CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 7 of 7

_id ddss9201
id ddss9201
authors Van Bakel, A.P.M.
year 1993
title Personality assessment in regard to design strategies
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary This paper discusses some preliminary results of several knowledge-acquisition and documentation-structuring techniques that were used to assess the working styles of architects. The focus of this assessment was on their strategic design behaviour. Hettema's Interactive Personality Model (Hettema 1979, 1989) was used to explain and interpret these results. The methods used to acquire the necessary data are protocol analysis, card sorting and interviews. The results suggest that at least three parameters can be used to explain and differentiate the strategic design behaviour of architects. These parameters are S (site-oriented), B (brief-oriented) and C (concept-oriented). A priority hierarchy of these parameters reveals six major distinguishable working styles. These results are captured in a new design model that can be used in data bank implementations.
series DDSS
last changed 2003/08/07 16:36

_id 0ca0
authors Späti, Jürg and Van Zutphen, R.H.M.
year 1992
title Form And Performance in Design Education (Basic Architectural Unit 5)
doi https://doi.org/10.52842/conf.ecaade.1992.535
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 535-542
summary There are some fundamental issues in todays architectural education which seem important yet very hard to achieve. One of this issues is the interdependence between design and technology. There is one group in architectural education which beliefs that the question of how to conceive (arch.) and how to construct (arch.) are interdependent. Consequently in this line of thinking the design concept requires verification on a technological level. The second issue which has often been debated is performance. Related to it is a line of thinking which is not satisfied with the formal issues of design - and how it looks, but wants to carry design to point where you also know - what it does and with it how much it costs. Cost-consciousness is the final issue addressed. We all know that there are limits to what a school can do or what a school can be. And, there is an essential difference between practise and education. Yet at the same time the argument is that only consciousness is required thus leading to the basic understanding that form performance and costs are interrelated and interdependent issues in architectural design.

series eCAADe
email
last changed 2022/06/07 07:56

_id b4c4
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 2000
title A framework for an Architectural Collaborative Design
doi https://doi.org/10.52842/conf.ecaade.2000.057
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 57-60
summary The building industry involves a larger number of disciplines, operators and professionals than other industrial processes. Its peculiarity is that the products (building objects) have a number of parts (building elements) that does not differ much from the number of classes into which building objects can be conceptually subdivided. Another important characteristic is that the building industry produces unique products (de Vries and van Zutphen, 1992). This is not an isolated situation but indeed one that is spreading also in other industrial fields. For example, production niches have proved successful in the automotive and computer industries (Carrara, Fioravanti, & Novembri, 1989). Building design is a complex multi-disciplinary process, which demands a high degree of co-ordination and co-operation among separate teams, each having its own specific knowledge and its own set of specific design tools. Establishing an environment for design tool integration is a prerequisite for network-based distributed work. It was attempted to solve the problem of efficient, user-friendly, and fast information exchange among operators by treating it simply as an exchange of data. But the failure of IGES, CGM, PHIGS confirms that data have different meanings and importance in different contexts. The STandard for Exchange of Product data, ISO 10303 Part 106 BCCM, relating to AEC field (Wix, 1997), seems to be too complex to be applied to professional studios. Moreover its structure is too deep and the conceptual classifications based on it do not allow multi-inheritance (Ekholm, 1996). From now on we shall adopt the BCCM semantic that defines the actor as "a functional participant in building construction"; and we shall define designer as "every member of the class formed by designers" (architects, engineers, town-planners, construction managers, etc.).
keywords Architectural Design Process, Collaborative Design, Knowledge Engineering, Dynamic Object Oriented Programming
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id ddss9207
id ddss9207
authors Gauchel, J., Hovestadt, L., van Wyk, S. and Bhat, R.R.
year 1993
title Modular building models
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary The development and implementation of a modular building model appropriate for computer aided design is described. The limitations of a unified building model with regard to concurrence and complexity in design is discussed. Current research suggests that to model real-world complexity, one must trade centralized control for autonomy. In this paper we develop a modular approach to building modelling that is based on object-oriented autonomy and makes it possible to define these models in a distributed concurrent manner. Such a modular and autonomous implementation brings inherent uncertainty and conflict which cannot be determined a priori.
series DDSS
last changed 2003/08/07 16:36

_id ddss9204
id ddss9204
authors Pullen, W.R., Wassenaar, C.L.G., van Heti'ema, I., Dekkers, J.T., Janszen, I., Boender, C.G.E., Tas, A. and Stegeman, H.
year 1993
title A decision support system for housing of (public) organizations
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary In this paper we present a hierarchical decision support system for the allocation of organisations to available buildings, and for the allocation of employees of an organisation to the work units of a building. For both allocation problems a mathematical model and optimisation algorithm is developed, taking into account the relevant criteria, such as the extent to which the allocated floorspace is in accordance with the standards, and the extent to which departments are housed in connecting zones of a building. The decision support system is illustrated by two practical applications.
series DDSS
last changed 2003/08/07 16:36

_id 831d
authors Seebohm, Thomas
year 1992
title Discoursing on Urban History Through Structured Typologies
doi https://doi.org/10.52842/conf.acadia.1992.157
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 157-175
summary How can urban history be studied with the aid of three-dimensional computer modeling? One way is to model known cities at various times in history, using historical records as sources of data. While such studies greatly enhance the understanding of the form and structure of specific cities at specific points in time, it is questionable whether such studies actually provide a true understanding of history. It can be argued that they do not because such studies only show a record of one of many possible courses of action at various moments in time. To gain a true understanding of urban history one has to place oneself back in historical time to consider all of the possible courses of action which were open in the light of the then current situation of the city, to act upon a possible course of action and to view the consequences in the physical form of the city. Only such an understanding of urban history can transcend the memory of the actual and hence the behavior of the possible. Moreover, only such an understanding can overcome the limitations of historical relativism, which contends that historical fact is of value only in historical context, with the realization, due to Benedetto Croce and echoed by Rudolf Bultmann, that the horizon of "'deeper understanding" lies in "'the actuality of decision"' (Seebohm and van Pelt 1990).

One cannot conduct such studies on real cities except, perhaps, as a point of departure at some specific point in time to provide an initial layout for a city knowing that future forms derived by the studies will diverge from that recorded in history. An entirely imaginary city is therefore chosen. Although the components of this city at the level of individual buildings are taken from known cities in history, this choice does not preclude alternative forms of the city. To some degree, building types are invariants and, as argued in the Appendix, so are the urban typologies into which they may be grouped. In this imaginary city students of urban history play the role of citizens or groups of citizens. As they defend their interests and make concessions, while interacting with each other in their respective roles, they determine the nature of the city as it evolves through the major periods of Western urban history in the form of threedimensional computer models.

My colleague R.J. van Pelt and I presented this approach to the study of urban history previously at ACADIA (Seebohm and van Pelt 1990). Yet we did not pay sufficient attention to the manner in which such urban models should be structured and how the efforts of the participants should be coordinated. In the following sections I therefore review what the requirements are for three-dimensional modeling to support studies in urban history as outlined both from the viewpoint of file structure of the models and other viewpoints which have bearing on this structure. Three alternative software schemes of progressively increasing complexity are then discussed with regard to their ability to satisfy these requirements. This comparative study of software alternatives and their corresponding file structures justifies the present choice of structure in relation to the simpler and better known generic alternatives which do not have the necessary flexibility for structuring the urban model. Such flexibility means, of course, that in the first instance the modeling software is more timeconsuming to learn than a simple point and click package in accord with the now established axiom that ease of learning software tools is inversely related to the functional power of the tools. (Smith 1987).

series ACADIA
email
last changed 2022/06/07 07:56

_id 58c5
authors Van Wezel, Ruud
year 1992
title MOCK-UP SYSTEM WAGENINGEN: DEVELOPMENT, LIMITATION AND FUTURE
source Proceedings of the 4rd European Full-Scale Modelling Conference / Lausanne (Switzerland) 9-12 September 1992, Part A, pp. 15-18
summary A brief description of the development of the Mock-up System (MUS) in the context of the Wageningen training program. The students are first taught some keywords in understanding of the building process. They are then trained to express how they want to live (theory) and later on they confront themselves with what they have built in the MUS (practice) . Besides being an educational tool, the MUS is used for pre-building evaluation and research questions. The drawbacks or limitations of the system (outdoor reality versus indoor simulation) and future use by different target groups are also discussed in this paper. The power of the MUS is, and will continue to be, the concrete building of communicational results and the generation of communication by doing so.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 15:30

No more hits.

HOMELOGIN (you are user _anon_57034 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002