CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 242

_id caadria2004_k-1
id caadria2004_k-1
authors Kalay, Yehuda E.
year 2004
title CONTEXTUALIZATION AND EMBODIMENT IN CYBERSPACE
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 5-14
doi https://doi.org/10.52842/conf.caadria.2004.005
summary The introduction of VRML (Virtual Reality Markup Language) in 1994, and other similar web-enabled dynamic modeling software (such as SGI’s Open Inventor and WebSpace), have created a rush to develop on-line 3D virtual environments, with purposes ranging from art, to entertainment, to shopping, to culture and education. Some developers took their cues from the science fiction literature of Gibson (1984), Stephenson (1992), and others. Many were web-extensions to single-player video games. But most were created as a direct extension to our new-found ability to digitally model 3D spaces and to endow them with interactive control and pseudo-inhabitation. Surprisingly, this technologically-driven stampede paid little attention to the core principles of place-making and presence, derived from architecture and cognitive science, respectively: two principles that could and should inform the essence of the virtual place experience and help steer its development. Why are the principles of place-making and presence important for the development of virtual environments? Why not simply be content with our ability to create realistically-looking 3D worlds that we can visit remotely? What could we possibly learn about making these worlds better, had we understood the essence of place and presence? To answer these questions we cannot look at place-making (both physical and virtual) from a 3D space-making point of view alone, because places are not an end unto themselves. Rather, places must be considered a locus of contextualization and embodiment that ground human activities and give them meaning. In doing so, places acquire a meaning of their own, which facilitates, improves, and enriches many aspects of our lives. They provide us with a means to interpret the activities of others and to direct our own actions. Such meaning is comprised of the social and cultural conceptions and behaviors imprinted on the environment by the presence and activities of its inhabitants, who in turn, ‘read’ by them through their own corporeal embodiment of the same environment. This transactional relationship between the physical aspects of an environment, its social/cultural context, and our own embodiment of it, combine to create what is known as a sense of place: the psychological, physical, social, and cultural framework that helps us interpret the world around us, and directs our own behavior in it. In turn, it is our own (as well as others’) presence in that environment that gives it meaning, and shapes its social/cultural character. By understanding the essence of place-ness in general, and in cyberspace in particular, we can create virtual places that can better support Internet-based activities, and make them equal to, in some cases even better than their physical counterparts. One of the activities that stands to benefit most from understanding the concept of cyber-places is learning—an interpersonal activity that requires the co-presence of others (a teacher and/or fellow learners), who can point out the difference between what matters and what does not, and produce an emotional involvement that helps students learn. Thus, while many administrators and educators rush to develop webbased remote learning sites, to leverage the economic advantages of one-tomany learning modalities, these sites deprive learners of the contextualization and embodiment inherent in brick-and-mortar learning institutions, and which are needed to support the activity of learning. Can these qualities be achieved in virtual learning environments? If so, how? These are some of the questions this talk will try to answer by presenting a virtual place-making methodology and its experimental implementation, intended to create a sense of place through contextualization and embodiment in virtual learning environments.
series CAADRIA
type normal paper
last changed 2022/06/07 07:52

_id a3f5
authors Zandi-Nia, Abolfazl
year 1992
title Topgene: An artificial Intelligence Approach to a Design Process
source Delft University of Technology
summary This work deals with two architectural design (AD) problems at the topological level and in presence of the social norms community, privacy, circulation-cost, and intervening opportunity. The first problem concerns generating a design with respect to a set of above mentioned norms, and the second problem requires evaluation of existing designs with respect to the same set of norms. Both problems are based on the structural-behavioral relationship in buildings. This work has challenged above problems in the following senses: (1) A working system, called TOPGENE (The TOpological Pattern GENErator) has been developed. (2) Both problems may be vague and may lack enough information in their statement. For example, an AD in the presence of the social norms requires the degrees of interactions between the location pairs in the building. This information is not always implicitly available, and must be explicated from the design data. (3) An AD problem at topological level is intractable with no fast and efficient algorithm for its solution. To reduce the search efforts in the process of design generation, TOPGENE uses a heuristic hill climbing strategy that takes advantage of domain specific rules of thumbs to choose a path in the search space of a design. (4) TOPGENE uses the Q-analysis method for explication of hidden information, also hierarchical clustering of location-pairs with respect to their flow generation potential as a prerequisite information for the heuristic reasoning process. (5) To deal with a design of a building at topological level TOPGENE takes advantage of existing graph algorithms such as path-finding and planarity testing during its reasoning process. This work also presents a new efficient algorithm for keeping track of distances in a growing graph. (6) This work also presents a neural net implementation of a special case of the design generation problem. This approach is based on the Hopfield model of neural networks. The result of this approach has been used test TOPGENE approach in generating designs. A comparison of these two approaches shows that the neural network provides mathematically more optimal designs, while TOPGENE produces more realistic designs. These two systems may be integrated to create a hybrid system.
series thesis:PhD
last changed 2003/02/12 22:37

_id b4c4
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 2000
title A framework for an Architectural Collaborative Design
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 57-60
doi https://doi.org/10.52842/conf.ecaade.2000.057
summary The building industry involves a larger number of disciplines, operators and professionals than other industrial processes. Its peculiarity is that the products (building objects) have a number of parts (building elements) that does not differ much from the number of classes into which building objects can be conceptually subdivided. Another important characteristic is that the building industry produces unique products (de Vries and van Zutphen, 1992). This is not an isolated situation but indeed one that is spreading also in other industrial fields. For example, production niches have proved successful in the automotive and computer industries (Carrara, Fioravanti, & Novembri, 1989). Building design is a complex multi-disciplinary process, which demands a high degree of co-ordination and co-operation among separate teams, each having its own specific knowledge and its own set of specific design tools. Establishing an environment for design tool integration is a prerequisite for network-based distributed work. It was attempted to solve the problem of efficient, user-friendly, and fast information exchange among operators by treating it simply as an exchange of data. But the failure of IGES, CGM, PHIGS confirms that data have different meanings and importance in different contexts. The STandard for Exchange of Product data, ISO 10303 Part 106 BCCM, relating to AEC field (Wix, 1997), seems to be too complex to be applied to professional studios. Moreover its structure is too deep and the conceptual classifications based on it do not allow multi-inheritance (Ekholm, 1996). From now on we shall adopt the BCCM semantic that defines the actor as "a functional participant in building construction"; and we shall define designer as "every member of the class formed by designers" (architects, engineers, town-planners, construction managers, etc.).
keywords Architectural Design Process, Collaborative Design, Knowledge Engineering, Dynamic Object Oriented Programming
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id 91c4
authors Checkland, P.
year 1981
title Systems Thinking, Systems Practice
source John Wiley & Sons, Chichester
summary Whether by design, accident or merely synchronicity, Checkland appears to have developed a habit of writing seminal publications near the start of each decade which establish the basis and framework for systems methodology research for that decade."" Hamish Rennie, Journal of the Operational Research Society, 1992 Thirty years ago Peter Checkland set out to test whether the Systems Engineering (SE) approach, highly successful in technical problems, could be used by managers coping with the unfolding complexities of organizational life. The straightforward transfer of SE to the broader situations of management was not possible, but by insisting on a combination of systems thinking strongly linked to real-world practice Checkland and his collaborators developed an alternative approach - Soft Systems Methodology (SSM) - which enables managers of all kinds and at any level to deal with the subtleties and confusions of the situations they face. This work established the now accepted distinction between hard systems thinking, in which parts of the world are taken to be systems which can be engineered, and soft systems thinking in which the focus is on making sure the process of inquiry into real-world complexity is itself a system for learning. Systems Thinking, Systems Practice (1981) and Soft Systems Methodology in Action (1990) together with an earlier paper Towards a Systems-based Methodology for Real-World Problem Solving (1972) have long been recognized as classics in the field. Now Peter Checkland has looked back over the three decades of SSM development, brought the account of it up to date, and reflected on the whole evolutionary process which has produced a mature SSM. SSM: A 30-Year Retrospective, here included with Systems Thinking, Systems Practice closes a chapter on what is undoubtedly the most significant single research programme on the use of systems ideas in problem solving. Now retired from full-time university work, Peter Checkland continues his research as a Leverhulme Emeritus Fellow. "
series other
last changed 2003/04/23 15:14

_id ddss9209
id ddss9209
authors De Gelder, J.T. and Lucardie, G.L.
year 1993
title Knowledge and data modelling in cad/cam applications
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary Modelling knowledge and data in CAD/CAM applications is complex because different goals and contexts have to be taken into account. This complexity makes particular demands upon representation formalisms. Today many modelling tools are based on record structures. By analyzing the requirements for a product model of a portal structure in steel, this paper shows that in many situations record structures are not well suited as a representation formalism for storing knowledge and data in CAD/CAM applications. This is illustrated by performing a knowledge-level analysis of the knowledge and data generated in the design and manufacturing process of a portal structure in steel.
series DDSS
last changed 2003/08/07 16:36

_id e412
authors Fargas, Josep and Papazian, Pegor
year 1992
title Modeling Regulations and Intentions for Urban Development: The Role of Computer Simulation in the Urban Design Studio
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 201-212
doi https://doi.org/10.52842/conf.ecaade.1992.201
summary In this paper we present a strategy for modeling urban development in order to study the role of urban regulations and policies in the transformation of cities. We also suggest a methodology for using computer models as experimental tools in the urban design studio in order to make explicit the factors involved in shaping cities, and for the automatic visualization of projected development. The structure of the proposed model is based on different modules which represent, on the one hand, the rules regulating the physical growth of a city and, on the other hand, heuristics corresponding to different interests such as Real Estate Developers, City Hall Planners, Advocacy and Community Groups, and so on. Here we present a case study dealing with the Boston Redevelopment Authority zoning code for the Midtown Cultural District of Boston. We introduce a computer program which develops the district, adopting a particular point of view regarding urban regulation. We then generalize the notion of this type of computer modeling and simulation, and draw some conclusions about its possible uses in the teaching and practice of design.
series eCAADe
email
last changed 2022/06/07 07:55

_id 4129
authors Fargas, Josep and Papazian, Pegor
year 1992
title Metaphors in Design: An Experiment with a Frame, Two Lines and Two Rectangles
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 13-22
doi https://doi.org/10.52842/conf.acadia.1992.013
summary The research we will discuss below originated from an attempt to examine the capacity of designers to evaluate an artifact, and to study the feasibility of replicating a designer's moves intended to make an artifact more expressive of a given quality. We will present the results of an interactive computer experiment, first developed at the MIT Design Research Seminar, which is meant to capture the subject’s actions in a simple design task as a series of successive "moves"'. We will propose that designers use metaphors in their interaction with design artifacts and we will argue that the concept of metaphors can lead to a powerful theory of design activity. Finally, we will show how such a theory can drive the project of building a design system.

When trying to understand how designers work, it is tempting to examine design products in order to come up with the principles or norms behind them. The problem with such an approach is that it may lead to a purely syntactical analysis of design artifacts, failing to capture the knowledge of the designer in an explicit way, and ignoring the interaction between the designer and the evolving design. We will present a theory about design activity based on the observation that knowledge is brought into play during a design task by a process of interpretation of the design document. By treating an evolving design in terms of the meanings and rules proper to a given way of seeing, a designer can reduce the complexity of a task by focusing on certain of its aspects, and can manipulate abstract elements in a meaningful way.

series ACADIA
email
last changed 2022/06/07 07:55

_id eda3
authors Goldschmidt, Gabriela
year 1992
title Criteria for Design Evaluation : A Process-Oriented Paradigm
source New York: John Wiley & Sons, 1992. pp. 67-79. includes bibliography
summary Architectural research of the last two or three decades has been largely devoted to design methodology. Systematic evaluations of design products and prescription of their desired qualities led to specifications for better designs and possible routines to achieve them. Computers have facilitated this task. The human designer, however, has largely resisted the use of innovative methods. In this paper the author claims that the reason for that lies in insufficient regard for innate cognitive aptitudes which are activated in the process of designing. A view of these aptitudes, based on patterns of links among design moves, is presented. It is proposed that process research is mandatory for further advancements in design research utility
keywords cognition, design process, research, protocol analysis, architecture
series CADline
last changed 1999/02/12 15:08

_id a081
authors Greenberg S., Roseman M. and Webster, D.
year 1992
title Issues and Experiences Designing and Implementing Two Group Drawing Tools
source Readings in Groupware, 609-620
summary Groupware designers are now developing multi-user equivalents of popular paint and draw applications. Their job is not an easy one. First, human factors issues peculiar to group interaction appear that, if ignored, seriously limit the usability of the group tool. Second, implementation is fraught with considerable hurdles. This paper describes the issues and experiences we have met and handled in the design of two systems supporting remote real time group interaction: GroupSketch, a multi-user sketchpad; and GroupDraw, an object-based multi-user draw package. On the human factors side, we summarize empirically-derived design principles that we believe are critical to building useful and usable collaborative drawing tools. On the implementation side, we describe our experiences with replicated versus centralized architectures, schemes for participant registration, multiple cursors, network requirements, and the structure of the drawing primitives.
series other
last changed 2003/04/23 15:50

_id 6e99
authors Hoffer, Erin Rae
year 1992
title Creating the Electronic Design Studio: Development of a Heterogeneous Networked Environment at Harvard's Graduate School of Design
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 225-240
doi https://doi.org/10.52842/conf.ecaade.1992.225
summary The migration of design education to reliance on computer-based techniques requires new ways of thinking about environments which can effectively support a diverse set of activities. Both from a spatial standpoint and a computing resource standpoint, design studios must be inevitably reconfigured to support new tools and reflect new ways of communicating. At Harvard's GSD, a commitment to incorporating computer literacy as a fundamental component of design education enables us to confront these issues through the implementation of a heterogeneous network imbedded in an electronic design environment. This evolving prototype of a new design studio, its development and its potential, will be the subject of this paper. A new style design environment is built upon an understanding of traditional techniques, and layered with an awareness of new tools and methods. Initially we borrow from existing metaphors which govern our interpretation of the way designers work. Next we seek to extend our thinking to include allied or related metaphors such as the library metaphor which informs collections of software and data, or the laboratory metaphor which informs workspace groupings, or the transportation metaphor which informs computer-based communications such as electronic mail or bulletin boards, or the utility services metaphor which informs the provision of network services and equipment. Our evaluation of this environment is based on direct feedback from its users, both faculty and students, and on subjective observation of the qualitative changes in communication which occur between and among these groups and individuals. Ultimately, the network must be judged as a framework for learning and evaluation, and its success depends both on its ability to absorb our existing metaphors for the process of design, and to prefigure the emerging metaphors to be envisioned in the future.

series eCAADe
last changed 2022/06/07 07:50

_id cc2f
authors Jog, Bharati
year 1992
title Evaluation of Designs for Energy Performance Using A Knowledge-Based System
source New York: John Wiley & Sons, 1992. pp. 293-304 : ill. includes a bibliography
summary Principles of knowledge-based (or expert) systems have been applied in different knowledge-rich domains such as geology, medicine, and very large scale integrated circuits (VLSI). There have been some efforts to develop expert systems for evaluation and prediction of architectural designs in this decade. This paper presents a prototype system, Energy Expert, which quickly computes the approximate yearly energy performance of a building design, analyzes the energy performance, and gives advice on possible ways of improving the design. These modifications are intended to make the building more energy efficient and help cut down on heating and cooling costs. The system is designed for the schematic design phase of an architectural project. Also discussed briefly is the reasoning behind developing such a system for the schematic design rather than the final design phase
keywords expert systems, energy, evaluation, performance, knowledge base, architecture, reasoning, programming, prediction
series CADline
last changed 1999/02/12 15:08

_id e7c8
authors Kalisperis, Loukas N., Steinman, Mitch and Summers, Luis H.
year 1992
title Design Knowledge, Environmental Complexity in Nonorthogonal Space
source New York: John Wiley & Sons, 1992. pp. 273-291 : ill. includes bibliography
summary Mechanization and industrialization of society has resulted in most people spending the greater part of their lives in enclosed environments. Optimal design of indoor artificial climates is therefore of increasing importance. Wherever artificial climates are created for human occupation, the aim is that the environment be designed so that individuals are in thermal comfort. Current design methodologies for radiant panel heating systems do not adequately account for the complexities of human thermal comfort, because they monitor air temperature alone and do not account for thermal neutrality in complex enclosures. Thermal comfort for a person is defined as that condition of mind which expresses satisfaction with the thermal environment. Thermal comfort is dependent on Mean Radiant Temperature and Operative Temperature among other factors. In designing artificial climates for human occupancy the interaction of the human with the heated surfaces as well the surface-to-surface heat exchange must be accounted for. Early work in the area provided an elaborate and difficult method for calculating radiant heat exchange for simplistic and orthogonal enclosures. A new improved method developed by the authors for designing radiant panel heating systems based on human thermal comfort and mean radiant temperature is presented. Through automation and elaboration this method overcomes the limitations of the early work. The design procedure accounts for human thermal comfort in nonorthogonal as well as orthogonal spaces based on mean radiant temperature prediction. The limitation of simplistic orthogonal geometries has been overcome with the introduction of the MRT-Correction method and inclined surface-to-person shape factor methodology. The new design method increases the accuracy of calculation and prediction of human thermal comfort and will allow designers to simulate complex enclosures utilizing the latest design knowledge of radiant heat exchange to increase human thermal comfort
keywords applications, architecture, building, energy, systems, design, knowledge
series CADline
last changed 2003/06/02 10:24

_id caadria2014_071
id caadria2014_071
authors Li, Lezhi; Renyuan Hu, Meng Yao, Guangwei Huang and Ziyu Tong
year 2014
title Sculpting the Space: A Circulation Based Approach to Generative Design in a Multi-Agent System
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 565–574
doi https://doi.org/10.52842/conf.caadria.2014.565
summary This paper discusses an MAS (multiagent system) based approach to generating architectural spaces that afford better modes of human movement. To achieve this, a pedestrian simulation is carried out to record the data with regard to human spatial experience during the walking process. Unlike common practices of performance oriented generation where final results are achieved through cycles of simulation and comparison, what we propose here is to let human’s movement exert direct influence on space. We made this possible by asking "humans" to project simulation data on architectural surroundings, and thus cause the layout to change for the purpose of affording what we designate as good spatial experiences. A generation experiment of an exhibition space is implemented to explore this approach, in which tentative rules of such spatial manipulation are proposed and tested through space syntax analyse. As the results suggested, by looking at spatial layouts through a lens of human behaviour, this projection-and-generation method provides some insight into space qualities that other methods could not have offered.
keywords Performance oriented generative design; projection; multi-agent system; pedestrian simulation; space syntax
series CAADRIA
email
last changed 2022/06/07 07:59

_id ddss9208
id ddss9208
authors Lucardie, G.L.
year 1993
title A functional approach to realizing decision support systems in technical regulation management for design and construction
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary Technical building standards defining the quality of buildings, building products, building materials and building processes aim to provide acceptable levels of safety, health, usefulness and energy consumption. However, the logical consistency between these goals and the set of regulations produced to achieve them is often hard to identify. Not only the large quantities of highly complex and frequently changing building regulations to be met, but also the variety of user demands and the steadily increasing technical information on (new) materials, products and buildings have produced a very complex set of knowledge and data that should be taken into account when handling technical building regulations. Integrating knowledge technology and database technology is an important step towards managing the complexity of technical regulations. Generally, two strategies can be followed to integrate knowledge and database technology. The main emphasis of the first strategy is on transferring data structures and processing techniques from one field of research to another. The second approach is concerned exclusively with the semantic structure of what is contained in the data-based or knowledge-based system. The aim of this paper is to show that the second or knowledge-level approach, in particular the theory of functional classifications, is more fundamental and more fruitful. It permits a goal-directed rationalized strategy towards analysis, use and application of regulations. Therefore, it enables the reconstruction of (deep) models of regulations, objects and of users accounting for the flexibility and dynamics that are responsible for the complexity of technical regulations. Finally, at the systems level, the theory supports an effective development of a new class of rational Decision Support Systems (DSS), which should reduce the complexity of technical regulations and restore the logical consistency between the goals of technical regulations and the technical regulations themselves.
series DDSS
last changed 2003/08/07 16:36

_id a72b
authors Madrazo, Leandro
year 1992
title Design as Formal Language
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 319-330
doi https://doi.org/10.52842/conf.ecaade.1992.319
summary Geometry and language are disciplines with which architecture holds a strong relationship. They have highly structured natures, which make them well-suited for computer implementation. Architecture, on the other hand, lacks such an abstract and hierarchical system. This is one of the main obstacles to the integration of computers in architecture at this point. This paper presents the results of a pedagogic approach based on the association of language, geometry and computers. This association can be successfully used in the education of basic design principles that, although not directly related with architecture, are fundamental to the education of an architect.
series eCAADe
email
last changed 2022/06/07 07:59

_id 46c7
id 46c7
authors Ozel, Filiz
year 1992
title Data Modeling Needs of Life Safety Code (LSC) Compliance Applications
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 177-185
doi https://doi.org/10.52842/conf.acadia.1992.177
summary One of the most complex code compliance issues originates from the conformance of designs to Life Safety Code (NFPA 101). The development of computer based code compliance checking programs attracted the attention of building researchers and practitioners alike. These studies represent a number of approaches ranging from CAD based procedural approaches to rule based, non graphic ones, but they do not address the interaction of the rule base of such systems with graphic data bases that define the geometry of architectural objects. Automatic extraction of the attributes and the configuration of building systems requires 11 architectural object - graphic entity" data models that allow access and retrieval of the necessary data for code compliance checking. This study aims to specifically focus on the development of such a data model through the use of AutoLISP feature of AutoCAD (Autodesk Inc.) graphic system. This data model is intended to interact with a Life Safety Code rule base created through Level5-Object (Focus Inc.) expert system.

Assuming the availability of a more general building data model, one must define life and fire safety features of a building before any automatic checking can be performed. Object oriented data structures are beginning to be applied to design objects, since they allow the type versatility demanded by design applications. As one generates a functional view of the main data model, the software user must provide domain specific information. A functional view is defined as the process of generating domain specific data structures from a more general purpose data model, such as defining egress routes from wall or room object data structure. Typically in the early design phase of a project, these are related to the emergency egress design features of a building. Certain decisions such as where to provide sprinkler protection or the location of protected egress ways must be made early in the process.

series ACADIA
email
last changed 2022/06/07 08:00

_id c93a
authors Saggio, Antonino
year 1992
title Object Based Modeling and Concept-Testing: A Framework for Studio Teaching
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 49-63
doi https://doi.org/10.52842/conf.acadia.1992.049
summary This chapter concludes with a proposal for a studio structure that incorporates computers as a creative stimulus in the design process. Three related experiences support this hypothesis: the role played in concrete designs by an Object Based Modeling environment, teaching with Computer Aided Architectural Design and OBM in the realm of documentation and analysis of architecture, previous applications of the Concept-Testing methodology in design studios. Examples from these three areas provide the framework for mutual support between OBM and a C-T approach for studio teaching. The central sections of the chapter focus on the analysis of these experiences, while the last section provides a 15 week, semester based, studio structure that incorporates OBM in the overall calendar and in key assignments.

series ACADIA
email
last changed 2022/06/07 07:56

_id a302
authors Saggio, Antonino
year 1992
title A New Tool for Studio Teaching - Object Based Modeling
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 251-264
doi https://doi.org/10.52842/conf.ecaade.1992.251
summary The scope of this paper is to present Computer Aided Architectural Design (and more particularly the dynamic and incremental modeling characteristics of Object Based Modeling) as a tool to reinforce the teaching of architectural design. Utilized within a method based on a cyclical application of "Concept and Testing", OBM has the possibility to work as an amplifier of design ideas and as a meaningful tool for the advancement of architectural design. Three related experiences support this hypothesis. The role played in concrete designs by an Object Based Modeling environment. Teaching with CAAD and OBM in the realm of documentation and analysis of architecture. Previous applications of the Concept-Testing methodology in design studios. The central sections of the paper focus on the analysis of these experiences, while the last section provides a 15 week, semester based, studio structure that incorporates OBM in the overall calendar and in key assignments. While the scope of this work coincides with the thesis presented at the Acadia '92 conference in Charleston (South Carolina), to focus the argument more clearly content, text and illustrations differ in several parts.

series eCAADe
email
last changed 2022/06/07 07:56

_id 2db4
authors Schmitt, Gerhard
year 1992
title Design for Performance
source New York: John Wiley & Sons, 1992. pp. 83-100 : ill. includes bibliography Design for performance describes a generative approach toward fulfilling qualitative and quantitative design requirements based on specification and existing cases. The term design applies to the architectural domain: the term performance includes the aesthetic, quantitative, and qualitative behavior of an artifact. In achieving architectural quality while adhering to measurable criteria, design for performance has representational, computational, and practical advantages over traditional methods, in particular over post-facto single- and multicriteria analysis and evaluation. In this paper a proposal for a working model and a partial implementation of this model are described. architecture / evaluation / performance / synthesis / design / representation / prediction / integration. Ô h)0*0*0*°° ÔŒ21. Schneekloth, Lynda H., Rajendra K. Jain and Gary E. Day. 'Wind Study of Pedestrian Environments.' February, 1989. 30, [2] p. : ill. includes bibliography and index.
summary This report summarizes Part 1 of the research on wind conditions affecting pedestrian environments for the State University of New York at Buffalo. Part 1 reports on existing conditions in the main part of the North Campus in Amherst. Procedures and methods are outlined, the profile of the current situation reported, and a special study on the proposed Natural Science and Math Building are included
keywords architecture, research, evaluation, analysis, simulation, hardware
series CADline
last changed 1999/02/12 15:09

_id eaff
authors Shaviv, Edna and Kalay, Yehuda E.
year 1992
title Combined Procedural and Heuristic Method to Energy Conscious Building Design and Evaluation
source New York: John Wiley & Sons, 1992. pp. 305-325 : ill. includes bibliography
summary This paper describes a methodology that combines both procedural and heuristic methods by means of integrating a simulation model with a knowledge based system (KBS) for supporting all phases of energy conscious design and evaluation. The methodology is based on partitioning the design process into discrete phases and identifying the informational characteristics of each phase, as far as energy conscious design is concerned. These informational characteristics are expressed in the form of design variables (parameters) and the relationships between them. The expected energy performance of a design alternative is evaluated by a combination of heuristic and procedural methods, and the context-sensitive application of default values, when necessary. By virtue of combining knowledge based evaluations with procedural ones, this methodology allows for testing the applicability of heuristic rules in non-standard cases,Ô h)0*0*0*°° ÔŒ thereby improving the predictable powers of the evaluation
keywords design process, evaluation, energy, analysis, synthesis, integration, architecture, knowledge base, heuristics, simulation
series CADline
email
last changed 2003/06/02 10:24

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 12HOMELOGIN (you are user _anon_456238 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002