CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 219

_id a220
authors Roozenburg, N.F.M. and Cross, N.G.
year 1991
title Models of the design process: integrating across the disciplines
source Design Studies, Vol 12, No 4, 215-220
summary Models of the design process in engineering have converged to a consensus, represented for example by the VDI model. However, after starting from common origins, models of the design process in architectural and industrial design have diverged from the engineering consensus, in response to criticisms from both theorists and practitioners. There now appear to be significant differences between the engineering and architectural/industrial design models. Criticisms of the consensus model of engineering design have also been made, in part reflecting the earlier criticisms of architectural and industrial design models. We discuss the similarities and differences between the two consensus models -- in engineering and architectural/industrial design -- and identify prescriptive versus descriptive emphases. We suggest that attempts should be made to re-integrate the two consensus models, in order to improve education and practice across the disciplines.
series journal paper
last changed 2003/04/23 15:14

_id 0ab2
authors Amor, R., Hosking, J., Groves, L. and Donn, M.
year 1993
title Design Tool Integration: Model Flexibility for the Building Profession
source Proceedings of Building Systems Automation - Integration, University of Wisconsin-Madison
summary The development of ICAtect, as discussed in the Building Systems Automation and Integration Symposium of 1991, provides a way of integrating simulation tools through a common building model. However, ICAtect is only a small step towards the ultimate goal of total integration and automation of the building design process. In this paper we investigate the next steps on the path toward integration. We examine how models structured to capture the physical attributes of the building, as required by simulation tools, can be used to converse with knowledge-based systems. We consider the types of mappings that occur in the often different views of a building held by these two classes of design tools. This leads us to examine the need for multiple views of a common building model. We then extend our analysis from the views required by simulation and knowledge-based systems, to those required by different segments of the building profession (e.g. architects, engineers, developers, etc.) to converse with such an integrated system. This indicates a need to provide a flexible method of accessing data in the common building model to facilitate use by different building professionals with varying specialities and levels of expertise.
series journal paper
email
last changed 2003/05/15 21:22

_id 39e0
id 39e0
authors Jablonski, Allen D.
year 1991
title Integrated Component-based Computer Design Modeling System: The Implications of Control Parameters on the Design Process
source New Jersey Institute of Technology, Newark, NJ Graduate Thesis - Master's Program College of Architecture
summary The design process is dependent on a clear order of integrating and managing all of the control parameters that impact on a building's design. All component elements of a building must be defined by their: Physical and functional relations; Quantitative and calculable properties; Component and/or system functions. This requires a means of representation to depict a model of a building that can be viewed and interpreted by a variety of interested parties. These parties need different types of representation to address their individual control parameters, as each component instance has specific implications on all of the control parameters.

Representations are prepared for periodic design review either manually through hand-drawn graphics and handcrafted models; or with the aid of computer aided design programs. Computer programs can profoundly increase the speed and accuracy of the process', as well as provide a level of integration, graphic representation and simulation, untenable through a manual process.

By maintaining a single control model in an Integrated Component-based Computer Design Modeling System (ICCDMS), interested parties could access the design model at any point during the process. Each party could either: 1. Analyze individual components, or constraints of the model, for interferences against parameters within that party's control; or 2. Explore design alternatives to modify the model, and verify the integration of the components or functions, within the design model, as allowable in relation to other control parameters.

keywords Architectural Design; Data Processing
series thesis:MSc
type extended abstract
email
more http://www.library.njit.edu/etd/1990s/1990/njit-etd1990-005/njit-etd1990-005.html
last changed 2006/09/25 09:04

_id 22d6
authors Ballheim, F. and Leppert, J.
year 1991
title Architecture with Machines, Principles and Examples of CAAD-Education at the Technische Universität München
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
doi https://doi.org/10.52842/conf.ecaade.1991.x.h3w
summary "Design tools affect the results of the design process" - this is the starting point of our considerations about the efficient use of CAAD within architecture. To give you a short overview about what we want to say with this thesis lets have a short - an surely incomplete - trip through the fourth dimension back into the early time of civil engineering. As CAD in our faculty is integrated in the "Lehrstuhl für Hochbaustatik und Tragwerksplanung" (if we try to say it in English it would approximately be "institute of structural design"), we chose an example we are very familiar with because of its mathematical background - the cone sections: Circle, ellipse, parabola and hyperbola. If we start our trip two thousand years ago we only find the circle - or in very few cases the ellipse - in their use for the ground plan of greek or roman theaters - if you think of Greek amphitheaters or the Colosseum in Rome - or for the design of the cross section of a building - for example the Pantheon, roman aqueducts or bridges. With the rediscovery of the perspective during the Renaissance the handling of the ellipse was brought to perfection. May be the most famous example is the Capitol in Rome designed by Michelangelo Buonarotti with its elliptical ground plan that looks like a circle if the visitor comes up the famous stairway. During the following centuries - caused by the further development of the natural sciences and the use of new construction materials, i.e. cast-iron, steel or concrete - new design ideas could be realized. With the growing influence of mathematics on the design of buildings we got the division into two professions: Civil engineering and architecture. To the regret of the architects the most innovative constructions were designed by civil engineers, e.g. the early iron bridges in Britain or the famous bridges of Robert Maillard. Nowadays we are in the situation that we try to reintegrate the divided professions. We will return to that point later discussing possible solutions of this problem. But let us continue our 'historical survey demonstrating the state of the art we have today. As the logical consequence of the parabolic and hyperbolic arcs the hyperbolic parabolic shells were developed using traditional design techniques like models and orthogonal sections. Now we reach the point where the question comes up whether complex structures can be completely described by using traditional methods. A question that can be answered by "no" if we take the final step to the completely irregular geometry of cable- net-constructions or deconstructivistic designs. What we see - and what seems to support our thesis of the connection between design tools and the results of the design process - is, that on the one hand new tools enabled the designer to realize new ideas and on the other hand new ideas affected the development of new tools to realize them.

series eCAADe
more http://www.mediatecture.at/ecaade/91/ballheim_leppert.pdf
last changed 2022/06/07 07:50

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 2f73
authors Coad, P.and Yourdon, E.
year 1991
title Object Oriented Analysis
source 2nd. edition, Englewood Cliffs, NJ., Yourdon Press/ Prentice Hall
summary A step-by-step approach to: defining and communicating system requirements; understanding the application domain in which the user operates; integrating the data and process models; analyzing and specifying systems using self-contained partitioning; gaining leverage through explicit representation of commonality; applying a consistent underlying representation for analysis; and accommodating families of systems.
series other
last changed 2003/04/23 15:14

_id 2e03
authors Diederiks, H.J. and van Staveren, R.J.
year 1991
title Dynamic Information System for Modelling of Design Processes
source Computer Integrated Future, CIB W78 Seminar. september, 1991
summary Unnumbered : ill. DINAMO is a Dynamic Information System for Modelling of Design Processes. It is intended for use along with product models, data management systems and existing applications. In DINAMO a programming user can define processes. These processes are represented by graphs. The graphs are characterized by nodes and relations between nodes. Each node in a graph represents a task, and each relation can be restricted to conditions. So the way in which a process is actually being performed, that is, the actual path to be evaluated through the graph, can depend on certain conditions. Processes and functions (=software modules) are available to the user as tasks. A consuming user can activate tasks; the DINAMO system regulates the dispatch of the tasks, conform the process and function definitions. Tasks are collected on sheets; sheets are collected in a task box. A task box can be regarded as a certain environment, determined by the programming user. A consuming user can choose between the environments which are available at that moment. With the DINAMO system software and process definitions can be re-used in a simple way
keywords design process, modeling, graphs, information, relations, software
series CADline
last changed 2003/06/02 13:58

_id 46ce
id 46ce
authors Gero, J. S.
year 1991
title Ten problems for AI in design
source Workshop on AI in Design, IJCAI-91, un-numbered
summary Modern design research dates back to the end of the eighteenth century when French theorists attempted to describe design as a process. The notion of process in design dates back to the Roman engineer/architect/writer Vitruvius who described both process and performance aspects of designing. Since the 1940s there has been a variety of attempts to provide formal models of design ranging from prescriptive algorithmic-like descriptions through mathematical model and systems theoretic descriptions to the current paradigm based on the precepts and notions of artificial intelligence. All of these, including the current work, is primarily concerned with treating the process aspects of design.
series other
type normal paper
email
more http://www.arch.usyd.edu.au/~john/
last changed 2006/05/27 18:38

_id fd70
authors Goldman, Glenn and Zdepski, Michael Stephen (Eds.)
year 1991
title Reality and Virtual Reality [Conference Proceedings]
source ACADIA Conference Proceedings / ISBN 1-880250-00-4 / Los Angeles (California - USA) October 1991, 236 p.
doi https://doi.org/10.52842/conf.acadia.1991
summary During the past ten years computers in architecture have evolved from machines used for analytic and numeric calculation, to machines used for generating dynamic images, permitting the creation of photorealistic renderings, and now, in a preliminary way, permitting the simulation of virtual environments. Digital systems have evolved from increasing the speed of human operations, to providing entirely new means for creating, viewing and analyzing data. The following essays illustrate the growing spectrum of computer applications in architecture. They discuss developments in the simulation of future environments on the luminous screen and in virtual space. They investigate new methods and theories for the generation of architectural color, texture, and form. Authors address the complex technical issues of "intelligent" models and their associated analytic contents. There are attempts to categorize and make accessible architects' perceptions of various models of "reality". Much of what is presented foreshadows changes that are taking place in the areas of design theory, building sciences, architectural graphics, and computer research. The work presented is both developmental, evolving from the work done before or in other fields, and unique, exploring new themes and concepts. The application of computer technology to the practice of architecture has had a cross disciplinary effect, as computer algorithms used to generate the "unreal" environments and actors of the motion picture industry are applied to the prediction of buildings and urban landscapes not yet in existence. Buildings and places from history are archeologically "re-constructed" providing digital simulations that enable designers to study that which has previously (or never) existed. Applications of concepts from scientific visualization suggest new methods for understanding the highly interrelated aspects of the architectural sciences: structural systems, environmental control systems, building economics, etc. Simulation systems from the aerospace industry and computer media fields propose new non-physical three-dimensional worlds. Video compositing technology from the television industry and the practice of medicine are now applied to the compositing of existing environments with proposed buildings. Whether based in architectural research or practice, many authors continue to question the development of contemporary computer systems. They seek new interfaces between human and machine, new methods for simulating architectural information digitally, and new ways of conceptualizing the process of architectural design. While the practice of architecture has, of necessity, been primarily concerned with increasing productivity - and automation for improved efficiency, it is clear that university based studies and research continue to go beyond the electronic replication of manual tasks and study issues that can change the processes of architectural design - and ultimately perhaps, the products.
series ACADIA
email
more http://www.acadia.org
last changed 2022/06/07 07:49

_id 2e3b
authors Kvan, Thomas and Kvan, Erik
year 1997
title Is Design Really Social
source Creative Collaboration in Virtual Communities 1997, ed. A. Cicognani. VC'97. Sydney: Key Centre of Design Computing, Department of Architectural and Design Science, University of Sydney, 8 p.
summary There are many who will readily agree with Mitchell’s assertion that “the most interesting new directions (for computer-aided design) are suggested by the growing convergence of computation and telecommunication. This allows us to treat designing not just as a technical process... but also as a social process.” [Mitchell 1995]. The assumption is that design was a social process until users of computer-aided design systems were distracted into treating it as a merely technical process. Most readers will assume that this convergence must and will lead to increased communication between design participants; that better social interaction leads to be better design. The unspoken assumption appears to be that putting the participants into an environment with maximal communication channels will result in design collaboration. The tools provided; therefore; must permit the best communication and the best social interaction. We think it essential to examine the foundations and assumptions on which software and environments are designed to support collaborative design communication. Of particular interest to us in this paper is the assumption about the “social” nature of design. Early research in computer-assisted design collaborations has jumped immediately into conclusions about communicative models which lead to high-bandwidth video connections as the preferred channel of collaboration. The unstated assumption is that computer-supported design environments are not adequate until they replicate in full the sensation of being physically present in the same space as the other participants (you are not there until you are really there). It is assumed that the real social process of design must include all the signals used to establish and facilitate face-to-face communication; including gestures; body language and all outputs of drawing (e.g. Tang [1991]). In our specification of systems for virtual design communities; are we about to fall into the same traps as drafting systems did?
keywords CSCW; Virtual Community; Architectural Design; Computer-Aided Design
series other
email
last changed 2002/11/15 18:29

_id ca47
authors Lee, Shu Wan
year 1996
title A Cognitive Approach to Architectural Style Several Characteristics of Design Thinking in Architecture
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 223-226
doi https://doi.org/10.52842/conf.caadria.1996.223
summary Designing is a complicated human behaviour and method, and is often treated as a mysterious "black box” operation in human mind. In the early period as for theory-studying of design thinking, the way of thinking that the researchers took were mostly descriptive discussions. Therefore, they lacked direct and empirical evidence although those studies provided significant exploration of design thinking (Wang, 1995). In recent years as for the study of cognitive science, they have tried to make design "glass box”. That is to try to make the thinking processes embedded in designers publicized. That is also to externalize the design procedure which provided the design studies another theoretical basis of more accurate and deeply researched procedure (Jones, 1992). Hence the studying of design thinking has become more important and the method of designing has also progressed a lot. For example, the classification of the nature of design problem such as ill-defined and well-defined (Newell, Shaw, and Simon, 1967), and different theoretical procedure modes for different disciplines, such as viewing architectural models as conjecture-analysis models and viewing engineering models as analysis-synthesis (Cross, 1991).
series CAADRIA
last changed 2022/06/07 07:52

_id 29c2
authors Ozel, Filiz
year 1991
title An Intelligent Simulation Approach in Simulating Dynamic Processes in Architectural Environments
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 177-190
summary The implications of object-oriented data models and rule-based reasoning systems is being researched in a wide variety of application areas ranging from VLSI circuit design (Afsannanesh et al 1990) to architectural environments (Coyne et al 1990). The potential of this approach in the development of discrete event simulations is also being scrutinized (Birtwistle et al 1986). Such computer models are usually called "expert simulations" or "intelligent simulations". Typically rule-basing in such models allows the definition of intelligent-objects that can reason about the simulated dynamic processes through an inferencing system. The major advantage of this approach over traditional simulation languages is its ability to provide direct reference to real world objects and processes. The simulation of dynamic processes in architectural environments poses an additional Problem of resolving the interaction of architectural objects with other objects such as humans, water, smoke etc., depending on the process simulated. Object-oriented approach promises potential in solving this specific problem. The first part of this paper addresses expert simulation approach within the context of architectural settings, then the second part summarizes work done in the application of such an approach to an emergency egress simulation.
series CAAD Futures
last changed 1999/04/07 12:03

_id avocaad_2001_20
id avocaad_2001_20
authors Shen-Kai Tang
year 2001
title Toward a procedure of computer simulation in the restoration of historical architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the field of architectural design, “visualization¨ generally refers to some media, communicating and representing the idea of designers, such as ordinary drafts, maps, perspectives, photos and physical models, etc. (Rahman, 1992; Susan, 2000). The main reason why we adopt visualization is that it enables us to understand clearly and to control complicated procedures (Gombrich, 1990). Secondly, the way we get design knowledge is more from the published visualized images and less from personal experiences (Evans, 1989). Thus the importance of the representation of visualization is manifested.Due to the developments of computer technology in recent years, various computer aided design system are invented and used in a great amount, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and collaboration, etc. (Lawson, 1995; Liu, 1996). The conventional media are greatly replaced by computer media, and the visualization is further brought into the computerized stage. The procedure of visual impact analysis and assessment (VIAA), addressed by Rahman (1992), is renewed and amended for the intervention of computer (Liu, 2000). Based on the procedures above, a great amount of applied researches are proceeded. Therefore it is evident that the computer visualization is helpful to the discussion and evaluation during the design process (Hall, 1988, 1990, 1992, 1995, 1996, 1997, 1998; Liu, 1997; Sasada, 1986, 1988, 1990, 1993, 1997, 1998). In addition to the process of architectural design, the computer visualization is also applied to the subject of construction, which is repeatedly amended and corrected by the images of computer simulation (Liu, 2000). Potier (2000) probes into the contextual research and restoration of historical architecture by the technology of computer simulation before the practical restoration is constructed. In this way he established a communicative mode among archeologists, architects via computer media.In the research of restoration and preservation of historical architecture in Taiwan, many scholars have been devoted into the studies of historical contextual criticism (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000). Clues that accompany the historical contextual criticism (such as oral information, writings, photographs, pictures, etc.) help to explore the construction and the procedure of restoration (Hung, 1995), and serve as an aid to the studies of the usage and durability of the materials in the restoration of historical architecture (Dasser, 1990; Wang, 1998). Many clues are lost, because historical architecture is often age-old (Hung, 1995). Under the circumstance, restoration of historical architecture can only be proceeded by restricted pictures, written data and oral information (Shi, 1989). Therefore, computer simulation is employed by scholars to simulate the condition of historical architecture with restricted information after restoration (Potier, 2000). Yet this is only the early stage of computer-aid restoration. The focus of the paper aims at exploring that whether visual simulation of computer can help to investigate the practice of restoration and the estimation and evaluation after restoration.By exploring the restoration of historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example), this study aims to establish a complete work on computer visualization, including the concept of restoration, the practice of restoration, and the estimation and evaluation of restoration.This research is to simulate the process of restoration by computer simulation based on visualized media (restricted pictures, restricted written data and restricted oral information) and the specialized experience of historical architects (Potier, 2000). During the process of practicing, communicates with craftsmen repeatedly with some simulated alternatives, and makes the result as the foundation of evaluating and adjusting the simulating process and outcome. In this way we address a suitable and complete process of computer visualization for historical architecture.The significance of this paper is that we are able to control every detail more exactly, and then prevent possible problems during the process of restoration of historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ddss9483
id ddss9483
authors Shyi, Gary C.-W. and Huang, Tina S.-T.
year 1994
title Constructing Three-Dimensional Mental Models from Two-Dimensional Displays
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary In the present study we adopted the tasks and the experimental procedures used in a recent series of study by Cooper (1990, 1991) for the purpose of examining how we utilized two-dimensional information in a line-drawing of visual objects to construct the corresponding three-dimensional mental structure represented by the 2-D displays. We expected that the stimulus materials we used avoided some of the problems that Cooper's stimuli had, and with that we examined the effect of complexity on the process of constructing 3-D models from 2-D displays. Such a manipulation helps to elucidate the difficulties of solving problems that require spatial abilities. We also investigated whether or not providing information representing an object viewed from different standpoints would affect the construction of the object's 3-D model. Some researchers have argued that 3-D models, once constructed, should be viewer-independent or viewpoint-invariant, while others have suggested that 3-D models are affected by the viewpoint of observation. Data pertinent to this issue are presented and discussed.
series DDSS
last changed 2003/08/07 16:36

_id 870b
authors Sivaloganathan, Sangarappillai
year 1991
title Sketching input for computer aided engineering
source City University, Department of Mechanical Engineering and Aeronautics
summary The design process often begins with a graphical description of the proposed device or system and sketching is the physical expression of the design engineer's thinking process. Computer Aided Design is a technique in which man and machine are blended into a problem solving team, intimately coupling the best characteristics of each. Solid modelling is developed to act as the common medium between man and the computer. At present it is achieved mainly by designing with volumes and hence does not leave much room for sketching input, the traditional physical expression of the thinking process of the design engineer. This thesis describes a method of accepting isometric free hand sketching as the input to a solid model. The design engineer is allowed to make a sketch on top of a digitizer indicating (i) visible lines; (ii) hidden lines; (iii) construction lines; (iv) centre lines; (v) erased lines; and (vi) redundant lines as the input. The computer then processes this sketch by identifying the line segments, fitting the best possible lines, removing the erased lines, ignoring the redundant lines and finally merging the hidden lines and visible lines to form the lines in the solid in an interactive manner. The program then uses these lines and the information about the three dimensional origin of the object and produces three dimensional information such as the faces, loops, holes, rings, edges and vertices which are sufficient to build a solid model. This is achieved in the following manner. The points in the sketch are first written into a file. The computer than reads this file, breaks the group of points into sub-groups belonging to individual line segments, fits the best lines and identify the vertices in two dimensions. These improved lines in two dimensions are then merged to form the lines and vertices in the solid. These lines are then used together with the three dimensional origin (or any other point) to produce the wireframe model in three dimensions. The loops in the wireframe models are then identified and surface equations are fitted to these loops. Finally all the necessary inputs to build a B-rep solid model are produced.
series thesis:PhD
last changed 2003/02/12 22:37

_id 4c21
authors Streich, Bernd
year 1991
title Creating Architecture Models by Computer-Aided Prototyping
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 535-548
summary In the future architects or urban planners will probably ask for architectural models based on CAD-generated model data, in addition to the usual graphical representation. A stereolithography process makes this possible. Currently, at the University of Kaiserslautern there is a research project investigating and evaluating possible applications for this technology in the fields of architecture and town planning. The first results of this research project are described in the following article.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 2005_391
id 2005_391
authors Suneson, Kaj, Wernemyr, Claes, Westerdahl, Börje and Allwood, Carl Martin
year 2005
title The Effect of Stereovision on the Experience of VR Models of the External Surroundings and the Interior of a Building
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 391-398
doi https://doi.org/10.52842/conf.ecaade.2005.391
summary Virtual reality offers considerable promise with regard to facilitating the building process. A good example is the facilitation of communication between architects and building companies, sellers and buyers or between community planners and the general public. It is often thought that in order to utilise the potential of VR in, for example, the above-mentioned contexts, it is necessary to use fully fledged versions of VR, including stereovision and the possibility of controlling the VR show. However, if a model can also be presented on less advanced equipment and still interpreted in a way that is useful to the viewer it will be possible to distribute the model simply and effectively. This would make it easier to create a more democratic urban planning process compared with if specialised equipment needed to be used and special shows needed to be arranged. In this study we compared the experience of two VR models (a large indoor exhibition hall and an outdoor street in Gothenburg, Sweden) when presented with and without stereovision. When the experience was measured using the Semantic Environmental Scale (the SMB scale, developed by Küller, 1975, 1991), questions on the experience of presence and six other questions on the experience of the models, the results only revealed one indication that stereovision made a difference. This indication was the result for the SMB factor Enclosedness. Suggestions are presented for future research in this area.
keywords Design Process; Virtual Environments; Human-Computer Interaction; 3D City Modelling; Environmental Simulation
series eCAADe
email
last changed 2022/06/07 07:56

_id bbdc
authors Tang, J.C.
year 1991
title Findings from observational studies of collaborative work
source international Joumal of Man-Machine Studies, 34(2), 143-160
summary The work activity of small groups of three to four people was videotaped and analyzed in order to understand collaborative work and to guide the development of tools to support it. The software tools we currently have are often based on a single user model. Even those that are based on multiple user models define structures of interaction that restrict fluid collaboration. We need observe how people collaborate then build software that facilitates collaboration based on those observations, giving the users the tools" that are "naturally" defined in face-to-face interaction. In this experiment small groups of people were observed in a collaborative design task using a shared drawing space. Specific features of collaborative work activity that raise design implications for collaborative technology: 1. collaborators use hand gestures to uniquely communicate significant information 2. the process of creating and using drawings conveys much information not contained in the resulting drawings 3. the drawing space is an important resource for the group in mediating their collaboration 4. there is a fluent mix of activity in the drawing space 5. the spatial orientation among the collaborators and the drawing space has a role in structuring their activity
series other
last changed 2003/04/23 15:14

_id f9bd
authors Amor, R.W.
year 1991
title ICAtect: Integrating Design Tools for Preliminary Architectural Design
source Wellington, New Zealand: Computer Science Department, Victoria University
summary ICAtect is a knowledge based system that provides an interface between expert systems, simulation packages and CAD systems used for preliminary architectural design. This thesis describes its structure and development.The principal work discussed in this thesis involves the formulation of a method for representing a building. This is developed through an examination of a number of design tools used in architectural design, and the ways in which each of these describe a building.Methods of enabling data to be transferred between design tools are explored. A Common Building Model (CBM), forming the core of the ICAtect system, is developed to represent the design tools knowledge of a building. This model covers the range of knowledge required by a large set of disparate design tools used by architects at the initial design stage.Standard methods of integrating information from the tools were examined, but required augmentation to encompass the unusual constraints found in some of the design tools. The integration of the design tools and the CBM is discussed in detail, with example methods developed for each type of design tool. These example methods provide a successful way of moving information between the different representations. Some problems with mapping data between very different representations were encountered in this process, and the solutions or ideas for remedies are detailed. A model for control and use of ICAtect is developed in the thesis, and the extensions to enable a graphical user interface are discussed.The methods developed in this thesis demonstrate the feasibility of an integrated system of this nature, while the discussion of future work indicates the scope and potential power of ICAtect.
series other
last changed 2003/04/23 15:14

_id 9964
authors Augenbroe, G. and Winkelmann, F.
year 1991
title Integration of Simulation into the Building Design Process
source J.A. Clarke, J.W. Mitchell, and R.C. Van de Perre (eds.), Proceedings, Building Simulation '91 IBPSA Conference, pp. 367-374
summary We describe the need for a joint effort between design researchers and simulation tool developers in formulating procedures and standards for integrating simulation into the building design process. We review and discuss current efforts in the US and Europe in the development of next-generation simulation tools and design integration techniques. In particular, we describe initiatives in object-oriented simulation environments (including the US Energy 'Kernel System, the Swedish Ida system, the UK Energy Kernel System, and the French ZOOM program.) and consider the relationship of these environments to recent R&D initiatives in design integration (the COMBINE project in Europe and the AEDOT project in the US).
series other
last changed 2003/11/21 15:16

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 10HOMELOGIN (you are user _anon_997077 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002