CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 244

_id 975e
authors Pearce, M. and Goel, A. (et al.)
year 1992
title Case-Based Design support: A case study in architectural design
source IEEE Expert 7(5): 14-20
summary Archie, a small computer-based library of architectural design cases, is described. Archie helps architects in the high-level task of conceptual design as opposed to low-level tasks such as drawing and drafting, numerical calculations, and constraint propagation. Archie goes beyond supporting architects in design proposal and critiquing. It acts as a shared external memory that supports two kinds of design collaboration. First, by including enough knowledge about the goals, plans, outcomes, and lessons of past cases, it lets the designer access the work of previous architects. Second, by providing access to the perspectives of domain experts via the domain models, Archie helps architects anticipate and accommodate experts' views on evolving designs. The lessons learned about building large case-based systems to support real-world decision making in developing Archie are discussed.
series journal paper
last changed 2003/04/23 15:14

_id ddss9215
id ddss9215
authors Mortola, E. and Giangrande, A.
year 1993
title A trichotomic segmentation procedure to evaluate projects in architecture
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary This paper illustrates a model used to construct the evaluation module for An Interface for Designing (AID), a system to aid architectural design. The model can be used at the end of every cycle of analysis-synthesis-evaluation in the intermediate phases of design development. With the aid of the model it is possible to evaluate the quality of a project in overall terms to establish whether the project is acceptable, whether it should be elaborated ex-novo, or whether it is necessary to begin a new cycle to improve it. In this last case, it is also possible to evaluate the effectiveness of the possible actions and strategies for improvement. The model is based on a procedure of trichotomic segmentation, developed with MCDA (Multi-Criteria Decision Aid), which uses the outranking relation to compare the project with some evaluation profiles taken as projects of reference. An application of the model in the teaching field will also be described.
series DDSS
last changed 2003/08/07 16:36

_id cef3
authors Bridges, Alan H.
year 1992
title Computing and Problem Based Learning at Delft University of Technology Faculty of Architecture
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 289-294
doi https://doi.org/10.52842/conf.ecaade.1992.289
summary Delft University of Technology, founded in 1842, is the oldest and largest technical university in the Netherlands. It provides education for more than 13,000 students in fifteen main subject areas. The Faculty of Architecture, Housing, Urban Design and Planning is one of the largest faculties of the DUT with some 2000 students and over 500 staff members. The course of study takes four academic years: a first year (Propaedeuse) and a further three years (Doctoraal) leading to the "ingenieur" qualification. The basic course material is delivered in the first two years and is taken by all students. The third and fourth years consist of a smaller number of compulsory subjects in each of the department's specialist areas together with a wide range of option choices. The five main subject areas the students may choose from for their specialisation are Architecture, Building and Project Management, Building Technology, Urban Design and Planning, and Housing.

The curriculum of the Faculty has been radically revised over the last two years and is now based on the concept of "Problem-Based Learning". The subject matter taught is divided thematically into specific issues that are taught in six week blocks. The vehicles for these blocks are specially selected and adapted case studies prepared by teams of staff members. These provide a focus for integrating specialist subjects around a studio based design theme. In the case of second year this studio is largely computer-based: many drawings are produced by computer and several specially written computer applications are used in association with the specialist inputs.

This paper describes the "block structure" used in second year, giving examples of the special computer programs used, but also raises a number of broader educational issues. Introduction of the block system arose as a method of curriculum integration in response to difficulties emerging from the independent functioning of strong discipline areas in the traditional work groups. The need for a greater level of selfdirected learning was recognised as opposed to the "passive information model" of student learning in which the students are seen as empty vessels to be filled with knowledge - which they are then usually unable to apply in design related contexts in the studio. Furthermore, the value of electives had been questioned: whilst enabling some diversity of choice, they may also be seen as diverting attention and resources from the real problems of teaching architecture.

series eCAADe
email
last changed 2022/06/07 07:54

_id e412
authors Fargas, Josep and Papazian, Pegor
year 1992
title Modeling Regulations and Intentions for Urban Development: The Role of Computer Simulation in the Urban Design Studio
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 201-212
doi https://doi.org/10.52842/conf.ecaade.1992.201
summary In this paper we present a strategy for modeling urban development in order to study the role of urban regulations and policies in the transformation of cities. We also suggest a methodology for using computer models as experimental tools in the urban design studio in order to make explicit the factors involved in shaping cities, and for the automatic visualization of projected development. The structure of the proposed model is based on different modules which represent, on the one hand, the rules regulating the physical growth of a city and, on the other hand, heuristics corresponding to different interests such as Real Estate Developers, City Hall Planners, Advocacy and Community Groups, and so on. Here we present a case study dealing with the Boston Redevelopment Authority zoning code for the Midtown Cultural District of Boston. We introduce a computer program which develops the district, adopting a particular point of view regarding urban regulation. We then generalize the notion of this type of computer modeling and simulation, and draw some conclusions about its possible uses in the teaching and practice of design.
series eCAADe
email
last changed 2022/06/07 07:55

_id 68c8
authors Flemming, U., Coyne, R. and Fenves, S. (et al.)
year 1994
title SEED: A Software Environment to Support the Early Phases in Building Design
source Proceeding of IKM '94, Weimar, Germany, pp. 5-10
summary The SEED project intends to develop a software environment that supports the early phases in building design (Flemming et al., 1993). The goal is to provide support, in principle, for the preliminary design of buildings in all aspects that can gain from computer support. This includes using the computer not only for analysis and evaluation, but also more actively for the generation of designs, or more accurately, for the rapid generation of design representations. A major motivation for the development of SEED is to bring the results of two multi-generational research efforts focusing on `generative' design systems closer to practice: 1. LOOS/ABLOOS, a generative system for the synthesis of layouts of rectangles (Flemming et al., 1988; Flemming, 1989; Coyne and Flemming, 1990; Coyne, 1991); 2. GENESIS, a rule-based system that supports the generation of assemblies of 3-dimensional solids (Heisserman, 1991; Heisserman and Woodbury, 1993). The rapid generation of design representations can take advantage of special opportunities when it deals with a recurring building type, that is, a building type dealt with frequently by the users of the system. Design firms - from housing manufacturers to government agencies - accumulate considerable experience with recurring building types. But current CAD systems capture this experience and support its reuse only marginally. SEED intends to provide systematic support for the storing and retrieval of past solutions and their adaptation to similar problem situations. This motivation aligns aspects of SEED closely with current work in Artificial Intelligence that focuses on case-based design (see, for example, Kolodner, 1991; Domeshek and Kolodner, 1992; Hua et al., 1992).
series other
email
last changed 2003/04/23 15:14

_id 7ce5
authors Gal, Shahaf
year 1992
title Computers and Design Activities: Their Mediating Role in Engineering Education
source Sociomedia, ed. Edward Barret. MIT Press
summary Sociomedia: With all the new words used to describe electronic communication (multimedia, hypertext, cyberspace, etc.), do we need another one? Edward Barrett thinks we do; hence, he coins the term "sociomedia." It is meant to displace a computing economy in which technicity is hypostasized over sociality. Sociomedia, a compilation of twenty-five articles on the theory, design and practice of educational multimedia and hypermedia, attempts to re-value the communicational face of computing. Value, of course, is "ultimately a social construct." As such, it has everything to do with knowledge, power, education and technology. The projects discussed in this book represent the leading edge of electronic knowledge production in academia (not to mention major funding) and are determining the future of educational media. For these reasons, Sociomedia warrants close inspection. Barrett's introduction sets the tone. For him, designing computer media involves hardwiring a mechanism for the social construction of knowledge (1). He links computing to a process of social and communicative interactivity for constructing and desseminating knowledge. Through a mechanistic mapping of the university as hypercontext (a huge network that includes classrooms as well as services and offices), Barrett models intellectual work in such a way as to avoid "limiting definitions of human nature or human development." Education, then, can remain "where it should be--in the human domain (public and private) of sharing ideas and information through the medium of language." By leaving education in a virtual realm (where we can continue to disagree about its meaning and execution), it remains viral, mutating and contaminating in an intellectually healthy way. He concludes that his mechanistic model, by means of its reductionist approach, preserves value (7). This "value" is the social construction of knowledge. While I support the social orientation of Barrett's argument, discussions of value are related to power. I am not referring to the traditional teacher-student power structure that is supposedly dismantled through cooperative and constructivist learning strategies. The power to be reckoned with in the educational arena is foundational, that which (pre)determines value and the circulation of knowledge. "Since each of you reading this paragraph has a different perspective on the meaning of 'education' or 'learning,' and on the processes involved in 'getting an education,' think of the hybris in trying to capture education in a programmable function, in a displayable object, in a 'teaching machine'" (7). Actually, we must think about that hybris because it is, precisely, what informs teaching machines. Moreover, the basic epistemological premises that give rise to such productions are too often assumed. In the case of instructional design, the episteme of cognitive sciences are often taken for granted. It is ironic that many of the "postmodernists" who support electronic hypertextuality seem to have missed Jacques Derrida's and Michel Foucault's "deconstructions" of the epistemology underpinning cognitive sciences (if not of epistemology itself). Perhaps it is the glitz of the technology that blinds some users (qua developers) to the belief systems operating beneath the surface. Barrett is not guilty of reactionary thinking or politics; he is, in fact, quite in line with much American deconstructive and postmodern thinking. The problem arises in that he leaves open the definitions of "education," "learning" and "getting an education." One cannot engage in the production of new knowledge without orienting its design, production and dissemination, and without negotiating with others' orientations, especially where largescale funding is involved. Notions of human nature and development are structural, even infrastructural, whatever the medium of the teaching machine. Although he addresses some dynamics of power, money and politics when he talks about the recession and its effects on the conference, they are readily visible dynamics of power (3-4). Where does the critical factor of value determination, of power, of who gets what and why, get mapped onto a mechanistic model of learning institutions? Perhaps a mapping of contributors' institutions, of the funding sources for the projects showcased and for participation in the conference, and of the disciplines receiving funding for these sorts of projects would help visualize the configurations of power operative in the rising field of educational multimedia. Questions of power and money notwithstanding, Barrett's introduction sets the social and textual thematics for the collection of essays. His stress on interactivity, on communal knowledge production, on the society of texts, and on media producers and users is carried foward through the other essays, two of which I will discuss. Section I of the book, "Perspectives...," highlights the foundations, uses and possible consequences of multimedia and hypertextuality. The second essay in this section, "Is There a Class in This Text?," plays on the robust exchange surrounding Stanley Fish's book, Is There a Text in This Class?, which presents an attack on authority in reading. The author, John Slatin, has introduced electronic hypertextuality and interaction into his courses. His article maps the transformations in "the content and nature of work, and the workplace itself"-- which, in this case, is not industry but an English poetry class (25). Slatin discovered an increase of productive and cooperative learning in his electronically- mediated classroom. For him, creating knowledge in the electronic classroom involves interaction between students, instructors and course materials through the medium of interactive written discourse. These interactions lead to a new and persistent understanding of the course materials and of the participants' relation to the materials and to one another. The work of the course is to build relationships that, in my view, constitute not only the meaning of individual poems, but poetry itself. The class carries out its work in the continual and usually interactive production of text (31). While I applaud his strategies which dismantle traditional hierarchical structures in academia, the evidence does not convince me that the students know enough to ask important questions or to form a self-directing, learning community. Stanley Fish has not relinquished professing, though he, too, espouses the indeterminancy of the sign. By the fourth week of his course, Slatin's input is, by his own reckoning, reduced to 4% (39). In the transcript of the "controversial" Week 6 exchange on Gertrude Stein--the most disliked poet they were discussing at the time (40)--we see the blind leading the blind. One student parodies Stein for three lines and sums up his input with "I like it." Another, finds Stein's poetry "almost completey [sic] lacking in emotion or any artistic merit" (emphasis added). On what grounds has this student become an arbiter of "artistic merit"? Another student, after admitting being "lost" during the Wallace Steven discussion, talks of having more "respect for Stevens' work than Stein's" and adds that Stein's poetry lacks "conceptual significance[, s]omething which people of varied opinion can intelligently discuss without feeling like total dimwits...." This student has progressed from admitted incomprehension of Stevens' work to imposing her (groundless) respect for his work over Stein's. Then, she exposes her real dislike for Stein's poetry: that she (the student) missed the "conceptual significance" and hence cannot, being a person "of varied opinion," intelligently discuss it "without feeling like [a] total dimwit." Slatin's comment is frightening: "...by this point in the semester students have come to feel increasingly free to challenge the instructor" (41). The students that I have cited are neither thinking critically nor are their preconceptions challenged by student-governed interaction. Thanks to the class format, one student feels self-righteous in her ignorance, and empowered to censure. I believe strongly in student empowerment in the classroom, but only once students have accrued enough knowledge to make informed judgments. Admittedly, Slatin's essay presents only partial data (there are six hundred pages of course transcripts!); still, I wonder how much valuable knowledge and metaknowledge was gained by the students. I also question the extent to which authority and professorial dictature were addressed in this course format. The power structures that make it possible for a college to require such a course, and the choice of texts and pedagogy, were not "on the table." The traditional professorial position may have been displaced, but what took its place?--the authority of consensus with its unidentifiable strong arm, and the faceless reign of software design? Despite Slatin's claim that the students learned about the learning process, there is no evidence (in the article) that the students considered where their attitudes came from, how consensus operates in the construction of knowledge, how power is established and what relationship they have to bureaucratic insitutions. How do we, as teaching professionals, negotiate a balance between an enlightened despotism in education and student-created knowledge? Slatin, and other authors in this book, bring this fundamental question to the fore. There is no definitive answer because the factors involved are ultimately social, and hence, always shifting and reconfiguring. Slatin ends his article with the caveat that computerization can bring about greater estrangement between students, faculty and administration through greater regimentation and control. Of course, it can also "distribute authority and power more widely" (50). Power or authority without a specific face, however, is not necessarily good or just. Shahaf Gal's "Computers and Design Activities: Their Mediating Role in Engineering Education" is found in the second half of the volume, and does not allow for a theory/praxis dichotomy. Gal recounts a brief history of engineering education up to the introduction of Growltiger (GT), a computer-assisted learning aid for design. He demonstrates GT's potential to impact the learning of engineering design by tracking its use by four students in a bridge-building contest. What his text demonstrates clearly is that computers are "inscribing and imaging devices" that add another viewpoint to an on-going dialogue between student, teacher, earlier coursework, and other teaching/learning tools. The less proficient students made a serious error by relying too heavily on the technology, or treating it as a "blueprint provider." They "interacted with GT in a way that trusted the data to represent reality. They did not see their interaction with GT as a negotiation between two knowledge systems" (495). Students who were more thoroughly informed in engineering discourses knew to use the technology as one voice among others--they knew enough not simply to accept the input of the computer as authoritative. The less-advanced students learned a valuable lesson from the competition itself: the fact that their designs were not able to hold up under pressure (literally) brought the fact of their insufficient knowledge crashing down on them (and their bridges). They also had, post factum, several other designs to study, especially the winning one. Although competition and comparison are not good pedagogical strategies for everyone (in this case the competitors had volunteered), at some point what we think we know has to be challenged within the society of discourses to which it belongs. Students need critique in order to learn to push their learning into auto-critique. This is what is lacking in Slatin's discussion and in the writings of other avatars of constructivist, collaborative and computer-mediated pedagogies. Obviously there are differences between instrumental types of knowledge acquisition and discoursive knowledge accumulation. Indeed, I do not promote the teaching of reading, thinking and writing as "skills" per se (then again, Gal's teaching of design is quite discursive, if not dialogic). Nevertheless, the "soft" sciences might benefit from "bridge-building" competitions or the re-institution of some forms of agonia. Not everything agonistic is inhuman agony--the joy of confronting or creating a sound argument supported by defensible evidence, for example. Students need to know that soundbites are not sound arguments despite predictions that electronic writing will be aphoristic rather than periodic. Just because writing and learning can be conceived of hypertextually does not mean that rigor goes the way of the dinosaur. Rigor and hypertextuality are not mutually incompatible. Nor is rigorous thinking and hard intellectual work unpleasurable, although American anti-intellectualism, especially in the mass media, would make it so. At a time when the spurious dogmatics of a Rush Limbaugh and Holocaust revisionist historians circulate "aphoristically" in cyberspace, and at a time when knowledge is becoming increasingly textualized, the role of critical thinking in education will ultimately determine the value(s) of socially constructed knowledge. This volume affords the reader an opportunity to reconsider knowledge, power, and new communications technologies with respect to social dynamics and power relationships.
series other
last changed 2003/04/23 15:14

_id a3f5
authors Zandi-Nia, Abolfazl
year 1992
title Topgene: An artificial Intelligence Approach to a Design Process
source Delft University of Technology
summary This work deals with two architectural design (AD) problems at the topological level and in presence of the social norms community, privacy, circulation-cost, and intervening opportunity. The first problem concerns generating a design with respect to a set of above mentioned norms, and the second problem requires evaluation of existing designs with respect to the same set of norms. Both problems are based on the structural-behavioral relationship in buildings. This work has challenged above problems in the following senses: (1) A working system, called TOPGENE (The TOpological Pattern GENErator) has been developed. (2) Both problems may be vague and may lack enough information in their statement. For example, an AD in the presence of the social norms requires the degrees of interactions between the location pairs in the building. This information is not always implicitly available, and must be explicated from the design data. (3) An AD problem at topological level is intractable with no fast and efficient algorithm for its solution. To reduce the search efforts in the process of design generation, TOPGENE uses a heuristic hill climbing strategy that takes advantage of domain specific rules of thumbs to choose a path in the search space of a design. (4) TOPGENE uses the Q-analysis method for explication of hidden information, also hierarchical clustering of location-pairs with respect to their flow generation potential as a prerequisite information for the heuristic reasoning process. (5) To deal with a design of a building at topological level TOPGENE takes advantage of existing graph algorithms such as path-finding and planarity testing during its reasoning process. This work also presents a new efficient algorithm for keeping track of distances in a growing graph. (6) This work also presents a neural net implementation of a special case of the design generation problem. This approach is based on the Hopfield model of neural networks. The result of this approach has been used test TOPGENE approach in generating designs. A comparison of these two approaches shows that the neural network provides mathematically more optimal designs, while TOPGENE produces more realistic designs. These two systems may be integrated to create a hybrid system.
series thesis:PhD
last changed 2003/02/12 22:37

_id 2c22
authors O'Neill, Michael J.
year 1992
title Neural Network Simulation as a Computer- Aided design Tool For Predicting Wayfinding Performance
source New York: John Wiley & Sons, 1992. pp. 347-366 : ill. includes bibliography
summary Complex public facilities such as libraries, hospitals, and governmental buildings often present problems to users who must find their way through them. Research shows that difficulty in wayfinding has costs in terms of time, money, public safety, and stress that results from being lost. While a wide range of architectural research supports the notion that ease of wayfinding should be a criterion for good design, architects have no method for evaluating how well their building designs will support the wayfinding task. People store and retrieve information about the layout of the built environment in a knowledge representation known as the cognitive map. People depend on the information stored in the cognitive map to find their way through buildings. Although there are numerous simulations of the cognitive map, the mechanisms of these models are not constrained by what is known about the neurophysiology of the brain. Rather, these models incorporate search mechanisms that act on semantically encoded information about the environment. In this paper the author describes the evaluation and application of an artificial neural network simulation of the cognitive map as a means of predicting wayfinding behavior in buildings. This simulation is called NAPS-PC (Network Activity Processing Simulator--PC version). This physiologically plausible model represents knowledge about the layout of the environment through a network of inter-connected processing elements. The performance of NAPS-PC was evaluated against actual human wayfinding performance. The study found that the simulation generated behavior that matched the performance of human participants. After the validation, NAPS-PC was modified so that it could read environmental information directly from AutoCAD (a popular micro-computer-based CAD software package) drawing files, and perform 'wayfinding' tasks based on that environmental information. This prototype tool, called AutoNet, is conceptualized as a means of allowing designers to predict the wayfinding performance of users in a building before it is actually built
keywords simulation, cognition, neural networks, evaluation, floor plans, applications, wayfinding, layout, building
series CADline
last changed 2003/06/02 13:58

_id fd02
authors Tsou, Jin-Yeu
year 1992
title Using conceptual modelling and an object-oriented environment to support building cost control during early design
source College of Architecture and Urban Planning, University of Michigan
summary This research investigated formal information modelling techniques and the object-oriented knowledge representation on the domain of building cost control during early design stages. The findings contribute to an understanding of the advantages and disadvantages of applying formal modelling techniques to the analysis of architectural problems and the representation of domain knowledge in an object-oriented environment. In this study, information modelling techniques were reviewed, formal information analysis was performed, a conceptual model based on the cost control problem domain was created, a computational model based on the object-oriented approach was developed, a mechanism to support information broadcasting for representing interrelationships was implemented, and an object-oriented cost analysis system for early design (OBCIS) was demonstrated. The conceptual model, based on the elemental proposition analysis of NIAM, supports a formal approach for analyzing the problem domain; the analysis results are represented by high-level graphical notations, based on the AEC Building System Model, to visually display the information framework of the domain. The conceptual model provides an intermediate step between the system designer's view of the domain and the internal representation of the implementation platform. The object-oriented representation provides extensive data modelling abilities to help system designers intuitively represent the semantics of the problem domain. The object-oriented representation also supports more structured and integrated modules than conventional programming approaches. Although there are many advantages to applying this technique to represent the semantics of cost control knowledge, there are several issues which need to be considered: no single satisfactory classification method can be directly applied; object-oriented systems are difficult to learn; and designing reusable classes is difficult. The dependency graph and information broadcasting implemented in this research is an attempt to represent the interrelationships between domain objects. The mechanism allows users to explicitly define the interrelationships, based on semantic requirements, among domain objects. In the conventional approach, these relationships are directly interpreted by system designers and intertwined into the programming code. There are several issues which need to be studied further: indirect dependency relationship, conflict resolution, and request-update looping based on least-commitment approach.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 3ff5
authors Abbo, I.A., La Scalea, L., Otero, E. and Castaneda, L.
year 1992
title Full-Scale Simulations as Tool for Developing Spatial Design Ability
source Proceedings of the 4rd European Full-Scale Modelling Conference / Lausanne (Switzerland) 9-12 September 1992, Part C, pp. 7-10
summary Spatial Design Ability has been defined as the capability to anticipate effects (psychological impressions on potential observers or users) produced by mental manipulation of elements of architectural or urban spaces. This ability, of great importance in choosing the appropriate option during the design process, is not specifically developed in schools of architecture and is partially obtained as a by-product of drawing, designing or architectural criticism. We use our Laboratory as a tool to present spaces to people so that they can evaluate them. By means of a series of exercises, students confront their anticipations with the psychological impressions produced in other people. For this occasion, we present an experience in which students had to propose a space for an exhibition hag in which architectural projects (student thesis) were to be shown. Following the Spatial Design Ability Development Model which we have been using for several years, students first get acquainted with the use of evaluation instruments for psychological impressions as well as with research methodology. In this case, due to the short period available, we reduced research to investigate the effects produced by the manipulation of only 2 independents variables: students manipulated first the form of the roof, walls and interiors elements, secondly, color and texture of those elements. They evaluated spatial quality, character and the other psychological impressions that manipulations produced in people. They used three dimensional scale models 1/10 and 1/1.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
email
more http://info.tuwien.ac.at/efa
last changed 2003/08/25 10:12

_id ddss9219
id ddss9219
authors Bourdakis, V. and Fellows, R.F.
year 1993
title A model appraising the performance of structural systems used in sports hall and swimming pool buildings in greece
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary The selection of the best performing structural system (among steel, timber laminated, concrete, fabric tents) for medium span (30-50m) sports halls and swimming pools in Greece formed the impetus for this research. Decision-making concerning selection of the structural system is difficult in this sector of construction, as was explained in the "Long Span Structures" conference (November 1990, Athens. Greece). From the literature it has been found that most building appraisals end up at the level of data analysis and draw conclusions on the individual aspects they investigate. These approaches usually focus on a fraction of the problem, examining it very deeply and theoretically. Their drawback is loss of comprehensiveness and ability to draw conclusions on an overall level and consequently being applicable to the existing conditions. Research on an inclusive level is sparse. In this particular research project, an inclusive appraisal approach was adopted, leading to the identification of three main variables: resources, human-user-satisfaction, and technical. Consequently, this led to a combination of purely quantitative and qualitative data. Case studies were conducted on existing buildings in order to assess the actual performance of the various alternative structural systems. This paper presents the procedure followed for the identification of the research variables and the focus on the development of the model of quantification. The latter is of vital importance if the problem of incompatibility of data is to be solved, overall relation of findings is to be achieved and holistic conclusions are to be drawn.
series DDSS
last changed 2003/11/21 15:16

_id acadia03_036
id acadia03_036
authors Gerzso, J. Michael
year 2003
title On the Limitations of Shape Grammars: Comments on Aaron Fleisher’s Article “Grammatical Architecture?”
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 279-287
doi https://doi.org/10.52842/conf.acadia.2003.279
summary Shape grammars were introduced by Gips and Stiny in 1972. Since then, there have been many articles and books written by them and their associates. In 1992, Aaron Fleisher, a professor at the School of Planning, MIT, wrote a critique of their work in an article titled “Grammatical Architecture?” published in the journal Environment and Planning B. According to him, Gips, Stiny and later Mitchell, propose a hypothesis that states that shape grammars are presumed to represent knowledge of architectural form, that grammars are “formable,” and that there is a visual correspondence to verbal grammar. The strong version of “the hypothesis requires that an architectural form be equivalent to a grammar.” Fleisher considers these hypotheses unsustainable, and argues his case by analyzing the differences between language, and architecture, and by dealing with the concepts of lexicons, syntax and semantics. He concludes by stating that architectural design is negotiated in two modalities: the verbal and the visual, and that equivalences are not at issue; they do not exist. If there is such thing as a language for design, it would provide the means to maintain a discussion of the consequences in one mode, of the state and conditions of the other. Fleisher’s observations serve as the basis of this paper, a tribute to him, and also an opportunity to present an outline to an alternate approach or hypothesis to shape grammars, which is “nonlinguistic” but “generative,” in the sense that it uses production rules. A basic aspect of this hypothesis is that the only similarity between syntactic rules in language and some rules in architecture is that they are recursive.
series ACADIA
last changed 2022/06/07 07:51

_id ea96
authors Hacfoort, Eek J. and Veldhuisen, Jan K.
year 1992
title A Building Design and Evaluation System
source New York: John Wiley & Sons, 1992. pp. 195-211 : ill. table. includes bibliography
summary Within the field of architectural design there is a growing awareness of imbalance among the professionalism, the experience, and the creativity of the designers' response to the up-to-date requirements of all parties interested in the design process. The building design and evaluating system COSMOS makes it possible for various participants to work within their own domain, so that separated but coordinated work can be done. This system is meant to organize the initial stage of the design process, where user-defined functions, geometry, type of construction, and building materials are decided. It offers a tool to design a building to calculate a number of effects and for managing the information necessary to evaluate the design decisions. The system is provided with data and sets of parameters for describing the conditions, along with their properties, of the main building functions of a selection of well-known building types. The architectural design is conceptualized as being a hierarchy of spatial units, ranking from building blocks down to specific rooms or spaces. The concept of zoning is used as a means of calculating and directly evaluating the structure of the design without working out the details. A distinction is made between internal and external calculations and evaluations during the initial design process. During design on screen, an estimation can be recorded of building costs, energy costs, acoustics, lighting, construction, and utility. Furthermore, the design can be exported to a design application program, in this case AutoCAD, to make and show drawings in more detail. Through the medium of a database, external calculation and evaluation of building costs, life-cycle costs, energy costs, interior climate, acoustics, lighting, construction, and utility are possible in much more advanced application programs
keywords evaluation, applications, integration, architecture, design, construction, building, energy, cost, lighting, acoustics, performance
series CADline
last changed 2003/06/02 13:58

_id a2e6
authors Liggett, R.S., Mitchell, W.J. and Tan, M.
year 1992
title Multi-Level Analysis and Optimization of Design
source New York: John Wiley & Sons, 1992. pp. 2512-269 : ill. includes bibliography
summary This paper discusses a knowledge-based computer-aided design system, that provides multi-level analysis capabilities, and that automatically propagates constraints on design variables from level to level. It also Supports formulation and solution of optimization problems at different levels, so that a solution can be approached by solving a sequence of appropriately constrained sub-optimization problems. Theory and implementation are discussed, and a detailed case study of application to the design of small house plans is provided
keywords constraints, design, methods, knowledge base, CAD, systems, analysis, optimization, automation, user interface, shape grammars
series CADline
email
last changed 2003/06/02 14:41

_id 592a
authors Takemura, H. and Kishino, F.
year 1992
title Cooperative work environment using virtual workspace
source Proceedings of the Conference on Computer-Supported Cooperative Work: 226-232. New York: The Association for Computing Machinery
summary A virtual environment, which is created by computer graphics and an appropriate user interface, can be used in many application fields, such as teleopetution, telecommunication and real time simulation. Furthermore, if this environment could be shared by multiple users, there would be more potential applications. Discussed in this paper is a case study of building a prototype of a cooperative work environment using a virtual environment, where more than two people can solve problemscooperatively, including design strategies and implementirig issues. An environment where two operators can directly grasp, move or release stereoscopic computer graphics images by hand is implemented. The system is built by combining head position tracking stereoscopic displays, hand gesture input devices and graphics workstations. Our design goal is to utilize this type of interface for a future teleconferencing system. In order to provide good interactivity for users, we discuss potential bottlenecks and their solutions. The system allows two users to share a virtual environment and to organize 3-D objects cooperatively.
series other
last changed 2003/04/23 15:50

_id 89ab
authors Villegas, A.F. and Esparta, J.B.
year 1992
title Didactic Interactive Tools in Architectural Education: A Case Study
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 145-155
doi https://doi.org/10.52842/conf.ecaade.1992.145
summary This paper presents a proposal based on the use of new didactic interactive tools, mainly multimedia and hypertext, the combination of which is sometimes known as hypermedia.
series eCAADe
last changed 2022/06/07 07:58

_id b2f9
id b2f9
authors Bhzad Sidawi and Neveen Hamza
year 2012
title INTELLIGENT KNOWLEDGE-BASED REPOSITORY TO SUPPORT INFORMED DESIGN DECISION MAKING
source ITCON journal
summary Research highlights that architectural design is a social phenomenon that is underpinned by critical analysis of design precedents and the social interaction between designers including negotiation, collaboration and communication. CAAD systems are continuously developing as essential design tools in formulating and developing ideas. Researchers such as (Rosenman, Gero and Oxman 1992) have suggested suggest that knowledge based systems can be integrated with CAAD systems to provide design knowledge that would enable recalling design precedents that maybe linked to the design constraints. Currently CAAD systems are user centric being focused on architects rather than the end product. The systems provide limited assistance in the production of innovative design. Furthermore, the attention of the designers of knowledge based systems is providing a repository rather than a system that is capable to initiate innovation. Most of the CAAD systems have web communication tools that enable designers to communicate their design ideas with colleagues and partners in business. However, none of these systems have the capability to capture useful knowledge from the design negotiations. Students of the third to fifth year at College of Architecture, University of Dammam were surveyed and interviewed to find out how far design tools, communications and resources would impact the production of innovative design projects. The survey results show that knowledge extracted from design negotiations would impact the innovative design outcome. It highlights also that present design precedents are not very helpful and design negotiations between students, tutors and other students are not documented thus fully incorporated into the design scheme. The paper argues that the future CAAD systems should be capable to recognize innovative design precedents, and incorporate knowledge that is resulted from design negotiations. This would help students to gain a critical mass of knowledge that would underpin informed design decisions.
series journal paper
type normal paper
email
more http://www.itcon.org/cgi-bin/works/Show?2012_20
last changed 2012/09/19 13:41

_id 6cfd
authors Harfmann, Anton C. and Majkowski, Bruce R.
year 1992
title Component-Based Spatial Reasoning
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 103-111
doi https://doi.org/10.52842/conf.acadia.1992.103
summary The design process and ordering of individual components through which architecture is realized relies on the use of abstract "models" to represent a proposed design. The emergence and use of these abstract "models" for building representation has a long history and tradition in the field of architecture. Models have been made and continue to be made for the patron, occasionally the public, and as a guide for the builders. Models have also been described as a means to reflect on the design and to allow the design to be in dialogue with the creator.

The term "model" in the above paragraph has been used in various ways and in this context is defined as any representation through which design intent is expressed. This includes accurate/ rational or abstract drawings (2- dimensional and 3-dimensional), physical models (realistic and abstract) and computer models (solid, void and virtual reality). The various models that fall within the categories above have been derived from the need to "view" the proposed design in various ways in order to support intuitive reasoning about the proposal and for evaluation purposes. For example, a 2-dimensional drawing of a floor plan is well suited to support reasoning about spatial relationships and circulation patterns while scaled 3-dimensional models facilitate reasoning about overall form, volume, light, massing etc. However, the common denominator of all architectural design projects (if the intent is to construct them in actual scale, physical form) are the discrete building elements from which the design will be constructed. It is proposed that a single computational model representing individual components supports all of the above "models" and facilitates "viewing"' the design according to the frame of reference of the viewer.

Furthermore, it is the position of the authors that all reasoning stems from this rudimentary level of modeling individual components.

The concept of component representation has been derived from the fact that a "real" building (made from individual components such as nuts, bolts and bar joists) can be "viewed" differently according to the frame of reference of the viewer. Each individual has the ability to infer and abstract from the assemblies of components a variety of different "models" ranging from a visceral, experiential understanding to a very technical, physical understanding. The component concept has already proven to be a valuable tool for reasoning about assemblies, interferences between components, tracing of load path and numerous other component related applications. In order to validate the component-based modeling concept this effort will focus on the development of spatial understanding from the component-based model. The discussions will, therefore, center about the representation of individual components and the development of spatial models and spatial reasoning from the component model. In order to frame the argument that spatial modeling and reasoning can be derived from the component representation, a review of the component-based modeling concept will precede the discussions of spatial issues.

series ACADIA
email
last changed 2022/06/07 07:49

_id caadria2004_k-1
id caadria2004_k-1
authors Kalay, Yehuda E.
year 2004
title CONTEXTUALIZATION AND EMBODIMENT IN CYBERSPACE
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 5-14
doi https://doi.org/10.52842/conf.caadria.2004.005
summary The introduction of VRML (Virtual Reality Markup Language) in 1994, and other similar web-enabled dynamic modeling software (such as SGI’s Open Inventor and WebSpace), have created a rush to develop on-line 3D virtual environments, with purposes ranging from art, to entertainment, to shopping, to culture and education. Some developers took their cues from the science fiction literature of Gibson (1984), Stephenson (1992), and others. Many were web-extensions to single-player video games. But most were created as a direct extension to our new-found ability to digitally model 3D spaces and to endow them with interactive control and pseudo-inhabitation. Surprisingly, this technologically-driven stampede paid little attention to the core principles of place-making and presence, derived from architecture and cognitive science, respectively: two principles that could and should inform the essence of the virtual place experience and help steer its development. Why are the principles of place-making and presence important for the development of virtual environments? Why not simply be content with our ability to create realistically-looking 3D worlds that we can visit remotely? What could we possibly learn about making these worlds better, had we understood the essence of place and presence? To answer these questions we cannot look at place-making (both physical and virtual) from a 3D space-making point of view alone, because places are not an end unto themselves. Rather, places must be considered a locus of contextualization and embodiment that ground human activities and give them meaning. In doing so, places acquire a meaning of their own, which facilitates, improves, and enriches many aspects of our lives. They provide us with a means to interpret the activities of others and to direct our own actions. Such meaning is comprised of the social and cultural conceptions and behaviors imprinted on the environment by the presence and activities of its inhabitants, who in turn, ‘read’ by them through their own corporeal embodiment of the same environment. This transactional relationship between the physical aspects of an environment, its social/cultural context, and our own embodiment of it, combine to create what is known as a sense of place: the psychological, physical, social, and cultural framework that helps us interpret the world around us, and directs our own behavior in it. In turn, it is our own (as well as others’) presence in that environment that gives it meaning, and shapes its social/cultural character. By understanding the essence of place-ness in general, and in cyberspace in particular, we can create virtual places that can better support Internet-based activities, and make them equal to, in some cases even better than their physical counterparts. One of the activities that stands to benefit most from understanding the concept of cyber-places is learning—an interpersonal activity that requires the co-presence of others (a teacher and/or fellow learners), who can point out the difference between what matters and what does not, and produce an emotional involvement that helps students learn. Thus, while many administrators and educators rush to develop webbased remote learning sites, to leverage the economic advantages of one-tomany learning modalities, these sites deprive learners of the contextualization and embodiment inherent in brick-and-mortar learning institutions, and which are needed to support the activity of learning. Can these qualities be achieved in virtual learning environments? If so, how? These are some of the questions this talk will try to answer by presenting a virtual place-making methodology and its experimental implementation, intended to create a sense of place through contextualization and embodiment in virtual learning environments.
series CAADRIA
type normal paper
last changed 2022/06/07 07:52

_id 46c7
id 46c7
authors Ozel, Filiz
year 1992
title Data Modeling Needs of Life Safety Code (LSC) Compliance Applications
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 177-185
doi https://doi.org/10.52842/conf.acadia.1992.177
summary One of the most complex code compliance issues originates from the conformance of designs to Life Safety Code (NFPA 101). The development of computer based code compliance checking programs attracted the attention of building researchers and practitioners alike. These studies represent a number of approaches ranging from CAD based procedural approaches to rule based, non graphic ones, but they do not address the interaction of the rule base of such systems with graphic data bases that define the geometry of architectural objects. Automatic extraction of the attributes and the configuration of building systems requires 11 architectural object - graphic entity" data models that allow access and retrieval of the necessary data for code compliance checking. This study aims to specifically focus on the development of such a data model through the use of AutoLISP feature of AutoCAD (Autodesk Inc.) graphic system. This data model is intended to interact with a Life Safety Code rule base created through Level5-Object (Focus Inc.) expert system.

Assuming the availability of a more general building data model, one must define life and fire safety features of a building before any automatic checking can be performed. Object oriented data structures are beginning to be applied to design objects, since they allow the type versatility demanded by design applications. As one generates a functional view of the main data model, the software user must provide domain specific information. A functional view is defined as the process of generating domain specific data structures from a more general purpose data model, such as defining egress routes from wall or room object data structure. Typically in the early design phase of a project, these are related to the emergency egress design features of a building. Certain decisions such as where to provide sprinkler protection or the location of protected egress ways must be made early in the process.

series ACADIA
email
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 12HOMELOGIN (you are user _anon_183759 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002