CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 221

_id c1ca
authors Daru, Roel
year 1991
title Sketch as Sketch Can - Design Sketching with Imperfect Aids and Sketchpads of the Future
doi https://doi.org/10.52842/conf.ecaade.1991.x.k1t
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
summary Sketching plays a manifold role in design and design education now as much as it did in the computerless days. Design sketching is indispensable during the early phases of the architectural design process. But if we ask architects and design educators alike what they are doing with computers, idea sketching is the least mentioned answer if not left out entirely. It is not because they are computer-illiterates, as the computer industry would tend to imply, but because their computers are not offering an adequate environment for design sketching. In education this means that those trying to create computeraided design sketching courses are confronted with the choice of either working with imperfect tools, or waiting for better tools. But by exploring the possibilities in available surrogates we will build the necessary experiences for specifying what is really useful for idea-sketching. Without such exercises, we will never go beyond the electronic metaphor of the sketchbook with pencil or marker.

series eCAADe
email
last changed 2022/06/07 07:50

_id 403a
authors Karstila, K., Björk, B.C. and Hannus, M.
year 1991
title A Conceptual Framework for Design and Construction Information
source The Computer Integrated Future, CIB W78 Seminar. september, 1991. Unnumbered : ill. includes bibliography
summary This paper tries to sketch out a conceptual framework model for design and construction information. This conceptual model is formed by extending the Finnish RATAS building product data model to include also construction activities, resources, costs, organizations, contracts, etc. and relationships between them. The overall conceptual framework model can be used to extract conceptual submodels related to the information needs of particular participants of the construction process. As an example of different views to design and construction information the views of design, cost estimating and production planning discussed in the paper. The framework model can also be used to define the position of traditional classification systems and general databases in the construction information process
keywords construction, product modeling, building, information, design process
series CADline
email
last changed 2003/06/02 14:41

_id 870b
authors Sivaloganathan, Sangarappillai
year 1991
title Sketching input for computer aided engineering
source City University, Department of Mechanical Engineering and Aeronautics
summary The design process often begins with a graphical description of the proposed device or system and sketching is the physical expression of the design engineer's thinking process. Computer Aided Design is a technique in which man and machine are blended into a problem solving team, intimately coupling the best characteristics of each. Solid modelling is developed to act as the common medium between man and the computer. At present it is achieved mainly by designing with volumes and hence does not leave much room for sketching input, the traditional physical expression of the thinking process of the design engineer. This thesis describes a method of accepting isometric free hand sketching as the input to a solid model. The design engineer is allowed to make a sketch on top of a digitizer indicating (i) visible lines; (ii) hidden lines; (iii) construction lines; (iv) centre lines; (v) erased lines; and (vi) redundant lines as the input. The computer then processes this sketch by identifying the line segments, fitting the best possible lines, removing the erased lines, ignoring the redundant lines and finally merging the hidden lines and visible lines to form the lines in the solid in an interactive manner. The program then uses these lines and the information about the three dimensional origin of the object and produces three dimensional information such as the faces, loops, holes, rings, edges and vertices which are sufficient to build a solid model. This is achieved in the following manner. The points in the sketch are first written into a file. The computer than reads this file, breaks the group of points into sub-groups belonging to individual line segments, fits the best lines and identify the vertices in two dimensions. These improved lines in two dimensions are then merged to form the lines and vertices in the solid. These lines are then used together with the three dimensional origin (or any other point) to produce the wireframe model in three dimensions. The loops in the wireframe models are then identified and surface equations are fitted to these loops. Finally all the necessary inputs to build a B-rep solid model are produced.
series thesis:PhD
last changed 2003/02/12 22:37

_id 6028
authors Sachs, E., Roberts, A. and Stoops, D.
year 1991
title 3-draw: A tool for designing 3D shapes
source IEEE Computer Graphics & Applications, pp. 18-25
summary A fundamentally new type of CAD system for designing shape that is intuitive, easy to use, and powerful is presented. It is based on a paradigm that can be described as designing directly in 3-D. By virtue of two hand-held sensors, designers using 3-Draw to sketch their ideas in the air feel as if they're actually holding and working on objects. Current design practice and related work are reviewed, and current work on 3-Draw is summarized. To capture the flavor of 3-Draw, construction of a sample model of a 12-m yacht is described. 3-Draw's features and data structures are discussed.
series journal paper
last changed 2003/04/23 15:14

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 2e03
authors Diederiks, H.J. and van Staveren, R.J.
year 1991
title Dynamic Information System for Modelling of Design Processes
source Computer Integrated Future, CIB W78 Seminar. september, 1991
summary Unnumbered : ill. DINAMO is a Dynamic Information System for Modelling of Design Processes. It is intended for use along with product models, data management systems and existing applications. In DINAMO a programming user can define processes. These processes are represented by graphs. The graphs are characterized by nodes and relations between nodes. Each node in a graph represents a task, and each relation can be restricted to conditions. So the way in which a process is actually being performed, that is, the actual path to be evaluated through the graph, can depend on certain conditions. Processes and functions (=software modules) are available to the user as tasks. A consuming user can activate tasks; the DINAMO system regulates the dispatch of the tasks, conform the process and function definitions. Tasks are collected on sheets; sheets are collected in a task box. A task box can be regarded as a certain environment, determined by the programming user. A consuming user can choose between the environments which are available at that moment. With the DINAMO system software and process definitions can be re-used in a simple way
keywords design process, modeling, graphs, information, relations, software
series CADline
last changed 2003/06/02 13:58

_id fd70
authors Goldman, Glenn and Zdepski, Michael Stephen (Eds.)
year 1991
title Reality and Virtual Reality [Conference Proceedings]
doi https://doi.org/10.52842/conf.acadia.1991
source ACADIA Conference Proceedings / ISBN 1-880250-00-4 / Los Angeles (California - USA) October 1991, 236 p.
summary During the past ten years computers in architecture have evolved from machines used for analytic and numeric calculation, to machines used for generating dynamic images, permitting the creation of photorealistic renderings, and now, in a preliminary way, permitting the simulation of virtual environments. Digital systems have evolved from increasing the speed of human operations, to providing entirely new means for creating, viewing and analyzing data. The following essays illustrate the growing spectrum of computer applications in architecture. They discuss developments in the simulation of future environments on the luminous screen and in virtual space. They investigate new methods and theories for the generation of architectural color, texture, and form. Authors address the complex technical issues of "intelligent" models and their associated analytic contents. There are attempts to categorize and make accessible architects' perceptions of various models of "reality". Much of what is presented foreshadows changes that are taking place in the areas of design theory, building sciences, architectural graphics, and computer research. The work presented is both developmental, evolving from the work done before or in other fields, and unique, exploring new themes and concepts. The application of computer technology to the practice of architecture has had a cross disciplinary effect, as computer algorithms used to generate the "unreal" environments and actors of the motion picture industry are applied to the prediction of buildings and urban landscapes not yet in existence. Buildings and places from history are archeologically "re-constructed" providing digital simulations that enable designers to study that which has previously (or never) existed. Applications of concepts from scientific visualization suggest new methods for understanding the highly interrelated aspects of the architectural sciences: structural systems, environmental control systems, building economics, etc. Simulation systems from the aerospace industry and computer media fields propose new non-physical three-dimensional worlds. Video compositing technology from the television industry and the practice of medicine are now applied to the compositing of existing environments with proposed buildings. Whether based in architectural research or practice, many authors continue to question the development of contemporary computer systems. They seek new interfaces between human and machine, new methods for simulating architectural information digitally, and new ways of conceptualizing the process of architectural design. While the practice of architecture has, of necessity, been primarily concerned with increasing productivity - and automation for improved efficiency, it is clear that university based studies and research continue to go beyond the electronic replication of manual tasks and study issues that can change the processes of architectural design - and ultimately perhaps, the products.
series ACADIA
email
more http://www.acadia.org
last changed 2022/06/07 07:49

_id a113
authors Milne, Murray
year 1991
title Design Tools: Future Design Environments for Visualizing Building Performance
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 485-496
summary In the future of Computer Aided Architectural Design (CAAD), architects clearly need more than just computer aided design and drafting systems (CAD). Unquestionably CAD systems continue to become increasingly powerful, but there is more to designing a good building than its three-dimensional existence, especially in the eyes of all the non-architects of the world: users, owners, contractors, regulators, environmentalists. The ultimate measure of a building's quality has something to do with how well it behaves over time. Predictions about its performance have many different dimensions; how much it costs to build, to operate, and to demolish; how comfortable it is; how effectively people can perform their functions in it; how much energy it uses or wastes. Every year dozens of building performance simulation programs are being written that can predict performance over time along any of these dimensions. That is why the need for both CAD systems and performance predictors can be taken for granted, and why instead it may be more interesting to speculate about the need for 'design tools'. A design tool can be defined as a piece of software that is easy and natural for architects to use, that easily accommodates three-dimensional representations of the building, and that-predicts something useful about a building's performance. There are at least five different components of design tools that will be needed for the design environment of the future.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 4196
authors Pols, Albert A.J.
year 1991
title Conceptual Modelling of Building Assemblies : Bridging the Gap Between Building Data and Design Integrity
source The Computer Integrated Future, CIB W78 Seminar. September, 1991. Unnumbered : ill. includes bibliography
summary Improved models and methods for building representation are needed for more effective support of design integrity checking and control. A 'generic' object-oriented approach to product modelling allows multiple design representations to be described as different views of a common, gradually evolving building product model. The product model provides the capability to generate, in successive design iterations, a coherent description of the form, structure and dimensions of the building and its assemblies and components. Associated technological and administrative data can be included in or associated with the product description
keywords product modeling, building, database, semantics, integration
series CADline
last changed 2003/06/02 13:58

_id a9bc
authors Ronchi, Alfredo
year 1991
title CAAD Technical Information Management by Hypertext
doi https://doi.org/10.52842/conf.ecaade.1991.x.j4d
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
summary The research of applications concerning design, sizing and building of computer models have been, during the last years, undoubtedly of great importance and interest. Therefore, analyzing in detail the graphic packages concerning drafting and solid modelling we can undoubtedly say that these are nowadays an integral part of our daily work. In the near future, we can of course expect from those applications, new studies and research mainly concerning an easier start up and the standardization of the graphic interface; if we analyze, for example the well known package AutoCAD we can consider a new real data-base and the redesign of the interface on a graphic base (graphic choice of drawings and blocks, icons for commands, better capability of text editing, pattern editing and stretching, loading capability and visualization of various drawings in graphic windows, full compatibility with MS WINDOWS, etc. etc.). As above mentioned, these studies work on updating well known existing applications aiming to consolidate their uses; one specific section of design not yet supported by computer application is that related to the management of technical and non-technical information, nowadays still written and stored on paper.

series eCAADe
email
last changed 2022/06/07 07:50

_id 2c7b
authors Stenvert, Ronald
year 1993
title The Vector-drawing as a Means to Unravel Architectural Communication in the Past
doi https://doi.org/10.52842/conf.ecaade.1993.x.q9a
source [eCAADe Conference Proceedings] Eindhoven (The Netherlands) 11-13 November 1993
summary Unlike in painting, in architecture one single person never controls the whole process between conception and realization of a building. Ideas of what the building will eventually look like, have to be conveyed from patron to the actual builders, by way of drawings. Generally the architect is the key-figure in this process of communication of visual ideas. Nowadays many architects design their new buildings by using computers and Computer-Aided (Architectural) Design programs like AutoCad and VersaCAD. Just like traditional drawings, all these computer drawings are in fact vector-drawings; a collection of geometrical primitives like lines, circle segments etc. identified by the coordinates of their end points. Vector-based computer programs can not only be used to design the future, but also as a means to unravel the architectural communication in the past. However, using the computer as an analyzing tool for a better comprehension of the past is not as simple as it seems. Historical data from the past are governed by unique features of date and place. The complexity of the past combined with the straightforwardness of the computer requires a pragmatic and basic approach in which the computer acts as a catalytic agent, enabling the scholar to arrive manually at his own - computer-assisted - conclusions. From this it turns out that only a limited number of projects of a morphological kind are suited to contribute to new knowledge, acquired by the close-reading of the information gained by way of meaningful abstraction. An important problem in this respect is how to obtain the right kind of architectural information. All four major elements of the building process - architect, design, drawing and realization - have their own different and gradually shifting interpretations in the past. This goes especially for the run-of-the-mill architecture which makes up the larger part of the historical urban environment. Starting with the architect, one has to realize that only a very limited part of mainstream architecture was designed by architects. In almost all other cases the role of the patron and the actual builder exceeds that of the architect, even to the extent that they designed buildings themselves. The position of design and drawing as means of communication also changed in the past. Until the middle of the nineteenth century drawings were not the chief means of communication between architects and builders, who got the gist of the design from a model, or, encountering problems, simply asked the architect or supervisor. From the nineteenth century onwards the use of drawings became more common, but almost never represented the building entirely "as built". In 1991 I published my Ph.D. thesis: Constructing the past: computerassisted architectural-historical research: the application of image-processing using the computer and Computer-Aided Design for the study of the urban environment, illustrated by the use of treatises in seventeenth-century architecture (Utrecht 1991). Here, a reconstruction of this historical communication process will be presented on the basis of a project studying the use of the Classical orders as prescribed in various architectural treatises, compared to the use of the orders in a specific group of still existing buildings in The Netherlands dating from the late sixteenth and entire seventeenth century. Comparisons were made by using vector-drawings. Both the illustrations in the the treatises and actual buildings were "translated" into computer-drawings and then analyzed.

series eCAADe
last changed 2022/06/07 07:50

_id caadria2007_659
id caadria2007_659
authors Chen, Zi-Ru
year 2007
title The Combination of Design Media and Design Creativity _ Conventional and Digital Media
doi https://doi.org/10.52842/conf.caadria.2007.x.w5x
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
summary Creativity is always interested in many fields, in particular, creativity and design creativity have many interpretations (Boden, 1991; Gero and Maher, 1992, 1993; Kim, 1990; Sternberg, 1988; Weisberg, 1986). In early conceptual design process, designers used large number of sketches and drawings (Purcell and Gero, 1998). The sketch can inspire the designer to increase the creativity of the designer’s creations(Schenk, 1991; Goldschmidt, 1994; Suwa and Tversky, 1997). The freehand sketches by conventional media have been believed to play important roles in processes of the creative design thinking(Goldschmidt, 1991; Schon and Wiggins, 1992; Goel, 1995; Suwa et al., 2000; Verstijnen et al., 1998; Elsas van and Vergeest, 1998). Recently, there are many researches on inspiration of the design creativity by digital media(Liu, 2001; Sasada, 1999). The digital media have been used to apply the creative activities and that caused the occurrenssce of unexpected discovery in early design processes(Gero and Maher, 1993; Mitchell, 1993; Schmitt, 1994; Gero, 1996, 2000; Coyne and Subrahmanian, 1993; Boden, 1998; Huang, 2001; Chen, 2001; Manolya et al. 1998; Verstijinen et al., 1998; Lynn, 2001). In addition, there are many applications by combination of conventional and digital media in the sketches conceptual process. However, previous works only discussed that the individual media were related to the design creativity. The cognitive research about the application of conceptual sketches design by integrating both conventional and digital media simultaneously is absent.
series CAADRIA
email
last changed 2022/06/07 07:50

_id e717
authors De Vries, Mark and Wagter, Harry
year 1991
title The First CAAD Package (sketch based cad)
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 497-510
summary In this paper a theory will be presented that can be used to develop a new type of CAD program. It supports architectural design and can be applied to the earliest stages of the design process. The theory is based on architectural knowledge and describes how sketched input can be used for CAAD programs. The theoretical backgrounds will be explained briefly.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 0ab2
authors Amor, R., Hosking, J., Groves, L. and Donn, M.
year 1993
title Design Tool Integration: Model Flexibility for the Building Profession
source Proceedings of Building Systems Automation - Integration, University of Wisconsin-Madison
summary The development of ICAtect, as discussed in the Building Systems Automation and Integration Symposium of 1991, provides a way of integrating simulation tools through a common building model. However, ICAtect is only a small step towards the ultimate goal of total integration and automation of the building design process. In this paper we investigate the next steps on the path toward integration. We examine how models structured to capture the physical attributes of the building, as required by simulation tools, can be used to converse with knowledge-based systems. We consider the types of mappings that occur in the often different views of a building held by these two classes of design tools. This leads us to examine the need for multiple views of a common building model. We then extend our analysis from the views required by simulation and knowledge-based systems, to those required by different segments of the building profession (e.g. architects, engineers, developers, etc.) to converse with such an integrated system. This indicates a need to provide a flexible method of accessing data in the common building model to facilitate use by different building professionals with varying specialities and levels of expertise.
series journal paper
email
last changed 2003/05/15 21:22

_id 22d6
authors Ballheim, F. and Leppert, J.
year 1991
title Architecture with Machines, Principles and Examples of CAAD-Education at the Technische Universität München
doi https://doi.org/10.52842/conf.ecaade.1991.x.h3w
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
summary "Design tools affect the results of the design process" - this is the starting point of our considerations about the efficient use of CAAD within architecture. To give you a short overview about what we want to say with this thesis lets have a short - an surely incomplete - trip through the fourth dimension back into the early time of civil engineering. As CAD in our faculty is integrated in the "Lehrstuhl für Hochbaustatik und Tragwerksplanung" (if we try to say it in English it would approximately be "institute of structural design"), we chose an example we are very familiar with because of its mathematical background - the cone sections: Circle, ellipse, parabola and hyperbola. If we start our trip two thousand years ago we only find the circle - or in very few cases the ellipse - in their use for the ground plan of greek or roman theaters - if you think of Greek amphitheaters or the Colosseum in Rome - or for the design of the cross section of a building - for example the Pantheon, roman aqueducts or bridges. With the rediscovery of the perspective during the Renaissance the handling of the ellipse was brought to perfection. May be the most famous example is the Capitol in Rome designed by Michelangelo Buonarotti with its elliptical ground plan that looks like a circle if the visitor comes up the famous stairway. During the following centuries - caused by the further development of the natural sciences and the use of new construction materials, i.e. cast-iron, steel or concrete - new design ideas could be realized. With the growing influence of mathematics on the design of buildings we got the division into two professions: Civil engineering and architecture. To the regret of the architects the most innovative constructions were designed by civil engineers, e.g. the early iron bridges in Britain or the famous bridges of Robert Maillard. Nowadays we are in the situation that we try to reintegrate the divided professions. We will return to that point later discussing possible solutions of this problem. But let us continue our 'historical survey demonstrating the state of the art we have today. As the logical consequence of the parabolic and hyperbolic arcs the hyperbolic parabolic shells were developed using traditional design techniques like models and orthogonal sections. Now we reach the point where the question comes up whether complex structures can be completely described by using traditional methods. A question that can be answered by "no" if we take the final step to the completely irregular geometry of cable- net-constructions or deconstructivistic designs. What we see - and what seems to support our thesis of the connection between design tools and the results of the design process - is, that on the one hand new tools enabled the designer to realize new ideas and on the other hand new ideas affected the development of new tools to realize them.

series eCAADe
more http://www.mediatecture.at/ecaade/91/ballheim_leppert.pdf
last changed 2022/06/07 07:50

_id 0aba
authors Carrara, Gianfranco, Kalay, Yehuda E. and Novembri, Gabriele
year 1991
title Intelligent Systems for Supporting Architectural Design
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 191-202
summary Design can be considered a process leading to the definition of a physical form that achieves a certain predefined set of objectives. The process comprises three distinct operations: (1) definition of the desired set of performance criteria (design goals); (2) production of alternative design solutions; (3) evaluation of the expected performances of alternative design solutions, and comparing them to predefined criteria. Difficulties arise in performing each one of the three operations, as well as in combining them into a purposeful, unified process. First, it is difficult to define the desired performance criteria prior to and independently of, the search for an acceptable solution that achieves them, since many aspects of the desired criteria can only be discovered through the search for an acceptable solution. Furthermore, the search for such a solution may well alter the definition of these criteria, as new criteria and incompatibilities between existing criteria are discovered. Second the generation of a design solution is a task demanding creativity, judgement, and experience, all three of which are difficult to define, teach, and otherwise capture in some explicit manner. Third, it is difficult to evaluate the expected performances of alternative design solutions and to compare them to the predefined criteria. Design parameters interact with each other in complex ways, which cause effects and side effects. Predicting the expected performances of even primary effects involves extrapolating non-physical characteristics from the proposed solution's physical organization, a process which relies on a host of assumptions (physical, sociological, psychological, etc.) and hence is seldom a reliable measure. A fourth problem arises from the need to coordinate the three operations in an iterative process that will converge on an acceptable design solution in reasonable time. Computational techniques that were developed in the past to assist designers in performing the above mentioned activities have shown limitations and proved inadequate to a large degree. In this paper we discuss the work in progress aimed at developing an intelligent support system for building and architectural design, which will be able to play a decisive role in the definition, evaluation and putting into effect of the design choices.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 00bc
authors Chen, Chen-Cheng
year 1991
title Analogical and inductive reasoning in architectural design computation
source Swiss Federal Institute of Technology, ETH Zurich
summary Computer-aided architectural design technology is now a crucial tool of modern architecture, from the viewpoint of higher productivity and better products. As technologies advance, the amount of information and knowledge that designers can apply to a project is constantly increasing. This requires development of more advanced knowledge acquisition technology to achieve higher functionality, flexibility, and efficient performance of the knowledge-based design systems in architecture. Human designers do not solve design problems from scratch, they utilize previous problem solving episodes for similar design problems as a basis for developmental decision making. This observation leads to the starting point of this research: First, we can utilize past experience to solve a new problem by detecting the similarities between the past problem and the new problem. Second, we can identify constraints and general rules implied by those similarities and the similar parts of similar situations. That is, by applying analogical and inductive reasoning we can advance the problem solving process. The main objective of this research is to establish the theory that (1) design process can be viewed as a learning process, (2) design innovation involves analogical and inductive reasoning, and (3) learning from a designer's previous design cases is necessary for the development of the next generation in a knowledge-based design system. This thesis draws upon results from several disciplines, including knowledge representation and machine learning in artificial intelligence, and knowledge acquisition in knowledge engineering, to investigate a potential design environment for future developments in computer-aided architectural design. This thesis contains three parts which correspond to the different steps of this research. Part I, discusses three different ways - problem solving, learning and creativity - of generating new thoughts based on old ones. In Part II, the problem statement of the thesis is made and a conceptual model of analogical and inductive reasoning in design is proposed. In Part III, three different methods of building design systems for solving an architectural design problem are compared rule-based, example-based, and case-based. Finally, conclusions are made based on the current implementation of the work, and possible future extensions of this research are described. It reveals new approaches for knowledge acquisition, machine learning, and knowledge-based design systems in architecture.
series thesis:PhD
email
last changed 2003/05/10 05:42

_id 2e56
authors Coyne, Robert Francis
year 1991
title ABLOOS : an evolving hierarchical design framework
source Carnegie Mellon University, Department of Architecture
summary The research reported in this thesis develops an approach toward a more effective use of hierarchical decomposition in computational design systems. The approach is based on providing designers a convenient interactive means to specify and experiment with the decompositional structure of design problems, rather than having decompositions pre-specified and encoded in the design system. Following this approach, a flexible decomposition capability is combined with an underlying design method to form the basis for an extensible and evolving framework for cooperative (humdcomputer) design. As a testbed for this approach, the ABLOOS framework for layout design is designed and constructed as a hierarchical extension of LOOS.’The framework enables a layout task to be hierarchically decomposed, and for the LOOS methodology to be applied recursively to layout subtasks at appropriate levels of abstraction within the hierarchy; layout solutions for the subtasks are then recomposed to achieve an overall solution, Research results thus far are promising: ABLOOS has produced high quality solutions for a class of industrial layout design tasks (an analog power board layout with 60 components that have multiple complex constraints on their placement); the adaptability of the framework across domains and disciplines has been demonstrated; and, further development of ABLOOS is underway including its extension to layouts in 2 1/2D space and truly 3D arrangements. The contribution of this work is in demonstrating an effective, flexible and extensible capability for hierarchical decomposition in design. It has also produced a more comprehensive layout system that can serve as a foundation for the further investigation of hierarchical decomposition in a variety of design domains.
series thesis:PhD
last changed 2003/02/12 22:37

_id eaca
authors Davis, L. (ed.)
year 1991
title Handbook of genetic algorithms
source Van Nostrand Reinhold, New York
summary This book sets out to explain what genetic algorithms are and how they can be used to solve real-world problems. The first objective is tackled by the editor, Lawrence Davis. The remainder of the book is turned over to a series of short review articles by a collection of authors, each explaining how genetic algorithms have been applied to problems in their own specific area of interest. The first part of the book introduces the fundamental genetic algorithm (GA), explains how it has traditionally been designed and implemented and shows how the basic technique may be applied to a very simple numerical optimisation problem. The basic technique is then altered and refined in a number of ways, with the effects of each change being measured by comparison against the performance of the original. In this way, the reader is provided with an uncluttered introduction to the technique and learns to appreciate why certain variants of GA have become more popular than others in the scientific community. Davis stresses that the choice of a suitable representation for the problem in hand is a key step in applying the GA, as is the selection of suitable techniques for generating new solutions from old. He is refreshingly open in admitting that much of the business of adapting the GA to specific problems owes more to art than to science. It is nice to see the terminology associated with this subject explained, with the author stressing that much of the field is still an active area of research. Few assumptions are made about the reader's mathematical background. The second part of the book contains thirteen cameo descriptions of how genetic algorithmic techniques have been, or are being, applied to a diverse range of problems. Thus, one group of authors explains how the technique has been used for modelling arms races between neighbouring countries (a non- linear, dynamical system), while another group describes its use in deciding design trade-offs for military aircraft. My own favourite is a rather charming account of how the GA was applied to a series of scheduling problems. Having attempted something of this sort with Simulated Annealing, I found it refreshing to see the authors highlighting some of the problems that they had encountered, rather than sweeping them under the carpet as is so often done in the scientific literature. The editor points out that there are standard GA tools available for either play or serious development work. Two of these (GENESIS and OOGA) are described in a short, third part of the book. As is so often the case nowadays, it is possible to obtain a diskette containing both systems by sending your Visa card details (or $60) to an address in the USA.
series other
last changed 2003/04/23 15:14

_id sigradi2016_710
id sigradi2016_710
authors Duarte, Rovenir Bertola; Lepri, Louisa Savignon; Sanches, Malu Magalh?es
year 2016
title Objectile e o projeto paramétrico [Objectile and parametric design]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.149-156
summary The objectile was a concept developed by Deleuze and Cache in the 80s. It treats the object as a variable and anticipates the society of obsolescence, an inquiry about the contemporary life of the object (marketing, function, representation, modeling, production and consumption). This concept deals with the object where“... fluctuation of the norm replaces the permanence of a law; where the object assumes a place in a continuum by variation” (Deleuze, 1991, p.38). This paper proposes to think objectile as the object of the architectural design, on three types of approximations between design and objectile: (a) Objectile as variable of the design, (b) Objectile as a design variable, and (c) Objectile as architecture (variable architecture). The second approximation (b) enables to discuss the conception of continuous design with power to cross other projects - a meta-design. The main aspect of this meta-design is the variability, another way of control based on concepts of patterns and modulations; however, objectile can mean the release of mind for new types of thought and new kinds of design based on “continuum by variation”: meta-design.
keywords Objectile; parametric design; Gilles Deleuze; Modulado; Digital design
series SIGRADI
email
last changed 2021/03/28 19:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 11HOMELOGIN (you are user _anon_740262 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002