CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 235

_id ascaad2022_043
id ascaad2022_043
authors Awan, Abeeha; Prokop, Simon; Vele, Jiri; Dounas, Theodor; Lombardi, Davide; Agkathidis, Asterios; Kurilla, Lukas
year 2022
title Qualitative Knowledge Graph for the Evaluation of Metaverse(s) - Is the Metaverse Hype or a Promising New Field for Architects?
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 99-116
summary With the advancement of augmented and virtual reality technologies both in scale as well as accessibility, the Metaverse (Stephenson, 1992, Hughes, 2022) has emerged as a new digital space with potential for the application of architectural creativity and design. With blockchain integration, the concept of the Metaverse shows promise in creating a “decentralised” space for design and creativity with rewards for its participants. As a platform that incorporates these technological components, does the Metaverse have utility for architectural design? Is there something truly novel in what the Metaverse brings to architectural computing, and architectural design? The paper constructs a qualitative knowledge graph that can be used for the evaluation of various kinds of Metaverses in and for architectural design. We use Design Science Research methods to develop the knowledge graph and its evaluative capacity, stemming from our experience with two Metaverses, Decentraland and Cryptovoxels. The paper concludes with a discussion of knowledge and practice gaps that are evident, framing the opportunities that architects might have in the future in terms of developing Metaverse(s).
series ASCAAD
email
last changed 2024/02/16 13:24

_id ecaadesigradi2019_449
id ecaadesigradi2019_449
authors Becerra Santacruz, Axel
year 2019
title The Architecture of ScarCity Game - The craft and the digital as an alternative design process
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 45-52
doi https://doi.org/10.52842/conf.ecaade.2019.3.045
summary The Architecture of ScarCity Game is a board game used as a pedagogical tool that challenges architecture students by involving them in a series of experimental design sessions to understand the design process of scarcity and the actual relation between the craft and the digital. This means "pragmatic delivery processes and material constraints, where the exchange between the artisan of handmade, representing local skills and technology of the digitally conceived is explored" (Huang 2013). The game focuses on understanding the different variables of the crafted design process of traditional communities under conditions of scarcity (Michel and Bevan 1992). This requires first analyzing the spatial environmental model of interaction, available human and natural resources, and the dynamic relationship of these variables in a digital era. In the first stage (Pre-Agency), the game set the concept of the craft by limiting students design exploration from a minimum possible perspective developing locally available resources and techniques. The key elements of the design process of traditional knowledge communities have to be identified (Preez 1984). In other words, this stage is driven by limited resources + chance + contingency. In the second stage (Post-Agency) students taking the architects´ role within this communities, have to speculate and explore the interface between the craft (local knowledge and low technological tools), and the digital represented by computation data, new technologies available and construction. This means the introduction of strategy + opportunity + chance as part of the design process. In this sense, the game has a life beyond its mechanics. This other life challenges the participants to exploit the possibilities of breaking the actual boundaries of design. The result is a tool to challenge conventional methods of teaching and leaning controlling a prescribed design process. It confronts the rules that professionals in this field take for granted. The game simulates a 'fake' reality by exploring in different ways with surveyed information. As a result, participants do not have anything 'real' to lose. Instead, they have all the freedom to innovate and be creative.
keywords Global south, scarcity, low tech, digital-craft, design process and innovation by challenge.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id cef3
authors Bridges, Alan H.
year 1992
title Computing and Problem Based Learning at Delft University of Technology Faculty of Architecture
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 289-294
doi https://doi.org/10.52842/conf.ecaade.1992.289
summary Delft University of Technology, founded in 1842, is the oldest and largest technical university in the Netherlands. It provides education for more than 13,000 students in fifteen main subject areas. The Faculty of Architecture, Housing, Urban Design and Planning is one of the largest faculties of the DUT with some 2000 students and over 500 staff members. The course of study takes four academic years: a first year (Propaedeuse) and a further three years (Doctoraal) leading to the "ingenieur" qualification. The basic course material is delivered in the first two years and is taken by all students. The third and fourth years consist of a smaller number of compulsory subjects in each of the department's specialist areas together with a wide range of option choices. The five main subject areas the students may choose from for their specialisation are Architecture, Building and Project Management, Building Technology, Urban Design and Planning, and Housing.

The curriculum of the Faculty has been radically revised over the last two years and is now based on the concept of "Problem-Based Learning". The subject matter taught is divided thematically into specific issues that are taught in six week blocks. The vehicles for these blocks are specially selected and adapted case studies prepared by teams of staff members. These provide a focus for integrating specialist subjects around a studio based design theme. In the case of second year this studio is largely computer-based: many drawings are produced by computer and several specially written computer applications are used in association with the specialist inputs.

This paper describes the "block structure" used in second year, giving examples of the special computer programs used, but also raises a number of broader educational issues. Introduction of the block system arose as a method of curriculum integration in response to difficulties emerging from the independent functioning of strong discipline areas in the traditional work groups. The need for a greater level of selfdirected learning was recognised as opposed to the "passive information model" of student learning in which the students are seen as empty vessels to be filled with knowledge - which they are then usually unable to apply in design related contexts in the studio. Furthermore, the value of electives had been questioned: whilst enabling some diversity of choice, they may also be seen as diverting attention and resources from the real problems of teaching architecture.

series eCAADe
email
last changed 2022/06/07 07:54

_id 2b7a
authors Ferguson, H., Rockwood, A. and Cox, J.
year 1992
title Topological Design of Sculptured Surfaces
source Computer Graphics, no. 26, pp.149-156
summary Topology is primal geometry. Our design philosophy embodies this principle. We report on a new surface &sign perspective based on a "marked" polygon for each object. The marked polygon captures the topology of the object surface. We construct multiply periodic mappings from polygon to sculptured surface. The mappings arise naturally from the topology and other design considerations. Hence we give a single domain global parameteriration for surfaces with handles. Examples demonstrate the design of sculptured objects and their ntanufimture.
series journal paper
last changed 2003/04/23 15:50

_id 7ce5
authors Gal, Shahaf
year 1992
title Computers and Design Activities: Their Mediating Role in Engineering Education
source Sociomedia, ed. Edward Barret. MIT Press
summary Sociomedia: With all the new words used to describe electronic communication (multimedia, hypertext, cyberspace, etc.), do we need another one? Edward Barrett thinks we do; hence, he coins the term "sociomedia." It is meant to displace a computing economy in which technicity is hypostasized over sociality. Sociomedia, a compilation of twenty-five articles on the theory, design and practice of educational multimedia and hypermedia, attempts to re-value the communicational face of computing. Value, of course, is "ultimately a social construct." As such, it has everything to do with knowledge, power, education and technology. The projects discussed in this book represent the leading edge of electronic knowledge production in academia (not to mention major funding) and are determining the future of educational media. For these reasons, Sociomedia warrants close inspection. Barrett's introduction sets the tone. For him, designing computer media involves hardwiring a mechanism for the social construction of knowledge (1). He links computing to a process of social and communicative interactivity for constructing and desseminating knowledge. Through a mechanistic mapping of the university as hypercontext (a huge network that includes classrooms as well as services and offices), Barrett models intellectual work in such a way as to avoid "limiting definitions of human nature or human development." Education, then, can remain "where it should be--in the human domain (public and private) of sharing ideas and information through the medium of language." By leaving education in a virtual realm (where we can continue to disagree about its meaning and execution), it remains viral, mutating and contaminating in an intellectually healthy way. He concludes that his mechanistic model, by means of its reductionist approach, preserves value (7). This "value" is the social construction of knowledge. While I support the social orientation of Barrett's argument, discussions of value are related to power. I am not referring to the traditional teacher-student power structure that is supposedly dismantled through cooperative and constructivist learning strategies. The power to be reckoned with in the educational arena is foundational, that which (pre)determines value and the circulation of knowledge. "Since each of you reading this paragraph has a different perspective on the meaning of 'education' or 'learning,' and on the processes involved in 'getting an education,' think of the hybris in trying to capture education in a programmable function, in a displayable object, in a 'teaching machine'" (7). Actually, we must think about that hybris because it is, precisely, what informs teaching machines. Moreover, the basic epistemological premises that give rise to such productions are too often assumed. In the case of instructional design, the episteme of cognitive sciences are often taken for granted. It is ironic that many of the "postmodernists" who support electronic hypertextuality seem to have missed Jacques Derrida's and Michel Foucault's "deconstructions" of the epistemology underpinning cognitive sciences (if not of epistemology itself). Perhaps it is the glitz of the technology that blinds some users (qua developers) to the belief systems operating beneath the surface. Barrett is not guilty of reactionary thinking or politics; he is, in fact, quite in line with much American deconstructive and postmodern thinking. The problem arises in that he leaves open the definitions of "education," "learning" and "getting an education." One cannot engage in the production of new knowledge without orienting its design, production and dissemination, and without negotiating with others' orientations, especially where largescale funding is involved. Notions of human nature and development are structural, even infrastructural, whatever the medium of the teaching machine. Although he addresses some dynamics of power, money and politics when he talks about the recession and its effects on the conference, they are readily visible dynamics of power (3-4). Where does the critical factor of value determination, of power, of who gets what and why, get mapped onto a mechanistic model of learning institutions? Perhaps a mapping of contributors' institutions, of the funding sources for the projects showcased and for participation in the conference, and of the disciplines receiving funding for these sorts of projects would help visualize the configurations of power operative in the rising field of educational multimedia. Questions of power and money notwithstanding, Barrett's introduction sets the social and textual thematics for the collection of essays. His stress on interactivity, on communal knowledge production, on the society of texts, and on media producers and users is carried foward through the other essays, two of which I will discuss. Section I of the book, "Perspectives...," highlights the foundations, uses and possible consequences of multimedia and hypertextuality. The second essay in this section, "Is There a Class in This Text?," plays on the robust exchange surrounding Stanley Fish's book, Is There a Text in This Class?, which presents an attack on authority in reading. The author, John Slatin, has introduced electronic hypertextuality and interaction into his courses. His article maps the transformations in "the content and nature of work, and the workplace itself"-- which, in this case, is not industry but an English poetry class (25). Slatin discovered an increase of productive and cooperative learning in his electronically- mediated classroom. For him, creating knowledge in the electronic classroom involves interaction between students, instructors and course materials through the medium of interactive written discourse. These interactions lead to a new and persistent understanding of the course materials and of the participants' relation to the materials and to one another. The work of the course is to build relationships that, in my view, constitute not only the meaning of individual poems, but poetry itself. The class carries out its work in the continual and usually interactive production of text (31). While I applaud his strategies which dismantle traditional hierarchical structures in academia, the evidence does not convince me that the students know enough to ask important questions or to form a self-directing, learning community. Stanley Fish has not relinquished professing, though he, too, espouses the indeterminancy of the sign. By the fourth week of his course, Slatin's input is, by his own reckoning, reduced to 4% (39). In the transcript of the "controversial" Week 6 exchange on Gertrude Stein--the most disliked poet they were discussing at the time (40)--we see the blind leading the blind. One student parodies Stein for three lines and sums up his input with "I like it." Another, finds Stein's poetry "almost completey [sic] lacking in emotion or any artistic merit" (emphasis added). On what grounds has this student become an arbiter of "artistic merit"? Another student, after admitting being "lost" during the Wallace Steven discussion, talks of having more "respect for Stevens' work than Stein's" and adds that Stein's poetry lacks "conceptual significance[, s]omething which people of varied opinion can intelligently discuss without feeling like total dimwits...." This student has progressed from admitted incomprehension of Stevens' work to imposing her (groundless) respect for his work over Stein's. Then, she exposes her real dislike for Stein's poetry: that she (the student) missed the "conceptual significance" and hence cannot, being a person "of varied opinion," intelligently discuss it "without feeling like [a] total dimwit." Slatin's comment is frightening: "...by this point in the semester students have come to feel increasingly free to challenge the instructor" (41). The students that I have cited are neither thinking critically nor are their preconceptions challenged by student-governed interaction. Thanks to the class format, one student feels self-righteous in her ignorance, and empowered to censure. I believe strongly in student empowerment in the classroom, but only once students have accrued enough knowledge to make informed judgments. Admittedly, Slatin's essay presents only partial data (there are six hundred pages of course transcripts!); still, I wonder how much valuable knowledge and metaknowledge was gained by the students. I also question the extent to which authority and professorial dictature were addressed in this course format. The power structures that make it possible for a college to require such a course, and the choice of texts and pedagogy, were not "on the table." The traditional professorial position may have been displaced, but what took its place?--the authority of consensus with its unidentifiable strong arm, and the faceless reign of software design? Despite Slatin's claim that the students learned about the learning process, there is no evidence (in the article) that the students considered where their attitudes came from, how consensus operates in the construction of knowledge, how power is established and what relationship they have to bureaucratic insitutions. How do we, as teaching professionals, negotiate a balance between an enlightened despotism in education and student-created knowledge? Slatin, and other authors in this book, bring this fundamental question to the fore. There is no definitive answer because the factors involved are ultimately social, and hence, always shifting and reconfiguring. Slatin ends his article with the caveat that computerization can bring about greater estrangement between students, faculty and administration through greater regimentation and control. Of course, it can also "distribute authority and power more widely" (50). Power or authority without a specific face, however, is not necessarily good or just. Shahaf Gal's "Computers and Design Activities: Their Mediating Role in Engineering Education" is found in the second half of the volume, and does not allow for a theory/praxis dichotomy. Gal recounts a brief history of engineering education up to the introduction of Growltiger (GT), a computer-assisted learning aid for design. He demonstrates GT's potential to impact the learning of engineering design by tracking its use by four students in a bridge-building contest. What his text demonstrates clearly is that computers are "inscribing and imaging devices" that add another viewpoint to an on-going dialogue between student, teacher, earlier coursework, and other teaching/learning tools. The less proficient students made a serious error by relying too heavily on the technology, or treating it as a "blueprint provider." They "interacted with GT in a way that trusted the data to represent reality. They did not see their interaction with GT as a negotiation between two knowledge systems" (495). Students who were more thoroughly informed in engineering discourses knew to use the technology as one voice among others--they knew enough not simply to accept the input of the computer as authoritative. The less-advanced students learned a valuable lesson from the competition itself: the fact that their designs were not able to hold up under pressure (literally) brought the fact of their insufficient knowledge crashing down on them (and their bridges). They also had, post factum, several other designs to study, especially the winning one. Although competition and comparison are not good pedagogical strategies for everyone (in this case the competitors had volunteered), at some point what we think we know has to be challenged within the society of discourses to which it belongs. Students need critique in order to learn to push their learning into auto-critique. This is what is lacking in Slatin's discussion and in the writings of other avatars of constructivist, collaborative and computer-mediated pedagogies. Obviously there are differences between instrumental types of knowledge acquisition and discoursive knowledge accumulation. Indeed, I do not promote the teaching of reading, thinking and writing as "skills" per se (then again, Gal's teaching of design is quite discursive, if not dialogic). Nevertheless, the "soft" sciences might benefit from "bridge-building" competitions or the re-institution of some forms of agonia. Not everything agonistic is inhuman agony--the joy of confronting or creating a sound argument supported by defensible evidence, for example. Students need to know that soundbites are not sound arguments despite predictions that electronic writing will be aphoristic rather than periodic. Just because writing and learning can be conceived of hypertextually does not mean that rigor goes the way of the dinosaur. Rigor and hypertextuality are not mutually incompatible. Nor is rigorous thinking and hard intellectual work unpleasurable, although American anti-intellectualism, especially in the mass media, would make it so. At a time when the spurious dogmatics of a Rush Limbaugh and Holocaust revisionist historians circulate "aphoristically" in cyberspace, and at a time when knowledge is becoming increasingly textualized, the role of critical thinking in education will ultimately determine the value(s) of socially constructed knowledge. This volume affords the reader an opportunity to reconsider knowledge, power, and new communications technologies with respect to social dynamics and power relationships.
series other
last changed 2003/04/23 15:14

_id ea96
authors Hacfoort, Eek J. and Veldhuisen, Jan K.
year 1992
title A Building Design and Evaluation System
source New York: John Wiley & Sons, 1992. pp. 195-211 : ill. table. includes bibliography
summary Within the field of architectural design there is a growing awareness of imbalance among the professionalism, the experience, and the creativity of the designers' response to the up-to-date requirements of all parties interested in the design process. The building design and evaluating system COSMOS makes it possible for various participants to work within their own domain, so that separated but coordinated work can be done. This system is meant to organize the initial stage of the design process, where user-defined functions, geometry, type of construction, and building materials are decided. It offers a tool to design a building to calculate a number of effects and for managing the information necessary to evaluate the design decisions. The system is provided with data and sets of parameters for describing the conditions, along with their properties, of the main building functions of a selection of well-known building types. The architectural design is conceptualized as being a hierarchy of spatial units, ranking from building blocks down to specific rooms or spaces. The concept of zoning is used as a means of calculating and directly evaluating the structure of the design without working out the details. A distinction is made between internal and external calculations and evaluations during the initial design process. During design on screen, an estimation can be recorded of building costs, energy costs, acoustics, lighting, construction, and utility. Furthermore, the design can be exported to a design application program, in this case AutoCAD, to make and show drawings in more detail. Through the medium of a database, external calculation and evaluation of building costs, life-cycle costs, energy costs, interior climate, acoustics, lighting, construction, and utility are possible in much more advanced application programs
keywords evaluation, applications, integration, architecture, design, construction, building, energy, cost, lighting, acoustics, performance
series CADline
last changed 2003/06/02 13:58

_id 6cfd
authors Harfmann, Anton C. and Majkowski, Bruce R.
year 1992
title Component-Based Spatial Reasoning
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 103-111
doi https://doi.org/10.52842/conf.acadia.1992.103
summary The design process and ordering of individual components through which architecture is realized relies on the use of abstract "models" to represent a proposed design. The emergence and use of these abstract "models" for building representation has a long history and tradition in the field of architecture. Models have been made and continue to be made for the patron, occasionally the public, and as a guide for the builders. Models have also been described as a means to reflect on the design and to allow the design to be in dialogue with the creator.

The term "model" in the above paragraph has been used in various ways and in this context is defined as any representation through which design intent is expressed. This includes accurate/ rational or abstract drawings (2- dimensional and 3-dimensional), physical models (realistic and abstract) and computer models (solid, void and virtual reality). The various models that fall within the categories above have been derived from the need to "view" the proposed design in various ways in order to support intuitive reasoning about the proposal and for evaluation purposes. For example, a 2-dimensional drawing of a floor plan is well suited to support reasoning about spatial relationships and circulation patterns while scaled 3-dimensional models facilitate reasoning about overall form, volume, light, massing etc. However, the common denominator of all architectural design projects (if the intent is to construct them in actual scale, physical form) are the discrete building elements from which the design will be constructed. It is proposed that a single computational model representing individual components supports all of the above "models" and facilitates "viewing"' the design according to the frame of reference of the viewer.

Furthermore, it is the position of the authors that all reasoning stems from this rudimentary level of modeling individual components.

The concept of component representation has been derived from the fact that a "real" building (made from individual components such as nuts, bolts and bar joists) can be "viewed" differently according to the frame of reference of the viewer. Each individual has the ability to infer and abstract from the assemblies of components a variety of different "models" ranging from a visceral, experiential understanding to a very technical, physical understanding. The component concept has already proven to be a valuable tool for reasoning about assemblies, interferences between components, tracing of load path and numerous other component related applications. In order to validate the component-based modeling concept this effort will focus on the development of spatial understanding from the component-based model. The discussions will, therefore, center about the representation of individual components and the development of spatial models and spatial reasoning from the component model. In order to frame the argument that spatial modeling and reasoning can be derived from the component representation, a review of the component-based modeling concept will precede the discussions of spatial issues.

series ACADIA
email
last changed 2022/06/07 07:49

_id cf2009_poster_09
id cf2009_poster_09
authors Hsu, Yin-Cheng
year 2009
title Lego Free-Form? Towards a Modularized Free-Form Construction
source T. Tidafi and T. Dorta (eds) Joining Languages Cultures and Visions: CAADFutures 2009 CD-Rom
summary Design Media is the tool designers use for concept realization (Schon and Wiggins, 1992; Liu, 1996). Design thinking of designers is deeply effected by the media they tend to use (Zevi, 1981; Liu, 1996; Lim, 2003). Historically, architecture is influenced by the design media that were available within that era (Liu, 1996; Porter and Neale, 2000; Smith, 2004). From the 2D plans first used in ancient egypt, to the 3D physical models that came about during the Renaissance period, architecture reflects the media used for design. When breakthroughs in CAD/CAM technologies were brought to the world in the twentieth century, new possibilities opened up for architects.
keywords CAD/CAM free-form construction, modularization
series CAAD Futures
type poster
last changed 2009/07/08 22:12

_id ab4d
authors Huang, Tao-Kuang, Degelman, Larry O., and Larsen, Terry R.
year 1992
title A Visualization Model for Computerized Energy Evaluation During the Conceptual Design Stage (ENERGRAPH)
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 195-206
doi https://doi.org/10.52842/conf.acadia.1992.195
summary Energy performance is a crucial step toward responsible design. Currently there are many tools that can be applied to reach this goal with reasonable accuracy. Often times, however, major flaws are not discovered until the final stage of design when it is too late to change. Not only are existing simulation models complicated to apply at the conceptual design stage, but energy principles and their applications are also abstract and hard to visualize. Because of the lack of suitable tools to visualize energy analysis output, energy conservation concepts fail to be integrated into the building design. For these reasons, designers tend not to apply energy conservation concepts at the early design stage. However, since computer graphics is a new phase of visual communication in design process, the above problems might be solved properly through a computerized graphical interface in the conceptual design stage.

The research described in this paper is the result of exploring the concept of using computer graphics to support energy efficient building designs. It focuses on the visualization of building energy through a highly interactive graphical interface in the early design stage.

series ACADIA
email
last changed 2022/06/07 07:50

_id 56e9
authors Huang, Tao-Kuang
year 1992
title A Graphical Feedback Model for Computerized Energy Analysis during the Conceptual Design Stage
source Texas A&M University
summary During the last two decades, considerable effort has been placed on the development of building design analysis tools. Architects and designers have begun to take advantage of computers to generate and examine design alternatives. However, because it has been difficult to adapt computer technologies to the visual orientation of the building designer, the majority of computer applications have been limited to numerical analysis and office automation tasks. Only recently, because of advances in hardware and software techniques, computers have entered into a new phase in the development of architectural design. haveters are now able to interactively display graphics solutions to architectural related problems, which is fundamental to the design process. The majority of research programs in energy efficient design have sharpened people's understanding of energy principles and their application of those principles. Energy conservation concepts, however, have not been widely used. A major problem in the implementation of these principles is that energy principles their applications are abstract, hard to visualize and separated from the architectural design process. Furthermore, one aspect of energy analysis may contain thousands of pieces of numerical information which often leads to confusion on the part of designers. If these difficulties can be overcome, it would bring a great benefit to the advancement of energy conservation concepts. This research explores the concept of an integrated computer graphics program to support energy efficient design. It focuses on (1) the integration of energy efficiently and architectural design, and (2) the visualization of building energy use through graphical interfaces during the conceptual design stage. It involves (1) the discussion of frameworks of computer-aided architectural design and computer-aided energy efficient building design, and (2) the development of an integrated computer prototype program with a graphical interface that helps the designer create building layouts, analyze building energy interactively and receive visual feedbacks dynamically. The goal is to apply computer graphics as an aid to visualize the effects of energy related decisions and therefore permit the designer to visualize and understand energy conservation concepts in the conceptual phase of architectural design.
series thesis:PhD
last changed 2003/02/12 22:37

_id caadria2004_k-1
id caadria2004_k-1
authors Kalay, Yehuda E.
year 2004
title CONTEXTUALIZATION AND EMBODIMENT IN CYBERSPACE
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 5-14
doi https://doi.org/10.52842/conf.caadria.2004.005
summary The introduction of VRML (Virtual Reality Markup Language) in 1994, and other similar web-enabled dynamic modeling software (such as SGI’s Open Inventor and WebSpace), have created a rush to develop on-line 3D virtual environments, with purposes ranging from art, to entertainment, to shopping, to culture and education. Some developers took their cues from the science fiction literature of Gibson (1984), Stephenson (1992), and others. Many were web-extensions to single-player video games. But most were created as a direct extension to our new-found ability to digitally model 3D spaces and to endow them with interactive control and pseudo-inhabitation. Surprisingly, this technologically-driven stampede paid little attention to the core principles of place-making and presence, derived from architecture and cognitive science, respectively: two principles that could and should inform the essence of the virtual place experience and help steer its development. Why are the principles of place-making and presence important for the development of virtual environments? Why not simply be content with our ability to create realistically-looking 3D worlds that we can visit remotely? What could we possibly learn about making these worlds better, had we understood the essence of place and presence? To answer these questions we cannot look at place-making (both physical and virtual) from a 3D space-making point of view alone, because places are not an end unto themselves. Rather, places must be considered a locus of contextualization and embodiment that ground human activities and give them meaning. In doing so, places acquire a meaning of their own, which facilitates, improves, and enriches many aspects of our lives. They provide us with a means to interpret the activities of others and to direct our own actions. Such meaning is comprised of the social and cultural conceptions and behaviors imprinted on the environment by the presence and activities of its inhabitants, who in turn, ‘read’ by them through their own corporeal embodiment of the same environment. This transactional relationship between the physical aspects of an environment, its social/cultural context, and our own embodiment of it, combine to create what is known as a sense of place: the psychological, physical, social, and cultural framework that helps us interpret the world around us, and directs our own behavior in it. In turn, it is our own (as well as others’) presence in that environment that gives it meaning, and shapes its social/cultural character. By understanding the essence of place-ness in general, and in cyberspace in particular, we can create virtual places that can better support Internet-based activities, and make them equal to, in some cases even better than their physical counterparts. One of the activities that stands to benefit most from understanding the concept of cyber-places is learning—an interpersonal activity that requires the co-presence of others (a teacher and/or fellow learners), who can point out the difference between what matters and what does not, and produce an emotional involvement that helps students learn. Thus, while many administrators and educators rush to develop webbased remote learning sites, to leverage the economic advantages of one-tomany learning modalities, these sites deprive learners of the contextualization and embodiment inherent in brick-and-mortar learning institutions, and which are needed to support the activity of learning. Can these qualities be achieved in virtual learning environments? If so, how? These are some of the questions this talk will try to answer by presenting a virtual place-making methodology and its experimental implementation, intended to create a sense of place through contextualization and embodiment in virtual learning environments.
series CAADRIA
type normal paper
last changed 2022/06/07 07:52

_id e7c8
authors Kalisperis, Loukas N., Steinman, Mitch and Summers, Luis H.
year 1992
title Design Knowledge, Environmental Complexity in Nonorthogonal Space
source New York: John Wiley & Sons, 1992. pp. 273-291 : ill. includes bibliography
summary Mechanization and industrialization of society has resulted in most people spending the greater part of their lives in enclosed environments. Optimal design of indoor artificial climates is therefore of increasing importance. Wherever artificial climates are created for human occupation, the aim is that the environment be designed so that individuals are in thermal comfort. Current design methodologies for radiant panel heating systems do not adequately account for the complexities of human thermal comfort, because they monitor air temperature alone and do not account for thermal neutrality in complex enclosures. Thermal comfort for a person is defined as that condition of mind which expresses satisfaction with the thermal environment. Thermal comfort is dependent on Mean Radiant Temperature and Operative Temperature among other factors. In designing artificial climates for human occupancy the interaction of the human with the heated surfaces as well the surface-to-surface heat exchange must be accounted for. Early work in the area provided an elaborate and difficult method for calculating radiant heat exchange for simplistic and orthogonal enclosures. A new improved method developed by the authors for designing radiant panel heating systems based on human thermal comfort and mean radiant temperature is presented. Through automation and elaboration this method overcomes the limitations of the early work. The design procedure accounts for human thermal comfort in nonorthogonal as well as orthogonal spaces based on mean radiant temperature prediction. The limitation of simplistic orthogonal geometries has been overcome with the introduction of the MRT-Correction method and inclined surface-to-person shape factor methodology. The new design method increases the accuracy of calculation and prediction of human thermal comfort and will allow designers to simulate complex enclosures utilizing the latest design knowledge of radiant heat exchange to increase human thermal comfort
keywords applications, architecture, building, energy, systems, design, knowledge
series CADline
last changed 2003/06/02 10:24

_id aba4
authors Lischinski, D. Tampieri, F. and Greenberg, D.P.
year 1992
title Discontinuity Meshing for Accurate Radiosity
source IEEE Computer Graphics & Applications, November 1992, pp.25-38
summary We discuss the problem of accurately computing the illumination of a diffuse polyhedral environment due to an area light source. We show how umbra and penumbra boundaries and other illumination details correspond to discontinuities in the radiance function and its derivatives. The shape, location, and order of these discontinuities is determined by the geometry of the light sources and obstacles in the environment. We describe an object-space algorithm that accurately reproduces the radiance across a surface by constructing a discontinuity mesh that explicitly represents various discontinuities in the radiance function as boundaries between mesh elements. A piecewise quadratic interpolant is used to approximate the radiance function, preserving the discontinuities associated with the edges in the mesh. This algorithm can be used in the framework of a progressive refinement radiosity system to solve the diffuse global illumination problem. Results produced by the new method are compared with ones obtained using a standard radiosity system.
series journal paper
last changed 2003/04/23 15:50

_id 244d
authors Monedero, J., Casaus, A. and Coll, J.
year 1992
title From Barcelona. Chronicle and Provisional Evaluation of a New Course on Architectural Solid Modelling by Computerized Means
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 351-362
doi https://doi.org/10.52842/conf.ecaade.1992.351
summary The first step made at the ETSAB in the computer field goes back to 1965, when professors Margarit and Buxade acquired an IBM computer, an electromechanical machine which used perforated cards and which was used to produce an innovative method of structural calculation. This method was incorporated in the academic courses and, at that time, this repeated question "should students learn programming?" was readily answered: the exercises required some knowledge of Fortran and every student needed this knowledge to do the exercises. This method, well known in Europe at that time, also provided a service for professional practice and marked the beginning of what is now the CC (Centro de Calculo) of our school. In 1980 the School bought a PDP1134, a computer which had 256 Kb of RAM, two disks of 5 Mb and one of lO Mb, and a multiplexor of 8 lines. Some time later the general politics of the UPC changed their course and this was related to the purchase of a VAX which is still the base of the CC and carries most of the administrative burden of the school. 1985 has probably been the first year in which we can talk of a general policy of the school directed towards computers. A report has been made that year, which includes an inquest adressed to the six Departments of the School (Graphic Expression, Projects, Structures, Construction, Composition and Urbanism) and that contains interesting data. According to the report, there were four departments which used computers in their current courses, while the two others (Projects and Composition) did not use them at all. The main user was the Department of Structures while the incidence of the remaining three was rather sporadic. The kind of problems detected in this report are very typical: lack of resources for hardware and software and for maintenance of the few computers that the school had at that moment; a demand (posed by the students) greatly exceeding the supply (computers and teachers). The main problem appeared to be the lack of computer graphic devices and proper software.

series eCAADe
email
last changed 2022/06/07 07:58

_id cb5a
authors Oxman, Rivka E.
year 1992
title Multiple Operative and Interactive Modes in Knowledge-Based Design Systems
source New York: John Wiley & Sons, 1992. pp. 125-143 : ill. includes bibliography
summary A conceptual basis for the development of an expert system which is capable of integrating various modes of generation and evaluation in design is presented. This approach is based upon two sets of reasoning processes in the design system. The first enables a mapping between design requirements and solution descriptions in a generative mode of design; and the second enables a mapping between solution descriptions and performance evaluation in an evaluative and predictive mode. This concept supports a formal framework necessary for a knowledge-based design system to operate in a design partnership relation with the designer. Another fundamental concept in expert systems for design, dual direction interpretation between graphic and textual modes, is presented and elaborated. This encoding of knowledge behind the geometrical representation can be achieved in knowledge- based design systems by the development of a 'semantic interpreter' which supports a dual direction mapping process employing a geometrical knowledge, typological knowledge and evaluative knowledge. An implemented expert system for design, PREDIKT, demonstrates these concepts in the domain of kitchen design. It provides the user with a choice of alternative modes of interaction, such as: a 'design critic' for the evaluation of a design, a 'design generator' for the generation of a design, or a 'design critic-generator' for the completion of partial solutions
keywords architecture, knowledge base, design, systems, expert systems
series CADline
email
last changed 2003/06/02 10:24

_id a302
authors Saggio, Antonino
year 1992
title A New Tool for Studio Teaching - Object Based Modeling
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 251-264
doi https://doi.org/10.52842/conf.ecaade.1992.251
summary The scope of this paper is to present Computer Aided Architectural Design (and more particularly the dynamic and incremental modeling characteristics of Object Based Modeling) as a tool to reinforce the teaching of architectural design. Utilized within a method based on a cyclical application of "Concept and Testing", OBM has the possibility to work as an amplifier of design ideas and as a meaningful tool for the advancement of architectural design. Three related experiences support this hypothesis. The role played in concrete designs by an Object Based Modeling environment. Teaching with CAAD and OBM in the realm of documentation and analysis of architecture. Previous applications of the Concept-Testing methodology in design studios. The central sections of the paper focus on the analysis of these experiences, while the last section provides a 15 week, semester based, studio structure that incorporates OBM in the overall calendar and in key assignments. While the scope of this work coincides with the thesis presented at the Acadia '92 conference in Charleston (South Carolina), to focus the argument more clearly content, text and illustrations differ in several parts.

series eCAADe
email
last changed 2022/06/07 07:56

_id 9feb
authors Turk, G.
year 1992
title Re-tiling polygonal surfaces
source E.E. Catmull, (ed) Computer Graphics (Siggraph ¥92 proc.), vol 26, pp. 55-64, July 1992
summary This paper presents an automatic method of creating surface models at several levels of detail from an original polygonal description of a given object. Representing models at various levels of detail is important for achieving high frame rates in interactive graphics applications and also for speeding-up the off-line rendering of complex scenes. Unfortunately, generating these levels of detail is a time-consuming task usually left to a human modeler. This paper shows how a new set of vertices can be distributed over the surface of a model and connected to one another to create a re-tiling of a surface that is faithful to both the geometry and the topology of the original surface. The main contributions of this paper are: 1) a robust method of connecting together new vertices over a surface, 2) a way of using an estimate of surface curvature to distribute more new vertices at regions of higher curvature and 3) a method of smoothly interpolating between models that represent the same object at different levels of detail. The key notion in the re-tiling procedure is the creation of an intermediate model called the mutual tessellation of a surface that contains both the vertices from the original model and the new points that are to become vertices in the re-tiled surface. The new model is then created by removing each original vertex and locally re-triangulating the surface in a way that matches the local connectedness of the initial surface. This technique for surface retessellation has been successfully applied to iso-surface models derived from volume data, Connolly surface molecular models and a tessellation of a minimal surface of interest to mathematicians.
series other
last changed 2003/04/23 15:50

_id 3b2a
authors Westin, S., Arvo, J. and Torrance, K.
year 1992
title Predicting reflectance functions from complex surfaces
source Computer Graphics, 26(2):255-264, July 1992
summary We describe a physically-based Monte Carlo technique for approximating bidirectional re•ectance distribution functions (BRDFs) for a large class of geometries by directly simulating optical scattering. The technique is more general than previous analytical models: it removes most restrictions on surface microgeometry. Three main points are described: a new representation of the BRDF, a Monte Carlo technique to estimate the coef•cients of the representation, and the means of creating a milliscale BRDF from microscale scattering events. These allowthe prediction of scattering from essentially arbitrary roughness geometries. The BRDF is concisely represented by a matrix of spherical harmonic coef•cients; the matrix is directly estimated from a geometric optics simulation, enforcing exact reciprocity. The method applies to roughness scales that are large with respect to the wavelength of light and small with respect to the spatial density at which the BRDF is sampled across the surface; examples include brushed metal and textiles. The method is validated by comparing with an existing scattering model and sample images are generated with a physically-based global illumination algorithm.
series journal paper
last changed 2003/04/23 15:50

_id avocaad_2001_17
id avocaad_2001_17
authors Ying-Hsiu Huang, Yu-Tung Liu, Cheng-Yuan Lin, Yi-Ting Cheng, Yu-Chen Chiu
year 2001
title The comparison of animation, virtual reality, and scenario scripting in design process
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Design media is a fundamental tool, which can incubate concrete ideas from ambiguous concepts. Evolved from freehand sketches, physical models to computerized drafting, modeling (Dave, 2000), animations (Woo, et al., 1999), and virtual reality (Chiu, 1999; Klercker, 1999; Emdanat, 1999), different media are used to communicate to designers or users with different conceptual levels¡@during the design process. Extensively employed in design process, physical models help designers in managing forms and spaces more precisely and more freely (Millon, 1994; Liu, 1996).Computerized drafting, models, animations, and VR have gradually replaced conventional media, freehand sketches and physical models. Diversely used in the design process, computerized media allow designers to handle more divergent levels of space than conventional media do. The rapid emergence of computers in design process has ushered in efforts to the visual impact of this media, particularly (Rahman, 1992). He also emphasized the use of computerized media: modeling and animations. Moreover, based on Rahman's study, Bai and Liu (1998) applied a new design media¡Xvirtual reality, to the design process. In doing so, they proposed an evaluation process to examine the visual impact of this new media in the design process. That same investigation pointed towards the facilitative role of the computerized media in enhancing topical comprehension, concept realization, and development of ideas.Computer technology fosters the growth of emerging media. A new computerized media, scenario scripting (Sasada, 2000; Jozen, 2000), markedly enhances computer animations and, in doing so, positively impacts design processes. For the three latest media, i.e., computerized animation, virtual reality, and scenario scripting, the following question arises: What role does visual impact play in different design phases of these media. Moreover, what is the origin of such an impact? Furthermore, what are the similarities and variances of computing techniques, principles of interaction, and practical applications among these computerized media?This study investigates the similarities and variances among computing techniques, interacting principles, and their applications in the above three media. Different computerized media in the design process are also adopted to explore related phenomenon by using these three media in two projects. First, a renewal planning project of the old district of Hsinchu City is inspected, in which animations and scenario scripting are used. Second, the renewal project is compared with a progressive design project for the Hsinchu Digital Museum, as designed by Peter Eisenman. Finally, similarity and variance among these computerized media are discussed.This study also examines the visual impact of these three computerized media in the design process. In computerized animation, although other designers can realize the spatial concept in design, users cannot fully comprehend the concept. On the other hand, other media such as virtual reality and scenario scripting enable users to more directly comprehend what the designer's presentation.Future studies should more closely examine how these three media impact the design process. This study not only provides further insight into the fundamental characteristics of the three computerized media discussed herein, but also enables designers to adopt different media in the design stages. Both designers and users can more fully understand design-related concepts.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id acadia06_455
id acadia06_455
authors Ambach, Barbara
year 2006
title Eve’s Four Faces interactive surface configurations
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 455-460
doi https://doi.org/10.52842/conf.acadia.2006.455
summary Eve’s Four Faces consists of a series of digitally animated and interactive surfaces. Their content and structure are derived from a collection of sources outside the conventional boundaries of architectural research, namely psychology and the broader spectrum of arts and culture.The investigation stems from a psychological study documenting the attributes and social relationships of four distinct personality prototypes: the Individuated, the Traditional, the Conflicted, and the Assured (York and John 1992). For the purposes of this investigation, all four prototypes are assumed to be inherent, to certain degrees, in each individual. However, the propensity towards one of the prototypes forms the basis for each individual’s “personality structure.” The attributes, social implications and prospects for habitation have been translated into animations and surfaces operating within A House for Eve’s Four Faces. The presentation illustrates the potential for constructed surfaces to be configured and transformed interactively, responding to the needs and qualities associated with each prototype. The intention is to study the effects of each configuration and how each configuration may be therapeutic in supporting, challenging or altering one’s personality as it oscillates and shifts through the four prototypical conditions.
series ACADIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 11HOMELOGIN (you are user _anon_334484 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002