CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 221

_id a233
authors Rosenman, M.A., Gero, J.S. and Oxman, R.E.
year 1991
title What's in a Case: The Use of Case Bases, Knowledge Bases, and Databases in Design
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 285-300
summary Design experience can be classified into generalized or compiled knowledge and specific knowledge. Generalized design knowledge has been introduced into computer-aided design in the form of rules, frames and more recently, design prototypes. Case-based reasoning is a well-defined paradigm in artificial intelligence and has obvious scope for its use in design reasoning. This paper explores case-based reasoning in design and argues for the integration of both specific and generalized design knowledge. This integration allows for characterizing what is in a case by drawing upon the schema developed for design prototypes. Finally, the paper argues that the addition of precedent knowledge, in the form of case bases, to knowledge bases and CAD databases will further extend the experience-based capabilities of design systems.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id cdb1
authors Cornick, T., Noble, B. and Hallahan, C.
year 1991
title The Limitations of Current Working Practices on the Development of Computer Integrating Modelling in Construction
source computer Integrated Future, CIB W78 Seminar. Calibre, The Netherlands: Eindhoven University of Technology, september, 1991. Unnumbered. includes bibliography
summary For the construction Industry to improve its processes through the application computer-based systems, traditional working practices must first change to support the integrated control of design and construction. Current manual methods of practice accept the limitations of man to process a wide range of building performance and production information simultaneously. However when these limitations are removed, through the applications of computer systems, the constraints of manual methods need no longer apply. The first generation of computer applications to the Construction Industry merely modelled the divided and sequential processes of manual methods i.e. drafting, specification writing, engineering and quantity calculations, estimating, billing, material ordering data-bases and activity planning. Use of these systems raises expectations that connections within the computer between the processes modelled can actually be made and faster and more integrated information processing be achieved. 'Linking' software is then developed. The end result of this approach was that users were able to produce information faster, present it in an impressive manner but, in reality, no perceived improvement in actual building performance, production economy or efficiency was realized. A current government sponsored Teaching Company Programme with a UK design and build company is addressing the problem of how real economic benefit can be realized through improvement in, amongst other things, their existing computer applications. This work is being carried out by both considering an academic conceptual model of how 'designing for production' can be achieved in computer applications and what is immediately realizable in practice by modelling the integration of a limited number of knowledge domains to which computers are already being applied. i.e. billing from design, estimating and buying. This paper describes each area of work and how they are impacting on each other
keywords construction, building process, integration
series CADline
last changed 2003/06/02 13:58

_id 83b4
authors Tan, Milton
year 1991
title Themes for Schemes: Design Creativity as the Conceptualization, Transformation, and Representation of Emergent Forms
source Harvard University, Graduate School of Design
summary Architects, graphic designers, and others frequently develop designs by picking out and transforming subshapes of two-dimensional or three-dimensional shapes. Shape grammars formalize this aspect of design by specifying rules of the form $a /to b$: the left-hand side a describes a type of subshape that may be picked out, while the right-hand side b describes what that type of subshape may become. Designs in the language specified by a shape grammar are derived by recursively applying the shape transformation rules to a starting shape. To apply a shape-transformation rule automatically, a computer system, must have the capacity to recognize instances of the type of subshape specified on the left-hand side of the rule. Sometimes such instances are explicitly input by the designer, and explicitly represented in a data structure: in this case, recognition is a relatively straightforward task. But there may also be 'emergent' instances that were not explicitly input, and are only indirectly represented in the data structure. These emergent instances are potentially numerous, and may be extremely difficult to discover. This thesis focuses on mechanisms for picking out and transforming subshapes. The first three chapters place the issue in its broadest context by arguing that different designers--bringing different knowledge and attitudes to the task--will pick out and pay attention to different subshapes in a drawing. This contention is supported by introducing some of the relevant literature on perception, problem-solving, and creativity. Chapter 4 introduces shape grammars to provide a more formal framework for investigating this topic. Chapter 5 describes the properties and limitations of Topdown--a computer program which supports design by applying the rules of a shape grammar, but does not provide for recognition of emergent subshapes. Chapter 6 introduces ECART, a computer program which supports efficient recognition and transformation of emergent subshapes, and demonstrates how its performance transcends that of Topdown. Examination of the results produced by ECART suggest that a designer's conceptual filter--the repertoire of subshape types that he or she can recognize in a drawing--plays a crucial role in the development of design ideas.  
keywords Computer Graphics; Computer Software; Development
series thesis:PhD
email
last changed 2003/02/12 22:37

_id eaca
authors Davis, L. (ed.)
year 1991
title Handbook of genetic algorithms
source Van Nostrand Reinhold, New York
summary This book sets out to explain what genetic algorithms are and how they can be used to solve real-world problems. The first objective is tackled by the editor, Lawrence Davis. The remainder of the book is turned over to a series of short review articles by a collection of authors, each explaining how genetic algorithms have been applied to problems in their own specific area of interest. The first part of the book introduces the fundamental genetic algorithm (GA), explains how it has traditionally been designed and implemented and shows how the basic technique may be applied to a very simple numerical optimisation problem. The basic technique is then altered and refined in a number of ways, with the effects of each change being measured by comparison against the performance of the original. In this way, the reader is provided with an uncluttered introduction to the technique and learns to appreciate why certain variants of GA have become more popular than others in the scientific community. Davis stresses that the choice of a suitable representation for the problem in hand is a key step in applying the GA, as is the selection of suitable techniques for generating new solutions from old. He is refreshingly open in admitting that much of the business of adapting the GA to specific problems owes more to art than to science. It is nice to see the terminology associated with this subject explained, with the author stressing that much of the field is still an active area of research. Few assumptions are made about the reader's mathematical background. The second part of the book contains thirteen cameo descriptions of how genetic algorithmic techniques have been, or are being, applied to a diverse range of problems. Thus, one group of authors explains how the technique has been used for modelling arms races between neighbouring countries (a non- linear, dynamical system), while another group describes its use in deciding design trade-offs for military aircraft. My own favourite is a rather charming account of how the GA was applied to a series of scheduling problems. Having attempted something of this sort with Simulated Annealing, I found it refreshing to see the authors highlighting some of the problems that they had encountered, rather than sweeping them under the carpet as is so often done in the scientific literature. The editor points out that there are standard GA tools available for either play or serious development work. Two of these (GENESIS and OOGA) are described in a short, third part of the book. As is so often the case nowadays, it is possible to obtain a diskette containing both systems by sending your Visa card details (or $60) to an address in the USA.
series other
last changed 2003/04/23 15:14

_id 040e
authors Simovic, Dejan
year 1991
title URBIS: A Tool for City-Planners
doi https://doi.org/10.52842/conf.ecaade.1991.x.q8l
source Experiences with CAAD in Education and Practice [eCAADe Conference Proceedings] Munich (Germany) 17-19 October 1991
summary URBIS is a computer program built for AutoCAD environment (AutoLisp) which purpose is to help in urban planning's education and practice. Motives for program creation are: (1) Needs of education at the Faculty of Architecture of the Belgrade University. (2) Exploring the AutoCAD's capabilities in managing urban planning data bases. (3) Providing a tool for creation and manipulation of urban environment computer model. (4) Making a base for knowledge based system creation. (5) Computer based evaluation of the results of the competition "Future of New Belgrade". // The program consists of: (1) Module for model creation. (2) Module for model manipulation - remodeling. (3) Module for obtaining data from the model. // Some commands and procedures from these three modules are organized as ARCHIGAME module - a kind of game for architects. The computer model of New Belgrade was created using this program, and three remodelations were done on the model, as the test-examples.

series eCAADe
last changed 2022/06/07 07:50

_id 8658
authors Matas, Bellot
year 1991
title BECOC : A Knowledge Bank and its Use in Construction and CAD Systems
source The Computer Integrated Future, CIB W78 Seminar. September, 1991. Unnumbered : ill. include some bibliographical references
summary The Development of the BECOC prototype (Structured Knowledge Bank for Construction Elements) was undertaken in order to test the integration of Data and Knowledge using the SITEC model (Construction Technology Information System). After the graphical definition of a building exterior, the assignment of the construction solutions is dynamically controlled using the Knowledge Bank for real time decision making. To represent the knowledge that acts on the data the knowledge bank consists of an Object Oriented Data Base and a Rule System, developed using the NEXPERT/OBJECT package. In this manner it is possible to establish relationships among properties, concepts, restrictions in values, structural relations and the control of standards compliance, which in this case has been limited to thermal, acoustic and weight requirements. The system helps the user to make decisions and it analyzes the context in order to make the deductions needed to maintain internal data consistency. The positive results of this work indicate the way for further developments, and demonstrate that expert systems and traditional technologies coupled together can be effective and give the desired answers in monitoring design in the everyday problems in construction technology
keywords construction, expert systems, knowledge base, design, building, envelope, applications, integration, architecture
series CADline
last changed 2003/06/02 13:58

_id f586
authors Gabriel, G. and Maher, M.L.
year 2000
title Analysis of design communication with and without computer mediation
source Proceedings of Co-designing 2000, pp. 329-337
summary With recent developments in CAD and communication technologies, the way we visualise and communicate design representations is changing. A matter of great interest to architects, practitioners and researchers alike, is how computer technology might affect the way they think and work. The concern is not about the notion of 'support' alone, but about ensuring that computers do not disrupt the design process and collaborative activity already going on (Bannon and Schmidt, 1991). Designing new collaborative tools will then have to be guided by a better understanding of how collaborative work is accomplished and by understanding what resources the collaborators use and what hindrances they encounter in their work (Finholt et al., 1990). Designing, as a more abstract notion, is different than having a business meeting using video conferencing. In design it is more important to 'see' what is being discussed rather than 'watch' the other person(s) involved in the discussion. In other words the data being conveyed might be of more importance than the method with which it is communicated (See Kvan, 1994). Similarly, we believe that by using text instead of audio as a medium for verbal communication, verbal representations can then be recorded alongside graphical representations for later retrieval and use. In this paper we present the results of a study on collaborative design in three different environments: face-to-face (FTF), computer-mediated using video conferencing (CMCD-a), and computer-mediated using "talk by typing" (CMCD-b). The underlying aim is to establish a clearer notion of the collaborative needs of architects using computer-mediation. In turn this has the potential in assisting developers when designing new collaborative tools and in assisting designers when selecting an environment for a collaborative session.
series other
last changed 2003/04/23 15:50

_id 2c7b
authors Stenvert, Ronald
year 1993
title The Vector-drawing as a Means to Unravel Architectural Communication in the Past
doi https://doi.org/10.52842/conf.ecaade.1993.x.q9a
source [eCAADe Conference Proceedings] Eindhoven (The Netherlands) 11-13 November 1993
summary Unlike in painting, in architecture one single person never controls the whole process between conception and realization of a building. Ideas of what the building will eventually look like, have to be conveyed from patron to the actual builders, by way of drawings. Generally the architect is the key-figure in this process of communication of visual ideas. Nowadays many architects design their new buildings by using computers and Computer-Aided (Architectural) Design programs like AutoCad and VersaCAD. Just like traditional drawings, all these computer drawings are in fact vector-drawings; a collection of geometrical primitives like lines, circle segments etc. identified by the coordinates of their end points. Vector-based computer programs can not only be used to design the future, but also as a means to unravel the architectural communication in the past. However, using the computer as an analyzing tool for a better comprehension of the past is not as simple as it seems. Historical data from the past are governed by unique features of date and place. The complexity of the past combined with the straightforwardness of the computer requires a pragmatic and basic approach in which the computer acts as a catalytic agent, enabling the scholar to arrive manually at his own - computer-assisted - conclusions. From this it turns out that only a limited number of projects of a morphological kind are suited to contribute to new knowledge, acquired by the close-reading of the information gained by way of meaningful abstraction. An important problem in this respect is how to obtain the right kind of architectural information. All four major elements of the building process - architect, design, drawing and realization - have their own different and gradually shifting interpretations in the past. This goes especially for the run-of-the-mill architecture which makes up the larger part of the historical urban environment. Starting with the architect, one has to realize that only a very limited part of mainstream architecture was designed by architects. In almost all other cases the role of the patron and the actual builder exceeds that of the architect, even to the extent that they designed buildings themselves. The position of design and drawing as means of communication also changed in the past. Until the middle of the nineteenth century drawings were not the chief means of communication between architects and builders, who got the gist of the design from a model, or, encountering problems, simply asked the architect or supervisor. From the nineteenth century onwards the use of drawings became more common, but almost never represented the building entirely "as built". In 1991 I published my Ph.D. thesis: Constructing the past: computerassisted architectural-historical research: the application of image-processing using the computer and Computer-Aided Design for the study of the urban environment, illustrated by the use of treatises in seventeenth-century architecture (Utrecht 1991). Here, a reconstruction of this historical communication process will be presented on the basis of a project studying the use of the Classical orders as prescribed in various architectural treatises, compared to the use of the orders in a specific group of still existing buildings in The Netherlands dating from the late sixteenth and entire seventeenth century. Comparisons were made by using vector-drawings. Both the illustrations in the the treatises and actual buildings were "translated" into computer-drawings and then analyzed.

series eCAADe
last changed 2022/06/07 07:50

_id 00bc
authors Chen, Chen-Cheng
year 1991
title Analogical and inductive reasoning in architectural design computation
source Swiss Federal Institute of Technology, ETH Zurich
summary Computer-aided architectural design technology is now a crucial tool of modern architecture, from the viewpoint of higher productivity and better products. As technologies advance, the amount of information and knowledge that designers can apply to a project is constantly increasing. This requires development of more advanced knowledge acquisition technology to achieve higher functionality, flexibility, and efficient performance of the knowledge-based design systems in architecture. Human designers do not solve design problems from scratch, they utilize previous problem solving episodes for similar design problems as a basis for developmental decision making. This observation leads to the starting point of this research: First, we can utilize past experience to solve a new problem by detecting the similarities between the past problem and the new problem. Second, we can identify constraints and general rules implied by those similarities and the similar parts of similar situations. That is, by applying analogical and inductive reasoning we can advance the problem solving process. The main objective of this research is to establish the theory that (1) design process can be viewed as a learning process, (2) design innovation involves analogical and inductive reasoning, and (3) learning from a designer's previous design cases is necessary for the development of the next generation in a knowledge-based design system. This thesis draws upon results from several disciplines, including knowledge representation and machine learning in artificial intelligence, and knowledge acquisition in knowledge engineering, to investigate a potential design environment for future developments in computer-aided architectural design. This thesis contains three parts which correspond to the different steps of this research. Part I, discusses three different ways - problem solving, learning and creativity - of generating new thoughts based on old ones. In Part II, the problem statement of the thesis is made and a conceptual model of analogical and inductive reasoning in design is proposed. In Part III, three different methods of building design systems for solving an architectural design problem are compared rule-based, example-based, and case-based. Finally, conclusions are made based on the current implementation of the work, and possible future extensions of this research are described. It reveals new approaches for knowledge acquisition, machine learning, and knowledge-based design systems in architecture.
series thesis:PhD
email
last changed 2003/05/10 05:42

_id b04c
authors Goerger, S., Darken, R., Boyd, M., Gagnon, T., Liles, S., Sullivan, J. and Lawson, J.
year 1996
title Spatial Knowledge Acquisition from Maps and Virtual Environments in Complex Architectural Space
source Proc. 16 th Applied Behavioral Sciences Symposium, 22-23 April, U.S. Airforce Academy, Colorado Springs, CO., 1996, 6-10
summary It has often been suggested that due to its inherent spatial nature, a virtual environment (VE) might be a powerful tool for spatial knowledge acquisition of a real environment, as opposed to the use of maps or some other two-dimensional, symbolic medium. While interesting from a psychological point of view, a study of the use of a VE in lieu of a map seems nonsensical from a practical point of view. Why would the use of a VE preclude the use of a map? The more interesting investigation would be of the value added of the VE when used with a map. If the VE could be shown to substantially improve navigation performance, then there might be a case for its use as a training tool. If not, then we have to assume that maps continue to be the best spatial knowledge acquisition tool available. An experiment was conducted at the Naval Postgraduate School to determine if the use of an interactive, three-dimensional virtual environment would enhance spatial knowledge acquisition of a complex architectural space when used in conjunction with floor plan diagrams. There has been significant interest in this research area of late. Witmer, Bailey, and Knerr (1995) showed that a VE was useful in acquiring route knowledge of a complex building. Route knowledge is defined as the procedural knowledge required to successfully traverse paths between distant locations (Golledge, 1991). Configurational (or survey) knowledge is the highest level of spatial knowledge and represents a map-like internal encoding of the environment (Thorndyke, 1980). The Witmer study could not confirm if configurational knowledge was being acquired. Also, no comparison was made to a map-only condition, which we felt is the most obvious alternative. Comparisons were made only to a real world condition and a symbolic condition where the route is presented verbally.
series other
last changed 2003/04/23 15:50

_id 56d5
authors Paranandi, Murali
year 1991
title Observations on daylighting as demonstrated by the work of Alvar Aalto
source Kent State University
summary Daylight plays a dominant role in the works of Finnish architect Alvar Aalto. This thesis project investigates the role played by the natural light in his architectural works. One of the major concerns of this paper is to discover his intent behind the use of daylight, as well as to identify some of the techniques he devised to handle daylight. Literature research and physical model simulation studies have been incorporated as a method for the study. Significant works of Aalto have been surveyed. It has been observed that the use of daylight has been one of the preoccupations of Aalto since the design of Viipuri Library and Paimio Sanatorium. It was also observed that skylights play a prominent role in Aalto's architecture and that they are well developed and sophisticated devices. Some of the technical components and contributing factors of Aalto's skylights have been identified. Three case-studies were conducted through literature research and simulations. It was concluded that Aalto treats daylighting as one of the elements to embody sufficient psychological factors in man's built environment. It was discovered that the selection and the detailing of the skylights in each case has been predominantly guided by the climate, function, personal relationships, and the visual task of the individual space. Physical model simulations proved to be extremely helpful in understanding the modeling of the daylight and the spatial quality.
series thesis:MSc
email
last changed 2003/03/03 09:14

_id 673a
authors Fukuda, T., Nagahama, R. and Sasada, T.
year 1997
title Networked Interactive 3-D design System for Collaboration
doi https://doi.org/10.52842/conf.caadria.1997.429
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 429-437
summary The concept of ODE (Open Design Environment) and corresponding system were presented in 1991. Then the new concept of NODE. which is networked version of ODE. was generated to make wide area collaboration in 1994. The aim of our research is to facilitate the collaboration among the various people involved in the design process of an urban or architectural project. This includes various designers and engineers, the client and the citizens who may be affected by such a project. With the new technologies of hyper medium, network, and component architecture, we have developed NODE system and applied in practical use of the collaboration among the various people. This study emphasizes the interactive 3-D design tool of NODE which is able to make realistic and realtime presentation with interactive interface. In recent years, ProjectFolder of NODE system, which is a case including documents, plans, and tools to proceed project., is created in the World Wide Web (WWW) and makes hyper links between a 3-D object and a text, an image. and other digital data.
series CAADRIA
email
last changed 2022/06/07 07:50

_id 86c1
authors Shih, Shen-Guan
year 1991
title Case-based Representation and Adaptation in Design
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 301-312
summary By attempting to model the raw memory of experts, case-based reasoning is distinguished from traditional expert systems, which compile experts' knowledge into rules before new problems are given. A case-based reasoning system processes new problems with the most similar prior experiences available, and adapts the prior solutions to solve new problems. Case-based representation, of design knowledge utilizes the desirable features of the selected case as syntax rules to adapt the case to a new context. As a central issue of the paper, three types of adaptation aimed at topological modifications are described. The first type - casebased search - can be viewed as a localized search process. It follows the syntactical structure of the case to search for variations which provide the required functionality. Regarding the complexity of computation, it is recognized that when a context sensitive grammar is used to describe the desirable features, the search process become intractable. The second type of adaptation can be viewed as a process of self-organization, in which context-sensitive grammars play an essential role. Evaluations have to be simulated by local interaction among design primitives. The third type is called direct transduction. A case is translated directly to another structure according to its syntax by some translation functions. A direct transduction is not necessarily a composition of design operators and thus, a crosscontextual mapping is possible. As a perspective use of these adaptation methods, a CAD system which provides designers with the ability to modify the syntactical structure of a group of design elements, according to some concerned semantics, would support designers better than current CAD systems.
series CAAD Futures
last changed 1999/04/07 12:03

_id e3d1
authors Dodge, Richard
year 1998
title What a Difference a Tool Makes:The Evolution of a Computer Design Studio
doi https://doi.org/10.52842/conf.ecaade.1998.x.t4u
source Computerised Craftsmanship [eCAADe Conference Proceedings] Paris (France) 24-26 September 1998
summary What a Difference a Tool Makes : discoveries made during the evolution of the Advanced Design Studio (a.k.a. 'working drawings') at the University of Texas at Austin since the time this core course was switched to computers, when student design teams were provided with computers and required to use them for design and presentation. Covers the period from the course?s inception in 1991 to the present, during which the course has been under the continuing aegis of Professor Richard Dodge, who has taught design since 1967. Contrapuntal presentation by Professor Dodge and co-instructor and former student Marla Smith: what was done, what worked, and what went wrong. Discusses students, faculty, hardware, software, design problems assigned, and the most educational computer-related catastrophes.
series eCAADe
more http://www.paris-valdemarne.archi.fr/archive/ecaade98/html/04dodge/index.htm
last changed 2022/06/07 07:50

_id diss_hensen
id diss_hensen
authors Hensen, J.L.M.
year 1991
title On the Thermal Interaction of Building Structure and Heating and Ventilating System
source Eindhoven University of Technology
summary In this dissertation, developments in the field of building performance evaluation tools are described. The subject of these tools is the thermal interaction of building structure and heating and ventilating system. The employed technique is computer simulation of the integrated, dynamic system comprising the occupants, the building and its heating and ventilating system. With respect to buildings and the heating and ventilating systems which service them, the practical objective is ensuring thermal comfort while using an optimum amount of fuel. While defining the optimum had to be left for other workers, the issue of thermal comfort is addressed here. The conventional theory of thermal comfort in conditions characteristic for dwellings and offices assumes steady-state conditions. Yet thermal conditions in buildings are seldom steady, due to the thermal interaction between building structure, climate, occupancy, and auxiliary systems. A literature rewiew is presented regarding work on thermal comfort specifically undertaken to examine what fluctuations in indoor climate may be acceptable. From the results, assessment criteria are defined. Although its potentials reach beyond the area of Computer Aided Building Design, a description is given of building and plant energy simulation within the context of the CABD field of technology. Following an account of the present state-of-the-art, the choice for starting from an existing energy simulation environment (ESPR) is justified. The main development areas of this software platform - within the present context - are identified as: fluid flow simulation, plant simulation, and their integration with the building side of the overall problem domain. In the field of fluid flow simulation, a fluid flow network simulation module is described. The module is based on the mass balance approach, and may be operated either in standalone mode or from within the integrated building and plant energy simulation system. The program is capable of predicting pressures and mass flows in a user-defined building / plant network comprising nodes (ie building zones, plant components, etc) and connections (ie air leakages, fans, pipes, ducts, etc), when subjected to flow control (eg thermostatic valves) and / or to transient boundary conditions (eg due to wind). The modelling and simulation techniques employed to predict the dynamic behaviour of the heating and ventilating system, are elaborated. The simultaneous approach of the plant and its associated control is described. The present work involved extensions to the ESPR energy simulation environment with respect to robustness of the program, and with respect to additional plant simulation features, supported plant component models and control features. The coupling of fluid flow, plant side energy and mass, and building side energy simulation into one integrated program is described. It is this "modular-simultaneous" technique for the simulation of combined heat and fluid flow in a building / plant context, which enables an integral approach of the thermal interaction of building structure and heating and ventilating system.

A multi stage verification and validation methodology is described, and its applicability to the present work is demonstrated by a number of examples addressing each successive step of the methodology. A number of imaginary and real world case studies are described to demonstrate application of the present work both in a modelling orientated context and in a building engineering context. Then the general conclusions of the present work are summarized. Next and finally, there are recommendations towards possible future work in the areas of: theory, user interface, software structure, application, and technology transfer.

series thesis:PhD
last changed 2003/12/15 14:43

_id e573
authors McLaughlin, Sally
year 1991
title Reading Architectural Plans: A Computable Model
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 347-364
summary A fundamental aspect of the expertise of the architectural designer is the ability to assess the quality of existing and developing proposals from schematic representations such as plans, elevations and sections. In this paper I present a computable model of those aspects of the evaluation of architectural floor plans that I believe to be amenable to rule-like formulation. The objective behind the development of this model is twofold: 1) to articulate a belief about the role of simple symbolic representations in the task of evaluation, a task which relies primarily on uniquely human capabilities; and 2) to explore the possible uses of such representations in the development of design expertise. // Input to the model consists of a specification of a design proposal in terms of walls, doors, windows, openings and spaces together with a specification of the context in which the proposal has been developed. Information about context is used to retrieve the goal packages relevant to the evaluation of the proposal. The goal packages encode information about requirements such as circulation, visual privacy and thermal performance. Generic associations between aspects of a plan and individual goals are used to establish if and how each of the goals have been achieved in the given proposal. These associations formalize relationships between aspects of the topology of the artefact, such as the existence of a door between two rooms, and a goal, in this case the goal of achieving circulation between those two rooms. Output from the model consists of both a graphic representation of the way in which goals are achieved and a list of those goals that have not been achieved. The list of goals not achieved provides a means of accessing appropriate design recommendations. What the model provides is essentially a computational tool for exploring the value judgements made in a particular proposal given a set of predefined requirements such as those to be found in design recommendation literature.
series CAAD Futures
last changed 1999/04/07 12:03

_id ca50
authors Ayrle, Hartmut
year 1991
title XNET2 - Methodical Design of Local Area Networks in Buildings - An Application of the A4 Intelligent Design Tool
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 443-450
summary XNET2 is a prototype program, that helps network planners to design Ethernet-conform data-networks for sites and buildings. It is implemented as an example application of the ARMILLA4 Intelligent Design Tool under Knowledge Craft. It is based on a knowledge acquisition phase with experts from DECsite, the network-branch of DEC. The ARMILLA Design Tool is developed on the basis of Fritz Haller's ARMILLA ' a set of geometrical and operational rules for the integration of technical ductwork into a building's construction.
series CAAD Futures
last changed 2003/11/21 15:16

_id 68c8
authors Flemming, U., Coyne, R. and Fenves, S. (et al.)
year 1994
title SEED: A Software Environment to Support the Early Phases in Building Design
source Proceeding of IKM '94, Weimar, Germany, pp. 5-10
summary The SEED project intends to develop a software environment that supports the early phases in building design (Flemming et al., 1993). The goal is to provide support, in principle, for the preliminary design of buildings in all aspects that can gain from computer support. This includes using the computer not only for analysis and evaluation, but also more actively for the generation of designs, or more accurately, for the rapid generation of design representations. A major motivation for the development of SEED is to bring the results of two multi-generational research efforts focusing on `generative' design systems closer to practice: 1. LOOS/ABLOOS, a generative system for the synthesis of layouts of rectangles (Flemming et al., 1988; Flemming, 1989; Coyne and Flemming, 1990; Coyne, 1991); 2. GENESIS, a rule-based system that supports the generation of assemblies of 3-dimensional solids (Heisserman, 1991; Heisserman and Woodbury, 1993). The rapid generation of design representations can take advantage of special opportunities when it deals with a recurring building type, that is, a building type dealt with frequently by the users of the system. Design firms - from housing manufacturers to government agencies - accumulate considerable experience with recurring building types. But current CAD systems capture this experience and support its reuse only marginally. SEED intends to provide systematic support for the storing and retrieval of past solutions and their adaptation to similar problem situations. This motivation aligns aspects of SEED closely with current work in Artificial Intelligence that focuses on case-based design (see, for example, Kolodner, 1991; Domeshek and Kolodner, 1992; Hua et al., 1992).
series other
email
last changed 2003/04/23 15:14

_id 0d72
authors Millet, M.S., Hildebrand, G., Cohan, P. and Read, M.
year 1991
title ArchiMedia Case Studies: Integrative Architectural Education
doi https://doi.org/10.52842/conf.acadia.1991.127
source Reality and Virtual Reality [ACADIA Conference Proceedings / ISBN 1-880250-00-4] Los Angeles (California - USA) October 1991, pp. 127-134
summary Few people would argue that architectural education, ideally a complex holistic experience, completely integrates the many aspects and concerns that contribute to the design and realization of a building. This is hardly surprising given the vast array of information that architecture schools with limited resources attempt to present to students within constricted time frames. One may argue that in attempting to approach such a holistic educational goal, representations of reality on a computer screen are no more useful or provocative than conventional communication devices: slides, photographs, drawings, the spoken and printed word, moving pictures (film, video), and various combinations of all of these. The opportunities offered by computer-driven multimedia presentations, however, lie in the speed and relevance of connections made between associated ideas in various media formats. In particular, a multimedia presentation, if carefully authored and developed, can provide a wide range of interactive information gathering pathways. The approach called ArchiMedia offers a means for presenting a wide variety of information about a range of building types in an interactive format with the goal of supporting the creative and practical processes of communication among teachers and students.
series ACADIA
last changed 2022/06/07 07:59

_id ga0010
id ga0010
authors Moroni, A., Zuben, F. Von and Manzolli, J.
year 2000
title ArTbitrariness in Music
source International Conference on Generative Art
summary Evolution is now considered not only powerful enough to bring about the biological entities as complex as humans and conciousness, but also useful in simulation to create algorithms and structures of higher levels of complexity than could easily be built by design. In the context of artistic domains, the process of human-machine interaction is analyzed as a good framework to explore creativity and to produce results that could not be obtained without this interaction. When evolutionary computation and other computational intelligence methodologies are involved, every attempt to improve aesthetic judgement we denote as ArTbitrariness, and is interpreted as an interactive iterative optimization process. ArTbitrariness is also suggested as an effective way to produce art through an efficient manipulation of information and a proper use of computational creativity to increase the complexity of the results without neglecting the aesthetic aspects [Moroni et al., 2000]. Our emphasis will be in an approach to interactive music composition. The problem of computer generation of musical material has received extensive attention and a subclass of the field of algorithmic composition includes those applications which use the computer as something in between an instrument, in which a user "plays" through the application's interface, and a compositional aid, which a user experiments with in order to generate stimulating and varying musical material. This approach was adopted in Vox Populi, a hybrid made up of an instrument and a compositional environment. Differently from other systems found in genetic algorithms or evolutionary computation, in which people have to listen to and judge the musical items, Vox Populi uses the computer and the mouse as real-time music controllers, acting as a new interactive computer-based musical instrument. The interface is designed to be flexible for the user to modify the music being generated. It explores evolutionary computation in the context of algorithmic composition and provides a graphical interface that allows to modify the tonal center and the voice range, changing the evolution of the music by using the mouse[Moroni et al., 1999]. A piece of music consists of several sets of musical material manipulated and exposed to the listener, for example pitches, harmonies, rhythms, timbres, etc. They are composed of a finite number of elements and basically, the aim of a composer is to organize those elements in an esthetic way. Modeling a piece as a dynamic system implies a view in which the composer draws trajectories or orbits using the elements of each set [Manzolli, 1991]. Nonlinear iterative mappings are associated with interface controls. In the next page two examples of nonlinear iterative mappings with their resulting musical pieces are shown.The mappings may give rise to attractors, defined as geometric figures that represent the set of stationary states of a non-linear dynamic system, or simply trajectories to which the system is attracted. The relevance of this approach goes beyond music applications per se. Computer music systems that are built on the basis of a solid theory can be coherently embedded into multimedia environments. The richness and specialty of the music domain are likely to initiate new thinking and ideas, which will have an impact on areas such as knowledge representation and planning, and on the design of visual formalisms and human-computer interfaces in general. Above and bellow, Vox Populi interface is depicted, showing two nonlinear iterative mappings with their resulting musical pieces. References [Manzolli, 1991] J. Manzolli. Harmonic Strange Attractors, CEM BULLETIN, Vol. 2, No. 2, 4 -- 7, 1991. [Moroni et al., 1999] Moroni, J. Manzolli, F. Von Zuben, R. Gudwin. Evolutionary Computation applied to Algorithmic Composition, Proceedings of CEC99 - IEEE International Conference on Evolutionary Computation, Washington D. C., p. 807 -- 811,1999. [Moroni et al., 2000] Moroni, A., Von Zuben, F. and Manzolli, J. ArTbitration, Las Vegas, USA: Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program – GECCO, 143 -- 145, 2000.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 11HOMELOGIN (you are user _anon_618230 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002