CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 220

_id 86c1
authors Shih, Shen-Guan
year 1991
title Case-based Representation and Adaptation in Design
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 301-312
summary By attempting to model the raw memory of experts, case-based reasoning is distinguished from traditional expert systems, which compile experts' knowledge into rules before new problems are given. A case-based reasoning system processes new problems with the most similar prior experiences available, and adapts the prior solutions to solve new problems. Case-based representation, of design knowledge utilizes the desirable features of the selected case as syntax rules to adapt the case to a new context. As a central issue of the paper, three types of adaptation aimed at topological modifications are described. The first type - casebased search - can be viewed as a localized search process. It follows the syntactical structure of the case to search for variations which provide the required functionality. Regarding the complexity of computation, it is recognized that when a context sensitive grammar is used to describe the desirable features, the search process become intractable. The second type of adaptation can be viewed as a process of self-organization, in which context-sensitive grammars play an essential role. Evaluations have to be simulated by local interaction among design primitives. The third type is called direct transduction. A case is translated directly to another structure according to its syntax by some translation functions. A direct transduction is not necessarily a composition of design operators and thus, a crosscontextual mapping is possible. As a perspective use of these adaptation methods, a CAD system which provides designers with the ability to modify the syntactical structure of a group of design elements, according to some concerned semantics, would support designers better than current CAD systems.
series CAAD Futures
last changed 1999/04/07 12:03

_id e336
authors Achten, H., Roelen, W., Boekholt, J.-Th., Turksma, A. and Jessurun, J.
year 1999
title Virtual Reality in the Design Studio: The Eindhoven Perspective
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 169-177
doi https://doi.org/10.52842/conf.ecaade.1999.169
summary Since 1991 Virtual Reality has been used in student projects in the Building Information Technology group. It started as an experimental tool to assess the impact of VR technology in design, using the environment of the associated Calibre Institute. The technology was further developed in Calibre to become an important presentation tool for assessing design variants and final design solutions. However, it was only sporadically used in student projects. A major shift occurred in 1997 with a number of student projects in which various computer technologies including VR were used in the whole of the design process. In 1998, the new Design Systems group started a design studio with the explicit aim to integrate VR in the whole design process. The teaching effort was combined with the research program that investigates VR as a design support environment. This has lead to increasing number of innovative student projects. The paper describes the context and history of VR in Eindhoven and presents the current set-UP of the studio. It discusses the impact of the technology on the design process and outlines pedagogical issues in the studio work.
keywords Virtual Reality, Design Studio, Student Projects
series eCAADe
email
last changed 2022/06/07 07:54

_id 2560
authors Alkhoven, Patricia
year 1991
title The Reconstruction of the Past: The Application of New Techniques for Visualization and Research in Architectural History
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 549-566
summary This paper focuses on the visualization of historical architecture. The application of new Computer-Aided- Architectural-Design techniques for visualization on micro computers provides a technique for reconstructing and analyzing architectural objects from the past. The pilot project describes a case study in which the historical transformation of a town will be analyzed by using three- dimensional CAD models in combination with bitmap textures. The transformation of the historic town will be visualized in a space-time computer model in which bitmap textures enable us to display complex and relatively large architectural objects in detail. This three-dimensional descriptive model allows us to survey and analyze the history of architecture in its reconstructed context. It also provides a medium for researching the dynamics of urban management, since new combinations and arrangements with the individual architectural objects can be created. In this way, a new synthesis of the graphic material can reveal typologies and the architectural ordering system of a town.
keywords 3D City modeling
series CAAD Futures
last changed 2003/11/21 15:15

_id 0ab2
authors Amor, R., Hosking, J., Groves, L. and Donn, M.
year 1993
title Design Tool Integration: Model Flexibility for the Building Profession
source Proceedings of Building Systems Automation - Integration, University of Wisconsin-Madison
summary The development of ICAtect, as discussed in the Building Systems Automation and Integration Symposium of 1991, provides a way of integrating simulation tools through a common building model. However, ICAtect is only a small step towards the ultimate goal of total integration and automation of the building design process. In this paper we investigate the next steps on the path toward integration. We examine how models structured to capture the physical attributes of the building, as required by simulation tools, can be used to converse with knowledge-based systems. We consider the types of mappings that occur in the often different views of a building held by these two classes of design tools. This leads us to examine the need for multiple views of a common building model. We then extend our analysis from the views required by simulation and knowledge-based systems, to those required by different segments of the building profession (e.g. architects, engineers, developers, etc.) to converse with such an integrated system. This indicates a need to provide a flexible method of accessing data in the common building model to facilitate use by different building professionals with varying specialities and levels of expertise.
series journal paper
email
last changed 2003/05/15 21:22

_id f9bd
authors Amor, R.W.
year 1991
title ICAtect: Integrating Design Tools for Preliminary Architectural Design
source Wellington, New Zealand: Computer Science Department, Victoria University
summary ICAtect is a knowledge based system that provides an interface between expert systems, simulation packages and CAD systems used for preliminary architectural design. This thesis describes its structure and development.The principal work discussed in this thesis involves the formulation of a method for representing a building. This is developed through an examination of a number of design tools used in architectural design, and the ways in which each of these describe a building.Methods of enabling data to be transferred between design tools are explored. A Common Building Model (CBM), forming the core of the ICAtect system, is developed to represent the design tools knowledge of a building. This model covers the range of knowledge required by a large set of disparate design tools used by architects at the initial design stage.Standard methods of integrating information from the tools were examined, but required augmentation to encompass the unusual constraints found in some of the design tools. The integration of the design tools and the CBM is discussed in detail, with example methods developed for each type of design tool. These example methods provide a successful way of moving information between the different representations. Some problems with mapping data between very different representations were encountered in this process, and the solutions or ideas for remedies are detailed. A model for control and use of ICAtect is developed in the thesis, and the extensions to enable a graphical user interface are discussed.The methods developed in this thesis demonstrate the feasibility of an integrated system of this nature, while the discussion of future work indicates the scope and potential power of ICAtect.
series other
last changed 2003/04/23 15:14

_id a620
authors Asanowicz, Alexander
year 1991
title Unde et Quo
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
doi https://doi.org/10.52842/conf.ecaade.1991.x.t1s
summary To begin with, I would like to say a few words about the problem of alienation of modern technologies which we also inevitably faced while starting teaching CAD at our department. Quite often nowadays a technology becomes a fetish as a result of lack of clear goals in human mind. There are multiple technologies without sense of purpose which turned into pure experiments. There is always the danger of losing purposeness and drifting toward alienation. The cause of the danger lies in forgetting about original goals while mastering and developing the technology. Eventually the original idea is ignored and a great gap appears between technical factors and creativity. We had the danger of alienation in mind when preparing the CAAD curriculum. Trying to avoid the tension between technical and creative elements we agreed not to introduce CAD too soon then the fourth year of studies and continue it for two semesters. One thing was clear - we should not teach the technique of CAD but how to design using a computer as a medium. Then we specified projects. The first was called "The bathroom I dream of" and meant to be a 2D drawing. The four introductory meetings were in fact teaching foundations of DOS, then a specific design followed with the help of AutoCAD program. In the IX semester, for example, it was "A family house" (plans, facades, perspective). "I have to follow them - I am their leader" said L.J. Peter in "The Peter's Prescription". This quotation reflects exactly the situation we find ourselves in teaching CAAD at our department. It means that ever growing students interest in CAAD made us introduce changes in the curriculum. According to the popular saying, "The more one gets the more one wants", so did we and the students feel after the first semester of teaching CAD. From autumn 1991 CAAD classes will be carried from the third year of studying for two consecutive years. But before further planning one major steep had to be done - we decided to reverse the typical of the seventies approach to the problem when teaching programming languages preceded practical goals hence discouraging many learners.

series eCAADe
email
last changed 2022/06/07 07:50

_id 9964
authors Augenbroe, G. and Winkelmann, F.
year 1991
title Integration of Simulation into the Building Design Process
source J.A. Clarke, J.W. Mitchell, and R.C. Van de Perre (eds.), Proceedings, Building Simulation '91 IBPSA Conference, pp. 367-374
summary We describe the need for a joint effort between design researchers and simulation tool developers in formulating procedures and standards for integrating simulation into the building design process. We review and discuss current efforts in the US and Europe in the development of next-generation simulation tools and design integration techniques. In particular, we describe initiatives in object-oriented simulation environments (including the US Energy 'Kernel System, the Swedish Ida system, the UK Energy Kernel System, and the French ZOOM program.) and consider the relationship of these environments to recent R&D initiatives in design integration (the COMBINE project in Europe and the AEDOT project in the US).
series other
last changed 2003/11/21 15:16

_id 22d6
authors Ballheim, F. and Leppert, J.
year 1991
title Architecture with Machines, Principles and Examples of CAAD-Education at the Technische Universität München
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
doi https://doi.org/10.52842/conf.ecaade.1991.x.h3w
summary "Design tools affect the results of the design process" - this is the starting point of our considerations about the efficient use of CAAD within architecture. To give you a short overview about what we want to say with this thesis lets have a short - an surely incomplete - trip through the fourth dimension back into the early time of civil engineering. As CAD in our faculty is integrated in the "Lehrstuhl für Hochbaustatik und Tragwerksplanung" (if we try to say it in English it would approximately be "institute of structural design"), we chose an example we are very familiar with because of its mathematical background - the cone sections: Circle, ellipse, parabola and hyperbola. If we start our trip two thousand years ago we only find the circle - or in very few cases the ellipse - in their use for the ground plan of greek or roman theaters - if you think of Greek amphitheaters or the Colosseum in Rome - or for the design of the cross section of a building - for example the Pantheon, roman aqueducts or bridges. With the rediscovery of the perspective during the Renaissance the handling of the ellipse was brought to perfection. May be the most famous example is the Capitol in Rome designed by Michelangelo Buonarotti with its elliptical ground plan that looks like a circle if the visitor comes up the famous stairway. During the following centuries - caused by the further development of the natural sciences and the use of new construction materials, i.e. cast-iron, steel or concrete - new design ideas could be realized. With the growing influence of mathematics on the design of buildings we got the division into two professions: Civil engineering and architecture. To the regret of the architects the most innovative constructions were designed by civil engineers, e.g. the early iron bridges in Britain or the famous bridges of Robert Maillard. Nowadays we are in the situation that we try to reintegrate the divided professions. We will return to that point later discussing possible solutions of this problem. But let us continue our 'historical survey demonstrating the state of the art we have today. As the logical consequence of the parabolic and hyperbolic arcs the hyperbolic parabolic shells were developed using traditional design techniques like models and orthogonal sections. Now we reach the point where the question comes up whether complex structures can be completely described by using traditional methods. A question that can be answered by "no" if we take the final step to the completely irregular geometry of cable- net-constructions or deconstructivistic designs. What we see - and what seems to support our thesis of the connection between design tools and the results of the design process - is, that on the one hand new tools enabled the designer to realize new ideas and on the other hand new ideas affected the development of new tools to realize them.

series eCAADe
more http://www.mediatecture.at/ecaade/91/ballheim_leppert.pdf
last changed 2022/06/07 07:50

_id 019c
authors Beyer, Horst A. and Streilein, André
year 1991
title Data Generation for CAAD with Digital Photogrammetry
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 583-594
summary The rapid advances in sensor technology and processing hardware make the development of a Digital Photogrammetric System for Architectural Photogrammetry possible. This system is able to acquire images with sufficient resolution for Architectural Photogrammetry. Geometric and topologic information for a CAAD-System can be derived with manual and/or semi-automated methods. This paper describes the current status of such a system which is under development at the Institute of Geodesy and Photogrammetry in cooperation with the Chair of Architecture and CAAD, both at the Swiss Federal Institute of Technology in Zurich.
series CAAD Futures
last changed 2003/11/21 15:16

_id ea6b
authors Boeve, Eddy
year 1991
title Modelling Interaction Tools in the Views Architecture IV. Design Tools
source First Moscow International HCI'91 Workshop Proceedings 1991 p.183
summary Views is a user-interface system in which the user interface is a layer above applications, guaranteeing consistency of the interface, and with a data-layer implementing external object representations, allowing exchange of objects between applications without loss of structure. Although Views offers an architecture to deal with user-interface aspects on a high level, in this report is shown that also low level interaction can be modelled with the architecture provided.
series other
last changed 2002/07/07 16:01

_id 85f9
authors Brisson, E., Debras, P. and Poyet, Patrice
year 1991
title A First Step Towards an Intelligent Integrated Design System in the Building Field
source computer Integrated Future, CIB W78 Seminar. September, 1991. Unnumbered pages : ill. includes bibliography
summary This article presents the work the Knowledge Base Group is achieving towards the integration of Artificial Intelligence based facilities in the Building design process. After an overview of the current state of the integrated design process, the context and the technical guidelines to realize computer integrated software in the building design field is described. Then some tools are presented to model the knowledge (the HBDS method) and to implement such model in our Mips home-made knowledge modeling software platform (including object-oriented database management facilities, expert system reasoning facilities, hypertext edition facilities, 3D-design and 3D-view modules...). Finally the authors describe the Quakes application devoted to assess detached house anti-seismic capabilities during the design process. A deep conceptual model considers all the semantic entities (columns, resistant panels, openings, ...) involved in the anti-seismic expertise. Using both this conceptual model description of a detached house and the 3D design tool, they input the project. Then the seismic expertise is driven in a divide and conquer approach and records the alleged configuration recognized automatically linked to the corresponding section of the building regulation
keywords AI, design, knowledge, software, integration, building, CAD, structures
series CADline
last changed 2003/06/02 13:58

_id 0aba
authors Carrara, Gianfranco, Kalay, Yehuda E. and Novembri, Gabriele
year 1991
title Intelligent Systems for Supporting Architectural Design
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 191-202
summary Design can be considered a process leading to the definition of a physical form that achieves a certain predefined set of objectives. The process comprises three distinct operations: (1) definition of the desired set of performance criteria (design goals); (2) production of alternative design solutions; (3) evaluation of the expected performances of alternative design solutions, and comparing them to predefined criteria. Difficulties arise in performing each one of the three operations, as well as in combining them into a purposeful, unified process. First, it is difficult to define the desired performance criteria prior to and independently of, the search for an acceptable solution that achieves them, since many aspects of the desired criteria can only be discovered through the search for an acceptable solution. Furthermore, the search for such a solution may well alter the definition of these criteria, as new criteria and incompatibilities between existing criteria are discovered. Second the generation of a design solution is a task demanding creativity, judgement, and experience, all three of which are difficult to define, teach, and otherwise capture in some explicit manner. Third, it is difficult to evaluate the expected performances of alternative design solutions and to compare them to the predefined criteria. Design parameters interact with each other in complex ways, which cause effects and side effects. Predicting the expected performances of even primary effects involves extrapolating non-physical characteristics from the proposed solution's physical organization, a process which relies on a host of assumptions (physical, sociological, psychological, etc.) and hence is seldom a reliable measure. A fourth problem arises from the need to coordinate the three operations in an iterative process that will converge on an acceptable design solution in reasonable time. Computational techniques that were developed in the past to assist designers in performing the above mentioned activities have shown limitations and proved inadequate to a large degree. In this paper we discuss the work in progress aimed at developing an intelligent support system for building and architectural design, which will be able to play a decisive role in the definition, evaluation and putting into effect of the design choices.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 00bc
authors Chen, Chen-Cheng
year 1991
title Analogical and inductive reasoning in architectural design computation
source Swiss Federal Institute of Technology, ETH Zurich
summary Computer-aided architectural design technology is now a crucial tool of modern architecture, from the viewpoint of higher productivity and better products. As technologies advance, the amount of information and knowledge that designers can apply to a project is constantly increasing. This requires development of more advanced knowledge acquisition technology to achieve higher functionality, flexibility, and efficient performance of the knowledge-based design systems in architecture. Human designers do not solve design problems from scratch, they utilize previous problem solving episodes for similar design problems as a basis for developmental decision making. This observation leads to the starting point of this research: First, we can utilize past experience to solve a new problem by detecting the similarities between the past problem and the new problem. Second, we can identify constraints and general rules implied by those similarities and the similar parts of similar situations. That is, by applying analogical and inductive reasoning we can advance the problem solving process. The main objective of this research is to establish the theory that (1) design process can be viewed as a learning process, (2) design innovation involves analogical and inductive reasoning, and (3) learning from a designer's previous design cases is necessary for the development of the next generation in a knowledge-based design system. This thesis draws upon results from several disciplines, including knowledge representation and machine learning in artificial intelligence, and knowledge acquisition in knowledge engineering, to investigate a potential design environment for future developments in computer-aided architectural design. This thesis contains three parts which correspond to the different steps of this research. Part I, discusses three different ways - problem solving, learning and creativity - of generating new thoughts based on old ones. In Part II, the problem statement of the thesis is made and a conceptual model of analogical and inductive reasoning in design is proposed. In Part III, three different methods of building design systems for solving an architectural design problem are compared rule-based, example-based, and case-based. Finally, conclusions are made based on the current implementation of the work, and possible future extensions of this research are described. It reveals new approaches for knowledge acquisition, machine learning, and knowledge-based design systems in architecture.
series thesis:PhD
email
last changed 2003/05/10 05:42

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 2e56
authors Coyne, Robert Francis
year 1991
title ABLOOS : an evolving hierarchical design framework
source Carnegie Mellon University, Department of Architecture
summary The research reported in this thesis develops an approach toward a more effective use of hierarchical decomposition in computational design systems. The approach is based on providing designers a convenient interactive means to specify and experiment with the decompositional structure of design problems, rather than having decompositions pre-specified and encoded in the design system. Following this approach, a flexible decomposition capability is combined with an underlying design method to form the basis for an extensible and evolving framework for cooperative (humdcomputer) design. As a testbed for this approach, the ABLOOS framework for layout design is designed and constructed as a hierarchical extension of LOOS.’The framework enables a layout task to be hierarchically decomposed, and for the LOOS methodology to be applied recursively to layout subtasks at appropriate levels of abstraction within the hierarchy; layout solutions for the subtasks are then recomposed to achieve an overall solution, Research results thus far are promising: ABLOOS has produced high quality solutions for a class of industrial layout design tasks (an analog power board layout with 60 components that have multiple complex constraints on their placement); the adaptability of the framework across domains and disciplines has been demonstrated; and, further development of ABLOOS is underway including its extension to layouts in 2 1/2D space and truly 3D arrangements. The contribution of this work is in demonstrating an effective, flexible and extensible capability for hierarchical decomposition in design. It has also produced a more comprehensive layout system that can serve as a foundation for the further investigation of hierarchical decomposition in a variety of design domains.
series thesis:PhD
last changed 2003/02/12 22:37

_id eaca
authors Davis, L. (ed.)
year 1991
title Handbook of genetic algorithms
source Van Nostrand Reinhold, New York
summary This book sets out to explain what genetic algorithms are and how they can be used to solve real-world problems. The first objective is tackled by the editor, Lawrence Davis. The remainder of the book is turned over to a series of short review articles by a collection of authors, each explaining how genetic algorithms have been applied to problems in their own specific area of interest. The first part of the book introduces the fundamental genetic algorithm (GA), explains how it has traditionally been designed and implemented and shows how the basic technique may be applied to a very simple numerical optimisation problem. The basic technique is then altered and refined in a number of ways, with the effects of each change being measured by comparison against the performance of the original. In this way, the reader is provided with an uncluttered introduction to the technique and learns to appreciate why certain variants of GA have become more popular than others in the scientific community. Davis stresses that the choice of a suitable representation for the problem in hand is a key step in applying the GA, as is the selection of suitable techniques for generating new solutions from old. He is refreshingly open in admitting that much of the business of adapting the GA to specific problems owes more to art than to science. It is nice to see the terminology associated with this subject explained, with the author stressing that much of the field is still an active area of research. Few assumptions are made about the reader's mathematical background. The second part of the book contains thirteen cameo descriptions of how genetic algorithmic techniques have been, or are being, applied to a diverse range of problems. Thus, one group of authors explains how the technique has been used for modelling arms races between neighbouring countries (a non- linear, dynamical system), while another group describes its use in deciding design trade-offs for military aircraft. My own favourite is a rather charming account of how the GA was applied to a series of scheduling problems. Having attempted something of this sort with Simulated Annealing, I found it refreshing to see the authors highlighting some of the problems that they had encountered, rather than sweeping them under the carpet as is so often done in the scientific literature. The editor points out that there are standard GA tools available for either play or serious development work. Two of these (GENESIS and OOGA) are described in a short, third part of the book. As is so often the case nowadays, it is possible to obtain a diskette containing both systems by sending your Visa card details (or $60) to an address in the USA.
series other
last changed 2003/04/23 15:14

_id 2e03
authors Diederiks, H.J. and van Staveren, R.J.
year 1991
title Dynamic Information System for Modelling of Design Processes
source Computer Integrated Future, CIB W78 Seminar. september, 1991
summary Unnumbered : ill. DINAMO is a Dynamic Information System for Modelling of Design Processes. It is intended for use along with product models, data management systems and existing applications. In DINAMO a programming user can define processes. These processes are represented by graphs. The graphs are characterized by nodes and relations between nodes. Each node in a graph represents a task, and each relation can be restricted to conditions. So the way in which a process is actually being performed, that is, the actual path to be evaluated through the graph, can depend on certain conditions. Processes and functions (=software modules) are available to the user as tasks. A consuming user can activate tasks; the DINAMO system regulates the dispatch of the tasks, conform the process and function definitions. Tasks are collected on sheets; sheets are collected in a task box. A task box can be regarded as a certain environment, determined by the programming user. A consuming user can choose between the environments which are available at that moment. With the DINAMO system software and process definitions can be re-used in a simple way
keywords design process, modeling, graphs, information, relations, software
series CADline
last changed 2003/06/02 13:58

_id 467d
authors Eastman, Charles M.
year 1991
title A Data Model Analysis of Modularity and Extensibility in Building Databases
source February, 1991. Report No. 16: This paper uses data modeling techniques to define how database schemas for an intelligent integrated architectural CAD system can be made extensible. It reviews the product data modeling language EDM, then applies it to define a part of an architectural data model. Extensions are then investigated, regarding how users could integrate various design-specific packages into a uniquely configured system
summary Both extension by substituting one technology for another and by adding a new evaluation application, are considered. Data modeling allows specification of a CAD database and identification of the kind of modularization that will work and what problems may arise
keywords database, building, modeling, CAD, integration, systems, architecture, design
series CADline
email
last changed 2003/05/17 10:15

_id 218a
authors Ervin, Stephen M.
year 1991
title Intra-Medium and Inter-Media Constraints
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 365-380
summary Designers work with multiple representations in a variety of media to express and explore different kinds of knowledge. The advantages of multi-media in design are well- known, and exemplified by the current interest in 'hyper-media' approaches to knowledge exploration. A principal activity in working between views in one medium (e.g. plan, section and perspective drawings), or between different representations (diagrams, maps, graphs, pictures, e.g.) is extrapolating decisions made in one view or medium over to others, so that some consistency is maintained, and implications can be explored. The former kind of consistency maintenance (intra-medium) is beginning to be well understood techniques for constraint expression., satisfaction and propagation are starting to appear in 'smart CAD' systems. The latter kind of consistency maintenance inter-media.) is different, less well understood, and will require new mechanisms for constraint management and exploration. Experiments, hypotheses, and solutions in this direction will be central to any effort that seeks to explain, emulate or assist the integrative, synthetic reasoning that characterizes environmental design and planning. This paper examines some of the characteristics and advantages of intra and inter-media constraint exploration, describes a prototype "designers workstation" and some experiments in the context of landscape planning and design, and lays out some directions for development of these ideas in future computer aided design systems.
series CAAD Futures
last changed 1999/04/07 12:03

_id 68c8
authors Flemming, U., Coyne, R. and Fenves, S. (et al.)
year 1994
title SEED: A Software Environment to Support the Early Phases in Building Design
source Proceeding of IKM '94, Weimar, Germany, pp. 5-10
summary The SEED project intends to develop a software environment that supports the early phases in building design (Flemming et al., 1993). The goal is to provide support, in principle, for the preliminary design of buildings in all aspects that can gain from computer support. This includes using the computer not only for analysis and evaluation, but also more actively for the generation of designs, or more accurately, for the rapid generation of design representations. A major motivation for the development of SEED is to bring the results of two multi-generational research efforts focusing on `generative' design systems closer to practice: 1. LOOS/ABLOOS, a generative system for the synthesis of layouts of rectangles (Flemming et al., 1988; Flemming, 1989; Coyne and Flemming, 1990; Coyne, 1991); 2. GENESIS, a rule-based system that supports the generation of assemblies of 3-dimensional solids (Heisserman, 1991; Heisserman and Woodbury, 1993). The rapid generation of design representations can take advantage of special opportunities when it deals with a recurring building type, that is, a building type dealt with frequently by the users of the system. Design firms - from housing manufacturers to government agencies - accumulate considerable experience with recurring building types. But current CAD systems capture this experience and support its reuse only marginally. SEED intends to provide systematic support for the storing and retrieval of past solutions and their adaptation to similar problem situations. This motivation aligns aspects of SEED closely with current work in Artificial Intelligence that focuses on case-based design (see, for example, Kolodner, 1991; Domeshek and Kolodner, 1992; Hua et al., 1992).
series other
email
last changed 2003/04/23 15:14

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 10HOMELOGIN (you are user _anon_95337 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002