CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 218

_id fd70
authors Goldman, Glenn and Zdepski, Michael Stephen (Eds.)
year 1991
title Reality and Virtual Reality [Conference Proceedings]
source ACADIA Conference Proceedings / ISBN 1-880250-00-4 / Los Angeles (California - USA) October 1991, 236 p.
doi https://doi.org/10.52842/conf.acadia.1991
summary During the past ten years computers in architecture have evolved from machines used for analytic and numeric calculation, to machines used for generating dynamic images, permitting the creation of photorealistic renderings, and now, in a preliminary way, permitting the simulation of virtual environments. Digital systems have evolved from increasing the speed of human operations, to providing entirely new means for creating, viewing and analyzing data. The following essays illustrate the growing spectrum of computer applications in architecture. They discuss developments in the simulation of future environments on the luminous screen and in virtual space. They investigate new methods and theories for the generation of architectural color, texture, and form. Authors address the complex technical issues of "intelligent" models and their associated analytic contents. There are attempts to categorize and make accessible architects' perceptions of various models of "reality". Much of what is presented foreshadows changes that are taking place in the areas of design theory, building sciences, architectural graphics, and computer research. The work presented is both developmental, evolving from the work done before or in other fields, and unique, exploring new themes and concepts. The application of computer technology to the practice of architecture has had a cross disciplinary effect, as computer algorithms used to generate the "unreal" environments and actors of the motion picture industry are applied to the prediction of buildings and urban landscapes not yet in existence. Buildings and places from history are archeologically "re-constructed" providing digital simulations that enable designers to study that which has previously (or never) existed. Applications of concepts from scientific visualization suggest new methods for understanding the highly interrelated aspects of the architectural sciences: structural systems, environmental control systems, building economics, etc. Simulation systems from the aerospace industry and computer media fields propose new non-physical three-dimensional worlds. Video compositing technology from the television industry and the practice of medicine are now applied to the compositing of existing environments with proposed buildings. Whether based in architectural research or practice, many authors continue to question the development of contemporary computer systems. They seek new interfaces between human and machine, new methods for simulating architectural information digitally, and new ways of conceptualizing the process of architectural design. While the practice of architecture has, of necessity, been primarily concerned with increasing productivity - and automation for improved efficiency, it is clear that university based studies and research continue to go beyond the electronic replication of manual tasks and study issues that can change the processes of architectural design - and ultimately perhaps, the products.
series ACADIA
email
more http://www.acadia.org
last changed 2022/06/07 07:49

_id 0aba
authors Carrara, Gianfranco, Kalay, Yehuda E. and Novembri, Gabriele
year 1991
title Intelligent Systems for Supporting Architectural Design
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 191-202
summary Design can be considered a process leading to the definition of a physical form that achieves a certain predefined set of objectives. The process comprises three distinct operations: (1) definition of the desired set of performance criteria (design goals); (2) production of alternative design solutions; (3) evaluation of the expected performances of alternative design solutions, and comparing them to predefined criteria. Difficulties arise in performing each one of the three operations, as well as in combining them into a purposeful, unified process. First, it is difficult to define the desired performance criteria prior to and independently of, the search for an acceptable solution that achieves them, since many aspects of the desired criteria can only be discovered through the search for an acceptable solution. Furthermore, the search for such a solution may well alter the definition of these criteria, as new criteria and incompatibilities between existing criteria are discovered. Second the generation of a design solution is a task demanding creativity, judgement, and experience, all three of which are difficult to define, teach, and otherwise capture in some explicit manner. Third, it is difficult to evaluate the expected performances of alternative design solutions and to compare them to the predefined criteria. Design parameters interact with each other in complex ways, which cause effects and side effects. Predicting the expected performances of even primary effects involves extrapolating non-physical characteristics from the proposed solution's physical organization, a process which relies on a host of assumptions (physical, sociological, psychological, etc.) and hence is seldom a reliable measure. A fourth problem arises from the need to coordinate the three operations in an iterative process that will converge on an acceptable design solution in reasonable time. Computational techniques that were developed in the past to assist designers in performing the above mentioned activities have shown limitations and proved inadequate to a large degree. In this paper we discuss the work in progress aimed at developing an intelligent support system for building and architectural design, which will be able to play a decisive role in the definition, evaluation and putting into effect of the design choices.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 2d77
authors Korte, Michael
year 1991
title CASOB - Simultaneous Surveying and Drawing
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
doi https://doi.org/10.52842/conf.ecaade.1991.x.t7p
summary Accurate planning and economical building within an existing structure require a complex building analysis based upon detailed scale plans. Work has shown unsatisfactory of measuring tools: (1.) Recording of measurements with meterrule and measuring tape often results in mistakes and wasted time. Since the data is not digitalized the measurements cannot be used by a CAD system. (2.) Commercially available CAD software is made only for new planning but not for planning with an existing structure. Up till now architects who predominantly work with existing structures were not able to take advantage of products in the software- and hardware market which would satisfy their needs. The problems already begin with the search for appropriate tools for the surveying of existing structures and the simplest possible transfer of the data to a CAD System. There is an increased demand for quality surveying of existing structures. In Germany, far more than 60 % of all construction planning is related to existing structures. Due to the special situation in the five new states this percentage will grow significantly. Other countries will find themselves in a similar situation. A large number of precise and analytical surveys of existing structures will be needed in a relative short time. Time pressure and stress factors at construction sites call for quality planning and economical construction which can only be accomplished with reliable and exact surveying of structures. Frustrating experiences in the field have led me to develop systems for the surveying of existing structures. With CASOB (Computer Aided Surveying of Buildings) we have a tool today that simultaneously surveys and creates a CAD compatible drawing.

series eCAADe
last changed 2022/06/07 07:50

_id f14c
authors Sariyildiz, Sevil
year 1991
title Conceptual Design by Means of Islamic-Geometric-Patterns within a CAAD-Environment
source Delft University of Technology
summary The starting point in this research was to develop a 3D grammar theory on top of existing 2D Islamic-geometric-patterns, trying to rescue their fundamental geometry contents to be applied in contemporary architecture without compromising any architectural style. As it is self evident the architectural design process consists of clearly distinct stages namely conceptual design, materialisation and further completion. A this conceptual stage the innovative item of the research deals with pattern grammars on 3D complex geometrical patterns, considering them as polyhedra and polytopes, for their use as an underlayer to a concept design, like architects use 2D rectangular and triangular grids by the conventional way. Handling these complex 3D patterns requires a special environment which is possible with CAAD. Within the CAAD environment, the handling of these complex patterns is easily done by means of 3D tools, because the 3D tools permit the user to make any possible manipulations and geometrical transformations in an easier way in space. To a geometrical patterns, there is some attention paid during the last 50 years by some scholars. The most complex geometrical patterns are highly developed in Islamic architecture because it is forbidden in Muslim religion to use man's portraits or sculptures of human beings in the religious buildings. All these approaches to complex patterns are analysed and studied as 2D elements. The question was how could we consider them in 3rd dimensions and use them instead of 2D underlayer, as 3D underlayers in the conceptual phase of the CAAD design. Pattern grammar is a generally employable aid (underlying pattern) for conceptual and material designs. On the basis of rules of symmetry and substitution, ordering principles have been worked out, which can be used for formal design methods as well as detailing systems (e.g. modular coordination). Through the realization of a pattern grammar a wider range of underlying patterns can be offered and a choice from these can be made in a more fundamental manner. At a subsequent stage the collection of "empty boxes" can be filled with (architectural) elements in such a way that another option is created between either filling up the boxes completely, filling them partly, or filling them in such a way that they overflow. It is self-evident that underlying patterns can also be used for details and decoration in a design. Concerning the materialisation of the concept design, within the 3D CAAD environment, substitution methods are partially developed. Further theoretical developments concerning the materialisation phase constantly backed up through feed-back with specialist matters (such as e.g. by means of expert systems, decision-support systems), must be worked out. As feed-back of the research, the possibilities of the design with 3D patterns have been tested and the procedures are explained. (*) Working with 3D patterns gives a designer more inspirations to develop new ideas and new concepts and gives the opportunity to handle the complexity. (*) The formal, structural and symmetrical qualities of geometrical patterns has a positive influence on the industrialisation of the building components. (*) Working with 3D tools which are able to handle complex geometry have a result because of the accuracy of the information, that there has hardly been a mistake made during the preparation and the assembly of the building components. This has also positive results concerning the financial aspects of the building process.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id e336
authors Achten, H., Roelen, W., Boekholt, J.-Th., Turksma, A. and Jessurun, J.
year 1999
title Virtual Reality in the Design Studio: The Eindhoven Perspective
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 169-177
doi https://doi.org/10.52842/conf.ecaade.1999.169
summary Since 1991 Virtual Reality has been used in student projects in the Building Information Technology group. It started as an experimental tool to assess the impact of VR technology in design, using the environment of the associated Calibre Institute. The technology was further developed in Calibre to become an important presentation tool for assessing design variants and final design solutions. However, it was only sporadically used in student projects. A major shift occurred in 1997 with a number of student projects in which various computer technologies including VR were used in the whole of the design process. In 1998, the new Design Systems group started a design studio with the explicit aim to integrate VR in the whole design process. The teaching effort was combined with the research program that investigates VR as a design support environment. This has lead to increasing number of innovative student projects. The paper describes the context and history of VR in Eindhoven and presents the current set-UP of the studio. It discusses the impact of the technology on the design process and outlines pedagogical issues in the studio work.
keywords Virtual Reality, Design Studio, Student Projects
series eCAADe
email
last changed 2022/06/07 07:54

_id 0ab2
authors Amor, R., Hosking, J., Groves, L. and Donn, M.
year 1993
title Design Tool Integration: Model Flexibility for the Building Profession
source Proceedings of Building Systems Automation - Integration, University of Wisconsin-Madison
summary The development of ICAtect, as discussed in the Building Systems Automation and Integration Symposium of 1991, provides a way of integrating simulation tools through a common building model. However, ICAtect is only a small step towards the ultimate goal of total integration and automation of the building design process. In this paper we investigate the next steps on the path toward integration. We examine how models structured to capture the physical attributes of the building, as required by simulation tools, can be used to converse with knowledge-based systems. We consider the types of mappings that occur in the often different views of a building held by these two classes of design tools. This leads us to examine the need for multiple views of a common building model. We then extend our analysis from the views required by simulation and knowledge-based systems, to those required by different segments of the building profession (e.g. architects, engineers, developers, etc.) to converse with such an integrated system. This indicates a need to provide a flexible method of accessing data in the common building model to facilitate use by different building professionals with varying specialities and levels of expertise.
series journal paper
email
last changed 2003/05/15 21:22

_id f9bd
authors Amor, R.W.
year 1991
title ICAtect: Integrating Design Tools for Preliminary Architectural Design
source Wellington, New Zealand: Computer Science Department, Victoria University
summary ICAtect is a knowledge based system that provides an interface between expert systems, simulation packages and CAD systems used for preliminary architectural design. This thesis describes its structure and development.The principal work discussed in this thesis involves the formulation of a method for representing a building. This is developed through an examination of a number of design tools used in architectural design, and the ways in which each of these describe a building.Methods of enabling data to be transferred between design tools are explored. A Common Building Model (CBM), forming the core of the ICAtect system, is developed to represent the design tools knowledge of a building. This model covers the range of knowledge required by a large set of disparate design tools used by architects at the initial design stage.Standard methods of integrating information from the tools were examined, but required augmentation to encompass the unusual constraints found in some of the design tools. The integration of the design tools and the CBM is discussed in detail, with example methods developed for each type of design tool. These example methods provide a successful way of moving information between the different representations. Some problems with mapping data between very different representations were encountered in this process, and the solutions or ideas for remedies are detailed. A model for control and use of ICAtect is developed in the thesis, and the extensions to enable a graphical user interface are discussed.The methods developed in this thesis demonstrate the feasibility of an integrated system of this nature, while the discussion of future work indicates the scope and potential power of ICAtect.
series other
last changed 2003/04/23 15:14

_id 227a
authors Bourdeau, L., Dubois, A.-M. and Poyet, P.
year 1991
title A Common Data Model for Computer Integrated Building
source computer Integrated Future, CIB W78 Seminar. September, 1991. Unnumbered : some ill. includes bibliography
summary The connection of various building performance evaluation tools in a collaborative way is an essential request to develop true CAD systems. It is a basic requirement for the future of integrated information systems for building projects, where data concerning multiple aspects of the project can be exchanged during the different design steps. This paper deals with the on-going research concerning the generation of a common data model in the framework of a European collaborative action, the COMBINE Project, which is supported by the CEC, General Directorate XII for Research Science and Development, within the JOULE programme. The first step of the research concerns the progressive construction of a conceptual model and the paper focuses on the development of this Integrated Data Model (IDM). The paper reports on the definition of the architecture of the IDM. The main issues and the methodology of the IDM development are presented. The IDM development methodology is based on successive steps dealing with the identification of the data and context which are considered by the Design Tool Prototypes (DTP) to be connected through the IDM, the conceptual integration of this knowledge, and the implementation of the model on an appropriate software environment
keywords standards, integration, communication, building, evaluation, modeling
series CADline
last changed 2003/06/02 14:41

_id c81f
authors Chandansing, R.A. and Vos, C.J.
year 1991
title IT - Use in Reinforced Concrete Detailing : The Current State, a Forecasting-Model, and a Future-Concept
source The Computer Integrated Future, CIB W78 Seminar. september, 1991. Unnumbered : ill., tables. includes bibliography
summary This paper describes the current state in the Netherlands, concerning the levels of CAD-systems used, their diffusion in practice and constraints and effects of their use for reinforced concrete detailing. An initial forecasting model for the further development of IT in the concrete construction industry and a future-concept for IT-use in reinforced concrete detailing are presented as well
keywords CAD, structures, engineering, building, practice, systems, detailing, construction
series CADline
last changed 2003/06/02 13:58

_id 00bc
authors Chen, Chen-Cheng
year 1991
title Analogical and inductive reasoning in architectural design computation
source Swiss Federal Institute of Technology, ETH Zurich
summary Computer-aided architectural design technology is now a crucial tool of modern architecture, from the viewpoint of higher productivity and better products. As technologies advance, the amount of information and knowledge that designers can apply to a project is constantly increasing. This requires development of more advanced knowledge acquisition technology to achieve higher functionality, flexibility, and efficient performance of the knowledge-based design systems in architecture. Human designers do not solve design problems from scratch, they utilize previous problem solving episodes for similar design problems as a basis for developmental decision making. This observation leads to the starting point of this research: First, we can utilize past experience to solve a new problem by detecting the similarities between the past problem and the new problem. Second, we can identify constraints and general rules implied by those similarities and the similar parts of similar situations. That is, by applying analogical and inductive reasoning we can advance the problem solving process. The main objective of this research is to establish the theory that (1) design process can be viewed as a learning process, (2) design innovation involves analogical and inductive reasoning, and (3) learning from a designer's previous design cases is necessary for the development of the next generation in a knowledge-based design system. This thesis draws upon results from several disciplines, including knowledge representation and machine learning in artificial intelligence, and knowledge acquisition in knowledge engineering, to investigate a potential design environment for future developments in computer-aided architectural design. This thesis contains three parts which correspond to the different steps of this research. Part I, discusses three different ways - problem solving, learning and creativity - of generating new thoughts based on old ones. In Part II, the problem statement of the thesis is made and a conceptual model of analogical and inductive reasoning in design is proposed. In Part III, three different methods of building design systems for solving an architectural design problem are compared rule-based, example-based, and case-based. Finally, conclusions are made based on the current implementation of the work, and possible future extensions of this research are described. It reveals new approaches for knowledge acquisition, machine learning, and knowledge-based design systems in architecture.
series thesis:PhD
email
last changed 2003/05/10 05:42

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ga9921
id ga9921
authors Coates, P.S. and Hazarika, L.
year 1999
title The use of genetic programming for applications in the field of spatial composition
source International Conference on Generative Art
summary Architectural design teaching using computers has been a preoccupation of CECA since 1991. All design tutors provide their students with a set of models and ways to form, and we have explored a set of approaches including cellular automata, genetic programming ,agent based modelling and shape grammars as additional tools with which to explore architectural ( and architectonic) ideas.This paper discusses the use of genetic programming (G.P.) for applications in the field of spatial composition. CECA has been developing the use of Genetic Programming for some time ( see references ) and has covered the evolution of L-Systems production rules( coates 1997, 1999b), and the evolution of generative grammars of form (Coates 1998 1999a). The G.P. was used to generate three-dimensional spatial forms from a set of geometrical structures .The approach uses genetic programming with a Genetic Library (G.Lib) .G.P. provides a way to genetically breed a computer program to solve a problem.G. Lib. enables genetic programming to define potentially useful subroutines dynamically during a run .* Exploring a shape grammar consisting of simple solid primitives and transformations. * Applying a simple fitness function to the solid breeding G.P.* Exploring a shape grammar of composite surface objects. * Developing grammarsfor existing buildings, and creating hybrids. * Exploring the shape grammar of abuilding within a G.P.We will report on new work using a range of different morphologies ( boolean operations, surface operations and grammars of style ) and describe the use of objective functions ( natural selection) and the "eyeball test" ( artificial selection) as ways of controlling and exploring the design spaces thus defined.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id cdb1
authors Cornick, T., Noble, B. and Hallahan, C.
year 1991
title The Limitations of Current Working Practices on the Development of Computer Integrating Modelling in Construction
source computer Integrated Future, CIB W78 Seminar. Calibre, The Netherlands: Eindhoven University of Technology, september, 1991. Unnumbered. includes bibliography
summary For the construction Industry to improve its processes through the application computer-based systems, traditional working practices must first change to support the integrated control of design and construction. Current manual methods of practice accept the limitations of man to process a wide range of building performance and production information simultaneously. However when these limitations are removed, through the applications of computer systems, the constraints of manual methods need no longer apply. The first generation of computer applications to the Construction Industry merely modelled the divided and sequential processes of manual methods i.e. drafting, specification writing, engineering and quantity calculations, estimating, billing, material ordering data-bases and activity planning. Use of these systems raises expectations that connections within the computer between the processes modelled can actually be made and faster and more integrated information processing be achieved. 'Linking' software is then developed. The end result of this approach was that users were able to produce information faster, present it in an impressive manner but, in reality, no perceived improvement in actual building performance, production economy or efficiency was realized. A current government sponsored Teaching Company Programme with a UK design and build company is addressing the problem of how real economic benefit can be realized through improvement in, amongst other things, their existing computer applications. This work is being carried out by both considering an academic conceptual model of how 'designing for production' can be achieved in computer applications and what is immediately realizable in practice by modelling the integration of a limited number of knowledge domains to which computers are already being applied. i.e. billing from design, estimating and buying. This paper describes each area of work and how they are impacting on each other
keywords construction, building process, integration
series CADline
last changed 2003/06/02 13:58

_id 2e56
authors Coyne, Robert Francis
year 1991
title ABLOOS : an evolving hierarchical design framework
source Carnegie Mellon University, Department of Architecture
summary The research reported in this thesis develops an approach toward a more effective use of hierarchical decomposition in computational design systems. The approach is based on providing designers a convenient interactive means to specify and experiment with the decompositional structure of design problems, rather than having decompositions pre-specified and encoded in the design system. Following this approach, a flexible decomposition capability is combined with an underlying design method to form the basis for an extensible and evolving framework for cooperative (humdcomputer) design. As a testbed for this approach, the ABLOOS framework for layout design is designed and constructed as a hierarchical extension of LOOS.’The framework enables a layout task to be hierarchically decomposed, and for the LOOS methodology to be applied recursively to layout subtasks at appropriate levels of abstraction within the hierarchy; layout solutions for the subtasks are then recomposed to achieve an overall solution, Research results thus far are promising: ABLOOS has produced high quality solutions for a class of industrial layout design tasks (an analog power board layout with 60 components that have multiple complex constraints on their placement); the adaptability of the framework across domains and disciplines has been demonstrated; and, further development of ABLOOS is underway including its extension to layouts in 2 1/2D space and truly 3D arrangements. The contribution of this work is in demonstrating an effective, flexible and extensible capability for hierarchical decomposition in design. It has also produced a more comprehensive layout system that can serve as a foundation for the further investigation of hierarchical decomposition in a variety of design domains.
series thesis:PhD
last changed 2003/02/12 22:37

_id ddss9426
id ddss9426
authors Duijvestein, Kees
year 1994
title Integrated Design and Sustainable Building
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary In the international student-project "European Environmental Campus 91 TU Delft Dordrecht" 20 students from 13 European countries worked in september 1991, during three weeks on "EcologicalSketches for the Island of Dordrecht". They worked on four different scales: the region isle of Dordt / the district Stadspolders / the neighbourhood I the house and the block. The environmentaltheme's Energy, Water, Traffic & Noise, Landscape & Soil were together with spatial analyses combined with the different scales. This combination was organised following the scheme mentioned below. The characters stand for the students. During the first period they worked in research groups, during the last period more in design groups. For instance: student L works in the beginning with the students B, G and Q in the research group water. In the last period sheworks with K, M, N and 0 in the design group Neighbourhood. Those students worked earlier in the other research-groups and contribute now in the design-group their thematic environmental knowledge. The results were presented to the Dordrecht council, officials and press. In the next project in september and october 1993 we started earlier with the design groups. Ten Dutch and ten "Erasmus" students worked for six weeks on proposals for the Vinex location Wateringenthe Hague. Each morning they worked in the research groups each afternoon in the design groups. The research groups used the EcoDesign Tools, small applications in Excel on Apple Macintoshto quantify the environmental pressure.
series DDSS
last changed 2003/08/07 16:36

_id 467d
authors Eastman, Charles M.
year 1991
title A Data Model Analysis of Modularity and Extensibility in Building Databases
source February, 1991. Report No. 16: This paper uses data modeling techniques to define how database schemas for an intelligent integrated architectural CAD system can be made extensible. It reviews the product data modeling language EDM, then applies it to define a part of an architectural data model. Extensions are then investigated, regarding how users could integrate various design-specific packages into a uniquely configured system
summary Both extension by substituting one technology for another and by adding a new evaluation application, are considered. Data modeling allows specification of a CAD database and identification of the kind of modularization that will work and what problems may arise
keywords database, building, modeling, CAD, integration, systems, architecture, design
series CADline
email
last changed 2003/05/17 10:15

_id e949
authors Eastman, Charles M.
year 1991
title Modeling of Buildings : Evolution and Concepts
source Computer Integrated Future, CIB W78 Seminar September, 1991. Unnumbered : ill. includes bibliography.
summary This presentation reviews the concepts of building modeling as they evolved historically, through research and previous and current products. It points out some limitations of current systems and concepts and identifies some additional ones that will probably be integrated into an eventual production quality building model
keywords building, modeling, architecture, design, CAD
series CADline
email
last changed 2003/05/17 10:15

_id 0457
authors Fereshetian, Nirva and Eastman, Charles M.
year 1991
title A Comparison of Information Models for Product Design
source Computer Integrated Future, CIB W78 Seminar. Calibre, The Netherlands: Eindhoven University of Technology, September, 1991. Unnumbered. includes bibliography
summary This paper develops the data modeling requirements for modeling products, as required for the development of integrated databases in architecture and construction. These requirements are then applied to four data models: Entity- Relationship Model, NIAM, IDEF1x and EDM
keywords building, modeling, integration, systems, database, construction
series CADline
email
last changed 2003/05/17 10:15

_id 68c8
authors Flemming, U., Coyne, R. and Fenves, S. (et al.)
year 1994
title SEED: A Software Environment to Support the Early Phases in Building Design
source Proceeding of IKM '94, Weimar, Germany, pp. 5-10
summary The SEED project intends to develop a software environment that supports the early phases in building design (Flemming et al., 1993). The goal is to provide support, in principle, for the preliminary design of buildings in all aspects that can gain from computer support. This includes using the computer not only for analysis and evaluation, but also more actively for the generation of designs, or more accurately, for the rapid generation of design representations. A major motivation for the development of SEED is to bring the results of two multi-generational research efforts focusing on `generative' design systems closer to practice: 1. LOOS/ABLOOS, a generative system for the synthesis of layouts of rectangles (Flemming et al., 1988; Flemming, 1989; Coyne and Flemming, 1990; Coyne, 1991); 2. GENESIS, a rule-based system that supports the generation of assemblies of 3-dimensional solids (Heisserman, 1991; Heisserman and Woodbury, 1993). The rapid generation of design representations can take advantage of special opportunities when it deals with a recurring building type, that is, a building type dealt with frequently by the users of the system. Design firms - from housing manufacturers to government agencies - accumulate considerable experience with recurring building types. But current CAD systems capture this experience and support its reuse only marginally. SEED intends to provide systematic support for the storing and retrieval of past solutions and their adaptation to similar problem situations. This motivation aligns aspects of SEED closely with current work in Artificial Intelligence that focuses on case-based design (see, for example, Kolodner, 1991; Domeshek and Kolodner, 1992; Hua et al., 1992).
series other
email
last changed 2003/04/23 15:14

_id 728f
authors Gross, Mark D.
year 1991
title Grids in Design and CAD
source Reality and Virtual Reality [ACADIA Conference Proceedings / ISBN 1-880250-00-4] Los Angeles (California - USA) October 1991, pp. 33-43
doi https://doi.org/10.52842/conf.acadia.1991.033
summary The grid is a useful device for expressing design rules about the placement of elements in a layout. By expressing position rules for elements in relation to a grid, a designer can systematically organize decisions in a layout design problem. Grids and placement rules offer a discipline that can help a designer work effectively to lay out complex designs, and it can also facilitate group design work. Unfortunately, computer supported drawing systems often cannot support this way of working because they lack a sufficiently rich implementation of grids. The Grid Manager module of the CoDraw program shows enhancements useful for architectural Computer Assisted Design. These enhancements would enable more effective ways of using the computer as a design tool.
series ACADIA
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 10HOMELOGIN (you are user _anon_720615 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002