CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 2 of 2

_id ed4a
authors Kalisperis, Loukas N. and Groninger, Randal L.
year 1992
title Design Philosophy: Implications for Computer Integration in the Practice of Architecture
doi https://doi.org/10.52842/conf.acadia.1992.027
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 27-37
summary The growing complexities of modern environments and the socioeconomic pressures to maintain efficient design/build cycles have forced architects to seek new tools and methods to help them manage the processes that have developed as a result of new knowledge in architectural design. This trend has accelerated in the past few decades because of developments in both cognitive and computer sciences. In allied disciplines, the introduction and use of comPuters have significantly improved design practices. Yet at best, in disciplines such as architectural design, computational aids have attained marginal improvements in the design process despite efforts by universities in the professional education of architects.
series ACADIA
email
last changed 2022/06/07 07:52

_id e7c8
authors Kalisperis, Loukas N., Steinman, Mitch and Summers, Luis H.
year 1992
title Design Knowledge, Environmental Complexity in Nonorthogonal Space
source New York: John Wiley & Sons, 1992. pp. 273-291 : ill. includes bibliography
summary Mechanization and industrialization of society has resulted in most people spending the greater part of their lives in enclosed environments. Optimal design of indoor artificial climates is therefore of increasing importance. Wherever artificial climates are created for human occupation, the aim is that the environment be designed so that individuals are in thermal comfort. Current design methodologies for radiant panel heating systems do not adequately account for the complexities of human thermal comfort, because they monitor air temperature alone and do not account for thermal neutrality in complex enclosures. Thermal comfort for a person is defined as that condition of mind which expresses satisfaction with the thermal environment. Thermal comfort is dependent on Mean Radiant Temperature and Operative Temperature among other factors. In designing artificial climates for human occupancy the interaction of the human with the heated surfaces as well the surface-to-surface heat exchange must be accounted for. Early work in the area provided an elaborate and difficult method for calculating radiant heat exchange for simplistic and orthogonal enclosures. A new improved method developed by the authors for designing radiant panel heating systems based on human thermal comfort and mean radiant temperature is presented. Through automation and elaboration this method overcomes the limitations of the early work. The design procedure accounts for human thermal comfort in nonorthogonal as well as orthogonal spaces based on mean radiant temperature prediction. The limitation of simplistic orthogonal geometries has been overcome with the introduction of the MRT-Correction method and inclined surface-to-person shape factor methodology. The new design method increases the accuracy of calculation and prediction of human thermal comfort and will allow designers to simulate complex enclosures utilizing the latest design knowledge of radiant heat exchange to increase human thermal comfort
keywords applications, architecture, building, energy, systems, design, knowledge
series CADline
last changed 2003/06/02 10:24

No more hits.

HOMELOGIN (you are user _anon_154291 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002