses a variety of computational tools to encode different aspects of design knowledge, including the realities, perceptions and the intentions it comprises. The representation is intended to form a parsimonious, communicable and presentable knowledge- base that can be used as a tool for design research and education
keywords design, knowledge, representation, architecture, integration
series CADline
email
last changed 2003/06/02 10:24

_id 6064
authors Kramel, Herbert and Chen, Chen-Cheng
year 1991
title BAU: A Knowledge-Based System for the Investigation of a Basic Architectural Unit
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 329-346
summary The control of incremental complexities within an evolutionary design process has been a serious concern in both architectural education and practice. One method of examining this problem is to first define a "basic architectural unit" and a design environment which is composed of multiple units. Different levels of detail will be added to the unit as the design process continues. Secondly, a related computer program called BAU is introduced, which demonstrates that a computer is a meaningful tool for helping the architect to investigate the consequence of a design problem. Thirdly, both the domain expert's and the knowledge engineer's experiences during the development of BAU are described. Finally, the future direction of this research will be discussed.
series CAAD Futures
last changed 1999/04/07 12:03

_id 1839
authors Papamichael, Konstantinos Michael
year 1991
title Design process and knowledge possibilities and limitations of computer-aided design
source University of California, Berkeley
summary An attempt to determine how computers can be used to assist designers resulted in the development of a design theory, according to which design is 'feeling and thinking while acting.' Design is theorized as living through one's imagination, however being continuously affected by real life itself. The design process is decomposed into elementary activities that are characterized with respect to the nature of knowledge requirements and the degree to which they can be specified and delegated to computers. The results are considered as criteria to determine possibilities and limitations of computer-aided design. An integration of a variety of computer applications tools is proposed towards the design and development of a computer-based Design Support Environment (DSE), that is applicable to any design domain. The proposed DSE automates all specifiable and delegable design activities, while assisting with the nondelegable ones through appropriate user interface. A DSE demonstration prototype is also presented in the Appendix. This prototype addresses the design of fenestration and electric lighting systems of office spaces with respect to comfort, energy and cost.
series thesis:PhD
email
last changed 2003/02/24 20:32

_id avocaad_2001_20
id avocaad_2001_20
authors Shen-Kai Tang
year 2001
title Toward a procedure of computer simulation in the restoration of historical architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the field of architectural design, “visualization¨ generally refers to some media, communicating and representing the idea of designers, such as ordinary drafts, maps, perspectives, photos and physical models, etc. (Rahman, 1992; Susan, 2000). The main reason why we adopt visualization is that it enables us to understand clearly and to control complicated procedures (Gombrich, 1990). Secondly, the way we get design knowledge is more from the published visualized images and less from personal experiences (Evans, 1989). Thus the importance of the representation of visualization is manifested.Due to the developments of computer technology in recent years, various computer aided design system are invented and used in a great amount, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and collaboration, etc. (Lawson, 1995; Liu, 1996). The conventional media are greatly replaced by computer media, and the visualization is further brought into the computerized stage. The procedure of visual impact analysis and assessment (VIAA), addressed by Rahman (1992), is renewed and amended for the intervention of computer (Liu, 2000). Based on the procedures above, a great amount of applied researches are proceeded. Therefore it is evident that the computer visualization is helpful to the discussion and evaluation during the design process (Hall, 1988, 1990, 1992, 1995, 1996, 1997, 1998; Liu, 1997; Sasada, 1986, 1988, 1990, 1993, 1997, 1998). In addition to the process of architectural design, the computer visualization is also applied to the subject of construction, which is repeatedly amended and corrected by the images of computer simulation (Liu, 2000). Potier (2000) probes into the contextual research and restoration of historical architecture by the technology of computer simulation before the practical restoration is constructed. In this way he established a communicative mode among archeologists, architects via computer media.In the research of restoration and preservation of historical architecture in Taiwan, many scholars have been devoted into the studies of historical contextual criticism (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000). Clues that accompany the historical contextual criticism (such as oral information, writings, photographs, pictures, etc.) help to explore the construction and the procedure of restoration (Hung, 1995), and serve as an aid to the studies of the usage and durability of the materials in the restoration of historical architecture (Dasser, 1990; Wang, 1998). Many clues are lost, because historical architecture is often age-old (Hung, 1995). Under the circumstance, restoration of historical architecture can only be proceeded by restricted pictures, written data and oral information (Shi, 1989). Therefore, computer simulation is employed by scholars to simulate the condition of historical architecture with restricted information after restoration (Potier, 2000). Yet this is only the early stage of computer-aid restoration. The focus of the paper aims at exploring that whether visual simulation of computer can help to investigate the practice of restoration and the estimation and evaluation after restoration.By exploring the restoration of historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example), this study aims to establish a complete work on computer visualization, including the concept of restoration, the practice of restoration, and the estimation and evaluation of restoration.This research is to simulate the process of restoration by computer simulation based on visualized media (restricted pictures, restricted written data and restricted oral information) and the specialized experience of historical architects (Potier, 2000). During the process of practicing, communicates with craftsmen repeatedly with some simulated alternatives, and makes the result as the foundation of evaluating and adjusting the simulating process and outcome. In this way we address a suitable and complete process of computer visualization for historical architecture.The significance of this paper is that we are able to control every detail more exactly, and then prevent possible problems during the process of restoration of historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 86c1
authors Shih, Shen-Guan
year 1991
title Case-based Representation and Adaptation in Design
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 301-312
summary By attempting to model the raw memory of experts, case-based reasoning is distinguished from traditional expert systems, which compile experts' knowledge into rules before new problems are given. A case-based reasoning system processes new problems with the most similar prior experiences available, and adapts the prior solutions to solve new problems. Case-based representation, of design knowledge utilizes the desirable features of the selected case as syntax rules to adapt the case to a new context. As a central issue of the paper, three types of adaptation aimed at topological modifications are described. The first type - casebased search - can be viewed as a localized search process. It follows the syntactical structure of the case to search for variations which provide the required functionality. Regarding the complexity of computation, it is recognized that when a context sensitive grammar is used to describe the desirable features, the search process become intractable. The second type of adaptation can be viewed as a process of self-organization, in which context-sensitive grammars play an essential role. Evaluations have to be simulated by local interaction among design primitives. The third type is called direct transduction. A case is translated directly to another structure according to its syntax by some translation functions. A direct transduction is not necessarily a composition of design operators and thus, a crosscontextual mapping is possible. As a perspective use of these adaptation methods, a CAD system which provides designers with the ability to modify the syntactical structure of a group of design elements, according to some concerned semantics, would support designers better than current CAD systems.
series CAAD Futures
last changed 1999/04/07 12:03

_id 040e
authors Simovic, Dejan
year 1991
title URBIS: A Tool for City-Planners
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
doi https://doi.org/10.52842/conf.ecaade.1991.x.q8l
summary URBIS is a computer program built for AutoCAD environment (AutoLisp) which purpose is to help in urban planning's education and practice. Motives for program creation are: (1) Needs of education at the Faculty of Architecture of the Belgrade University. (2) Exploring the AutoCAD's capabilities in managing urban planning data bases. (3) Providing a tool for creation and manipulation of urban environment computer model. (4) Making a base for knowledge based system creation. (5) Computer based evaluation of the results of the competition "Future of New Belgrade". // The program consists of: (1) Module for model creation. (2) Module for model manipulation - remodeling. (3) Module for obtaining data from the model. // Some commands and procedures from these three modules are organized as ARCHIGAME module - a kind of game for architects. The computer model of New Belgrade was created using this program, and three remodelations were done on the model, as the test-examples.

series eCAADe
last changed 2022/06/07 07:50

_id 2c7b
authors Stenvert, Ronald
year 1993
title The Vector-drawing as a Means to Unravel Architectural Communication in the Past
source [eCAADe Conference Proceedings] Eindhoven (The Netherlands) 11-13 November 1993
doi https://doi.org/10.52842/conf.ecaade.1993.x.q9a
summary Unlike in painting, in architecture one single person never controls the whole process between conception and realization of a building. Ideas of what the building will eventually look like, have to be conveyed from patron to the actual builders, by way of drawings. Generally the architect is the key-figure in this process of communication of visual ideas. Nowadays many architects design their new buildings by using computers and Computer-Aided (Architectural) Design programs like AutoCad and VersaCAD. Just like traditional drawings, all these computer drawings are in fact vector-drawings; a collection of geometrical primitives like lines, circle segments etc. identified by the coordinates of their end points. Vector-based computer programs can not only be used to design the future, but also as a means to unravel the architectural communication in the past. However, using the computer as an analyzing tool for a better comprehension of the past is not as simple as it seems. Historical data from the past are governed by unique features of date and place. The complexity of the past combined with the straightforwardness of the computer requires a pragmatic and basic approach in which the computer acts as a catalytic agent, enabling the scholar to arrive manually at his own - computer-assisted - conclusions. From this it turns out that only a limited number of projects of a morphological kind are suited to contribute to new knowledge, acquired by the close-reading of the information gained by way of meaningful abstraction. An important problem in this respect is how to obtain the right kind of architectural information. All four major elements of the building process - architect, design, drawing and realization - have their own different and gradually shifting interpretations in the past. This goes especially for the run-of-the-mill architecture which makes up the larger part of the historical urban environment. Starting with the architect, one has to realize that only a very limited part of mainstream architecture was designed by architects. In almost all other cases the role of the patron and the actual builder exceeds that of the architect, even to the extent that they designed buildings themselves. The position of design and drawing as means of communication also changed in the past. Until the middle of the nineteenth century drawings were not the chief means of communication between architects and builders, who got the gist of the design from a model, or, encountering problems, simply asked the architect or supervisor. From the nineteenth century onwards the use of drawings became more common, but almost never represented the building entirely "as built". In 1991 I published my Ph.D. thesis: Constructing the past: computerassisted architectural-historical research: the application of image-processing using the computer and Computer-Aided Design for the study of the urban environment, illustrated by the use of treatises in seventeenth-century architecture (Utrecht 1991). Here, a reconstruction of this historical communication process will be presented on the basis of a project studying the use of the Classical orders as prescribed in various architectural treatises, compared to the use of the orders in a specific group of still existing buildings in The Netherlands dating from the late sixteenth and entire seventeenth century. Comparisons were made by using vector-drawings. Both the illustrations in the the treatises and actual buildings were "translated" into computer-drawings and then analyzed.

series eCAADe
last changed 2022/06/07 07:50

_id 83b4
authors Tan, Milton
year 1991
title Themes for Schemes: Design Creativity as the Conceptualization, Transformation, and Representation of Emergent Forms
source Harvard University, Graduate School of Design
summary Architects, graphic designers, and others frequently develop designs by picking out and transforming subshapes of two-dimensional or three-dimensional shapes. Shape grammars formalize this aspect of design by specifying rules of the form $a /to b$: the left-hand side a describes a type of subshape that may be picked out, while the right-hand side b describes what that type of subshape may become. Designs in the language specified by a shape grammar are derived by recursively applying the shape transformation rules to a starting shape. To apply a shape-transformation rule automatically, a computer system, must have the capacity to recognize instances of the type of subshape specified on the left-hand side of the rule. Sometimes such instances are explicitly input by the designer, and explicitly represented in a data structure: in this case, recognition is a relatively straightforward task. But there may also be 'emergent' instances that were not explicitly input, and are only indirectly represented in the data structure. These emergent instances are potentially numerous, and may be extremely difficult to discover. This thesis focuses on mechanisms for picking out and transforming subshapes. The first three chapters place the issue in its broadest context by arguing that different designers--bringing different knowledge and attitudes to the task--will pick out and pay attention to different subshapes in a drawing. This contention is supported by introducing some of the relevant literature on perception, problem-solving, and creativity. Chapter 4 introduces shape grammars to provide a more formal framework for investigating this topic. Chapter 5 describes the properties and limitations of Topdown--a computer program which supports design by applying the rules of a shape grammar, but does not provide for recognition of emergent subshapes. Chapter 6 introduces ECART, a computer program which supports efficient recognition and transformation of emergent subshapes, and demonstrates how its performance transcends that of Topdown. Examination of the results produced by ECART suggest that a designer's conceptual filter--the repertoire of subshape types that he or she can recognize in a drawing--plays a crucial role in the development of design ideas.  
keywords Computer Graphics; Computer Software; Development
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 87bb
authors Turk, Ziga
year 1991
title Integration of Existing Programs Using Frames
source The Computer Integrated Future, CIB W78 Seminar September, 1991. Unnumbered : ill. includes bibliography.
summary A prototype for computer integrated design/analysis environment is being developed. Due to the nature and size of the author's institution, he opted for compatibility with existing and third party products as well for future developments. Frames are used in Minsky's sense to insulate knowledge and semantics of the tools being integrated. Frames are used again in a more traditional sense insulating components physically. Standards like STEP or AIS were not applied explicitly, but principles behind those standards are reflected in the solution. In the paper an architecture of shallow integration of the tools for integrated structural design is explained in greater detail. Some of the solutions are suggested from the blending of the Object Oriented approach and AI techniques
keywords integration, systems, frames, building, OOPS, AI
series CADline
last changed 1999/02/12 15:09

_id 241f
authors Van Wyk, C.S.G., Bhat, R., Gauchel, J. and Hartkopf, V.
year 1991
title A Knowledge-based Approach to Building Design and Performance Evaluation
source Reality and Virtual Reality [ACADIA Conference Proceedings / ISBN 1-880250-00-4] Los Angeles (California - USA) October 1991, pp. 1-14
doi https://doi.org/10.52842/conf.acadia.1991.001
summary The introduction of physically-based description and simulation methods to issues of building performance (i.e., acoustic, visual, and air quality; thermal comfort, cost, and long-term system integrity) began in the early 1960s as one of the first examples of computer-aided design in architecture. Since that time, the development of commercially-available computer-aided design systems has largely been oriented towards the visualization and representation of the geometry of buildings, while the development of building performance applications has been concerned with approaches to mathematical and physics-based modeling for predictive purposes.
series ACADIA
email
last changed 2022/06/07 07:58

_id ecaade2020_139
id ecaade2020_139
authors Zwierzycki, Mateusz
year 2020
title On AI Adoption Issues in Architectural Design - Identifying the issues based on an extensive literature review.
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 515-524
doi https://doi.org/10.52842/conf.ecaade.2020.1.515
summary An analysis of AI in design literature, compiled from almost 200 publications from the 1980s onwards. The majority of the sources are proceedings from various conferences. This work is inspired by the Ten Problems for AI in Design (Gero 1991) workshop report, which listed the problems to be tackled in design with AI. Almost 30 years since the publication, it seems most of the Ten Problems cannot be considered solved or even addressed. One of this paper's goals is to identify, categorize and examine the bottlenecks in the adoption of AI in design. The collected papers were analysed to obtain the following data: Problem, Tool, Solution, Stage and Future work. The conclusions drawn from the analysis are used to define a range of existing problems with AI adoption, further illustrated with an update to the Ten Problems. Ideally this paper will spark a discussion on the quality of research, methodology and continuity in research.
keywords artificial intelligence; review; design automation; knowledge representation; machine learning; expert system
series eCAADe
email
last changed 2022/06/07 07:57

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ecaade2014_163
id ecaade2014_163
authors Ioannis Chatzikonstantinou
year 2014
title A 3-Dimensional Architectural Layout Generation Procedure for Optimization Applications : DC-RVD
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 287-296
doi https://doi.org/10.52842/conf.ecaade.2014.1.287
wos WOS:000361384700028
summary A procedure for generating 3-dimensional spatial configurations for optimization applications, termed Dimension Constrained Rectangular Voronoi Diagram (DC-RVD), is presented in this paper. The procedure is able to generate a non-overlapping configuration of spatial units in 3-dimensional space, given a string of real values. It constitutes an extension and adaptation of the Rectangular Voronoi Diagram generating procedure, found in the work of Choi and Young (1991). An extensive description of the procedure, with the relevant pseudocode is included in the paper. The procedure is tested in a stochastic optimisation-based decision support environment. Testing is done using a case study of a medium-sized family house. The result indicate promising performance.
keywords Optimization; layout; representation
series eCAADe
email
last changed 2022/06/07 07:50

_id 098a
authors Perron, Richard and Miller, Deron
year 1991
title Landscape of the Mind
source Reality and Virtual Reality [ACADIA Conference Proceedings / ISBN 1-880250-00-4] Los Angeles (California - USA) October 1991, pp. 71-86
doi https://doi.org/10.52842/conf.acadia.1991.071
summary The focus of this article is the exploration of landscape and the question of representation, more specifically how landscape principles can be represented through computation. It is a quest for essential qualities, through an application of philosophical questioning, and a response to a human perception of reality. Reality, as an invention of the human mind, is often thought of as a set of accepted conventions and constructs. Such a reality has an inherent dependency upon cognition where spatial and temporal principles may be defined within the natural and built environment, and further embraced within a cultural context. However, there also exist rules or relations that are neither invented nor formulated by the participants understanding. In effect these relations may not have been effectively articulated, a result perhaps of unfamiliar cues. Therefore, to the participant, these relations reside in the realm of the unknown or even the mystic. The aesthetic often resides in the realm of the mystic. The discovery of the aesthetic, is often an experience that comes from encountering physical and essential beauty where it has been produced through unconscious relations, perceived, yet transcending human understanding. The aspects of space and time, spatial and temporal properties and relations of things and events, are generally accepted conventions. Yet, the existence of a time order, is often not perceived. An understanding of spatial temporal properties may involve a temporal detachment from convention, allowing the release of previously unknown patterns and relations. Virtual realities are well constructed simulations of our environments, yet they may lack the embedded essential qualities of place. Virtual reality should transcend human perception and traditional modes of understanding, and most importantly our limited notions of the temporal nature of our environment. A desire to reach beyond the limits of perceived time order, may take us beyond existing sets of cultural values, and lead to the realization of new spatial/temporal conventions with the assistance of the computer.
series ACADIA
last changed 2022/06/07 08:00

_id ae74
authors Zamanian, Kiumarse and Fenves, Steven J.
year 1991
title A Framework for Modeling and Communicating Abstractions of Constructed Facilities
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 245-260
summary Management of information about constructed facilities in a computer-integrated environment is a challenging task because this information evolves from, and is viewed by many different disciplines throughout the facility's lifecycle. We present a general framework for modeling and reasoning about the components of a constructed facility at any desired level of abstraction, and communicating the information across disciplines at any stage in the lifecycle of the facility, as well as across stages. Our research has been motivated by an objective similar to that of STEP, which intends to establish an international protocol for the exchange of CAD data. The descriptive information about a facility is divided into two separate but linked groups: spatial and non-spatial attributes. The primary emphasis of this research is to provide a single, uniform representation and reasoning paradigm for dealing with the various spatial abstractions of the facility components regardless of their geometric dimensionalities.
series CAAD Futures
last changed 1999/11/23 19:42

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 10HOMELOGIN (you are user _anon_972147 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002