CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 16 of 16

_id 4704
authors Amirante, I., Rinaldi, S. and Muzzillo, F.
year 1992
title A Tutorial Experiment Concerning Dampness Diagnosis Supported by an Expert System
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 159-172
doi https://doi.org/10.52842/conf.ecaade.1992.159
summary (A) The teaching of Technology of Building Rehabilitation in Italian Universities - (B) Experimental course of technological rehabilitation with computer tools - (C) Synthesis of technological approach - (D) Dampness diagnostic process using the Expert System - (E) Primary consideration on tutorial experience - (F) Bibliography
series eCAADe
last changed 2022/06/07 07:54

_id cef3
authors Bridges, Alan H.
year 1992
title Computing and Problem Based Learning at Delft University of Technology Faculty of Architecture
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 289-294
doi https://doi.org/10.52842/conf.ecaade.1992.289
summary Delft University of Technology, founded in 1842, is the oldest and largest technical university in the Netherlands. It provides education for more than 13,000 students in fifteen main subject areas. The Faculty of Architecture, Housing, Urban Design and Planning is one of the largest faculties of the DUT with some 2000 students and over 500 staff members. The course of study takes four academic years: a first year (Propaedeuse) and a further three years (Doctoraal) leading to the "ingenieur" qualification. The basic course material is delivered in the first two years and is taken by all students. The third and fourth years consist of a smaller number of compulsory subjects in each of the department's specialist areas together with a wide range of option choices. The five main subject areas the students may choose from for their specialisation are Architecture, Building and Project Management, Building Technology, Urban Design and Planning, and Housing.

The curriculum of the Faculty has been radically revised over the last two years and is now based on the concept of "Problem-Based Learning". The subject matter taught is divided thematically into specific issues that are taught in six week blocks. The vehicles for these blocks are specially selected and adapted case studies prepared by teams of staff members. These provide a focus for integrating specialist subjects around a studio based design theme. In the case of second year this studio is largely computer-based: many drawings are produced by computer and several specially written computer applications are used in association with the specialist inputs.

This paper describes the "block structure" used in second year, giving examples of the special computer programs used, but also raises a number of broader educational issues. Introduction of the block system arose as a method of curriculum integration in response to difficulties emerging from the independent functioning of strong discipline areas in the traditional work groups. The need for a greater level of selfdirected learning was recognised as opposed to the "passive information model" of student learning in which the students are seen as empty vessels to be filled with knowledge - which they are then usually unable to apply in design related contexts in the studio. Furthermore, the value of electives had been questioned: whilst enabling some diversity of choice, they may also be seen as diverting attention and resources from the real problems of teaching architecture.

series eCAADe
email
last changed 2022/06/07 07:54

_id 89d9
authors Cajati, Claudio
year 1992
title The New Teaching of an Architect: The Rôle of Expert Systems in Technological Culture
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 435-442
doi https://doi.org/10.52842/conf.ecaade.1992.435
summary We already have the EEC, that is the European Economic Community. We have to build the CCE, that is the Common Cultural Europe. Architects and building engineers of any european country will be allowed to freely practise in any other country of the EEC. Of course, it is not only matter of coming down of the frontiers, of a greater labour mobility. Not even it will be enough that the university degree courses of the different countries agree to and put into effect the EEC common directives. They need rules and guidelines entering into the merits of practice: rules and guidelines which, rather than a legal and bureaucratic matter, must be the result of a common cultural and technical work, about clear and delimited questions of shared subjects, in which all the community countries be deeply concerned. Analogously, in the very field of research, the project "Human Capital and Mobility" has in view a greater european scientific and technological competitiveness, through an integration of human and material resources of different research centres, such as in shared-cost research projects and in concerted research actions. Such an integration is neither easy nor rapid. The political, social, cultural, technological peculiarities of the countries of the European Community certainly constitute an obstacle for the creation of a supernational cultural and technological pool. of common opportunities. These peculiarities, however, aren't only a restraint for the european community effort of unification and construction of shared goals, constraints, rules, methods, techniques, tools. They mean also a richness, an unrepeatable resourse: they are the result of a historical millenary stratification, which gave rise to urban and architectural contexts, to cultural and technological traditions it would be a serious mistake to waste.
series eCAADe
email
last changed 2022/06/07 07:54

_id c434
authors Colajanni, B., Pellitteri, G. and Scianna, A.
year 1992
title Two Approaches to Teaching Computers in Architecture: The Experience in the Faculty of Engineering in Palermo, Italy
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 295-306
doi https://doi.org/10.52842/conf.ecaade.1992.295
summary Teaching the use of computers in architecture poses the same kind of problems as teaching mathematics. To both there are two possible approaches. The first presents the discipline as a tool of which the merely instrumental aspect is emphasized. Teaching is limited to show the results obtainable by existing programs and how to get them. The second approach, on the contrary emphasizes the autonomous nature of the discipline, mathematics as much as computing, on the basis of the convincement that the maximum of instrumental usefulness can be obtained through the knowledge at the highest degree of generality and, then, of abstraction. The first approach changes little in the mind of the student. He simply learns that is possible, and then worthy doing, a certain amount of operations, mainly checks of performances (and not only the control of the aspect, now easy with one of the many existing CAD) or searches of technical informations in some database. The second approach gives the student the consciousness of the manageability of abstract structures of relationships. He acquires then the idea of creating by himself particular structures of relationships and managing them. This can modify the very idea of the design procedure giving the student the consciousness that he can intervene directly in every segment of the design procedure, reshaping it to some extent in a way better suited to the particular problem he is dealing with. Of course this second approach implies learning not only a language but also the capability of coming to terms with languages. And again it is a cultural acquisition that can be very useful when referred to the languages of architecture. Furthermore the capability of simulating on the computer also a small segment of the design process gives the student a better understanding both of the particular problem he is dealing with and of the very nature of design. As for the first effect, it happens whenever a translation is done from a language to another one. One is obliged to get to the core of the matter in order to overcome the difficulties rising from the different bias of the two languages. The second effect comes from the necessity of placing the studied segment in the general flow of the design process. The organisation in a linear sequence of action to be accomplished recursively in an order always varying in any design occasion is an extremely useful exercise to understand the signification and the techniques of formalisation of design problems.
series eCAADe
email
last changed 2022/06/07 07:56

_id 4857
authors Escola Tecnica Superior D'arquitectura de Barcelona (Ed.)
year 1992
title CAAD Instruction: The New Teaching of an Architect?
source eCAADe Conference Proceedings / Barcelona (Spain) 12-14 November 1992, 551 p.
doi https://doi.org/10.52842/conf.ecaade.1992
summary The involvement of computer graphic systems in the transmission of knowledge in the areas of urban planning and architectural design will bring a significant change to the didactic programs and methods of those schools which have decided to adopt these new instruments. Workshops of urban planning and architectural design will have to modify their structures, and teaching teams will have to revise their current programs. Some european schools and faculties of architecture have taken steps in this direction. Others are willing to join them.

This process is only delayed by the scarcity of material resources, and by the slowness with which a sufficient number of teachers are adopting these methods.

ECAADE has set out to analyze the state of this issue during its next conference, and it will be discussed from various points of view. From this confrontation of ideas will come, surely, the guidelines for progress in the years to come.

The different sessions will be grouped together following these four themes:

(A.) Multimedia and Course Work / State of the art of the synthesis of graphical and textual information favored by new available multimedia computer programs. Their repercussions on academic programs. (B.) The New Design Studio / Physical characteristics, data concentration and accessibility of a computerized studio can be better approached in a computerized workshop. (C.) How to manage the new education system / Problems and possibilities raised, from the practical and organizational points of view, of architectural education by the introduction of computers in the classrooms. (D.) CAAI. Formal versus informal structure / How will the traditional teaching structure be affected by the incidence of these new systems in which the access to knowledge and information can be obtained in a random way and guided by personal and subjective criteria.

series eCAADe
email
last changed 2022/06/07 07:49

_id 7ce5
authors Gal, Shahaf
year 1992
title Computers and Design Activities: Their Mediating Role in Engineering Education
source Sociomedia, ed. Edward Barret. MIT Press
summary Sociomedia: With all the new words used to describe electronic communication (multimedia, hypertext, cyberspace, etc.), do we need another one? Edward Barrett thinks we do; hence, he coins the term "sociomedia." It is meant to displace a computing economy in which technicity is hypostasized over sociality. Sociomedia, a compilation of twenty-five articles on the theory, design and practice of educational multimedia and hypermedia, attempts to re-value the communicational face of computing. Value, of course, is "ultimately a social construct." As such, it has everything to do with knowledge, power, education and technology. The projects discussed in this book represent the leading edge of electronic knowledge production in academia (not to mention major funding) and are determining the future of educational media. For these reasons, Sociomedia warrants close inspection. Barrett's introduction sets the tone. For him, designing computer media involves hardwiring a mechanism for the social construction of knowledge (1). He links computing to a process of social and communicative interactivity for constructing and desseminating knowledge. Through a mechanistic mapping of the university as hypercontext (a huge network that includes classrooms as well as services and offices), Barrett models intellectual work in such a way as to avoid "limiting definitions of human nature or human development." Education, then, can remain "where it should be--in the human domain (public and private) of sharing ideas and information through the medium of language." By leaving education in a virtual realm (where we can continue to disagree about its meaning and execution), it remains viral, mutating and contaminating in an intellectually healthy way. He concludes that his mechanistic model, by means of its reductionist approach, preserves value (7). This "value" is the social construction of knowledge. While I support the social orientation of Barrett's argument, discussions of value are related to power. I am not referring to the traditional teacher-student power structure that is supposedly dismantled through cooperative and constructivist learning strategies. The power to be reckoned with in the educational arena is foundational, that which (pre)determines value and the circulation of knowledge. "Since each of you reading this paragraph has a different perspective on the meaning of 'education' or 'learning,' and on the processes involved in 'getting an education,' think of the hybris in trying to capture education in a programmable function, in a displayable object, in a 'teaching machine'" (7). Actually, we must think about that hybris because it is, precisely, what informs teaching machines. Moreover, the basic epistemological premises that give rise to such productions are too often assumed. In the case of instructional design, the episteme of cognitive sciences are often taken for granted. It is ironic that many of the "postmodernists" who support electronic hypertextuality seem to have missed Jacques Derrida's and Michel Foucault's "deconstructions" of the epistemology underpinning cognitive sciences (if not of epistemology itself). Perhaps it is the glitz of the technology that blinds some users (qua developers) to the belief systems operating beneath the surface. Barrett is not guilty of reactionary thinking or politics; he is, in fact, quite in line with much American deconstructive and postmodern thinking. The problem arises in that he leaves open the definitions of "education," "learning" and "getting an education." One cannot engage in the production of new knowledge without orienting its design, production and dissemination, and without negotiating with others' orientations, especially where largescale funding is involved. Notions of human nature and development are structural, even infrastructural, whatever the medium of the teaching machine. Although he addresses some dynamics of power, money and politics when he talks about the recession and its effects on the conference, they are readily visible dynamics of power (3-4). Where does the critical factor of value determination, of power, of who gets what and why, get mapped onto a mechanistic model of learning institutions? Perhaps a mapping of contributors' institutions, of the funding sources for the projects showcased and for participation in the conference, and of the disciplines receiving funding for these sorts of projects would help visualize the configurations of power operative in the rising field of educational multimedia. Questions of power and money notwithstanding, Barrett's introduction sets the social and textual thematics for the collection of essays. His stress on interactivity, on communal knowledge production, on the society of texts, and on media producers and users is carried foward through the other essays, two of which I will discuss. Section I of the book, "Perspectives...," highlights the foundations, uses and possible consequences of multimedia and hypertextuality. The second essay in this section, "Is There a Class in This Text?," plays on the robust exchange surrounding Stanley Fish's book, Is There a Text in This Class?, which presents an attack on authority in reading. The author, John Slatin, has introduced electronic hypertextuality and interaction into his courses. His article maps the transformations in "the content and nature of work, and the workplace itself"-- which, in this case, is not industry but an English poetry class (25). Slatin discovered an increase of productive and cooperative learning in his electronically- mediated classroom. For him, creating knowledge in the electronic classroom involves interaction between students, instructors and course materials through the medium of interactive written discourse. These interactions lead to a new and persistent understanding of the course materials and of the participants' relation to the materials and to one another. The work of the course is to build relationships that, in my view, constitute not only the meaning of individual poems, but poetry itself. The class carries out its work in the continual and usually interactive production of text (31). While I applaud his strategies which dismantle traditional hierarchical structures in academia, the evidence does not convince me that the students know enough to ask important questions or to form a self-directing, learning community. Stanley Fish has not relinquished professing, though he, too, espouses the indeterminancy of the sign. By the fourth week of his course, Slatin's input is, by his own reckoning, reduced to 4% (39). In the transcript of the "controversial" Week 6 exchange on Gertrude Stein--the most disliked poet they were discussing at the time (40)--we see the blind leading the blind. One student parodies Stein for three lines and sums up his input with "I like it." Another, finds Stein's poetry "almost completey [sic] lacking in emotion or any artistic merit" (emphasis added). On what grounds has this student become an arbiter of "artistic merit"? Another student, after admitting being "lost" during the Wallace Steven discussion, talks of having more "respect for Stevens' work than Stein's" and adds that Stein's poetry lacks "conceptual significance[, s]omething which people of varied opinion can intelligently discuss without feeling like total dimwits...." This student has progressed from admitted incomprehension of Stevens' work to imposing her (groundless) respect for his work over Stein's. Then, she exposes her real dislike for Stein's poetry: that she (the student) missed the "conceptual significance" and hence cannot, being a person "of varied opinion," intelligently discuss it "without feeling like [a] total dimwit." Slatin's comment is frightening: "...by this point in the semester students have come to feel increasingly free to challenge the instructor" (41). The students that I have cited are neither thinking critically nor are their preconceptions challenged by student-governed interaction. Thanks to the class format, one student feels self-righteous in her ignorance, and empowered to censure. I believe strongly in student empowerment in the classroom, but only once students have accrued enough knowledge to make informed judgments. Admittedly, Slatin's essay presents only partial data (there are six hundred pages of course transcripts!); still, I wonder how much valuable knowledge and metaknowledge was gained by the students. I also question the extent to which authority and professorial dictature were addressed in this course format. The power structures that make it possible for a college to require such a course, and the choice of texts and pedagogy, were not "on the table." The traditional professorial position may have been displaced, but what took its place?--the authority of consensus with its unidentifiable strong arm, and the faceless reign of software design? Despite Slatin's claim that the students learned about the learning process, there is no evidence (in the article) that the students considered where their attitudes came from, how consensus operates in the construction of knowledge, how power is established and what relationship they have to bureaucratic insitutions. How do we, as teaching professionals, negotiate a balance between an enlightened despotism in education and student-created knowledge? Slatin, and other authors in this book, bring this fundamental question to the fore. There is no definitive answer because the factors involved are ultimately social, and hence, always shifting and reconfiguring. Slatin ends his article with the caveat that computerization can bring about greater estrangement between students, faculty and administration through greater regimentation and control. Of course, it can also "distribute authority and power more widely" (50). Power or authority without a specific face, however, is not necessarily good or just. Shahaf Gal's "Computers and Design Activities: Their Mediating Role in Engineering Education" is found in the second half of the volume, and does not allow for a theory/praxis dichotomy. Gal recounts a brief history of engineering education up to the introduction of Growltiger (GT), a computer-assisted learning aid for design. He demonstrates GT's potential to impact the learning of engineering design by tracking its use by four students in a bridge-building contest. What his text demonstrates clearly is that computers are "inscribing and imaging devices" that add another viewpoint to an on-going dialogue between student, teacher, earlier coursework, and other teaching/learning tools. The less proficient students made a serious error by relying too heavily on the technology, or treating it as a "blueprint provider." They "interacted with GT in a way that trusted the data to represent reality. They did not see their interaction with GT as a negotiation between two knowledge systems" (495). Students who were more thoroughly informed in engineering discourses knew to use the technology as one voice among others--they knew enough not simply to accept the input of the computer as authoritative. The less-advanced students learned a valuable lesson from the competition itself: the fact that their designs were not able to hold up under pressure (literally) brought the fact of their insufficient knowledge crashing down on them (and their bridges). They also had, post factum, several other designs to study, especially the winning one. Although competition and comparison are not good pedagogical strategies for everyone (in this case the competitors had volunteered), at some point what we think we know has to be challenged within the society of discourses to which it belongs. Students need critique in order to learn to push their learning into auto-critique. This is what is lacking in Slatin's discussion and in the writings of other avatars of constructivist, collaborative and computer-mediated pedagogies. Obviously there are differences between instrumental types of knowledge acquisition and discoursive knowledge accumulation. Indeed, I do not promote the teaching of reading, thinking and writing as "skills" per se (then again, Gal's teaching of design is quite discursive, if not dialogic). Nevertheless, the "soft" sciences might benefit from "bridge-building" competitions or the re-institution of some forms of agonia. Not everything agonistic is inhuman agony--the joy of confronting or creating a sound argument supported by defensible evidence, for example. Students need to know that soundbites are not sound arguments despite predictions that electronic writing will be aphoristic rather than periodic. Just because writing and learning can be conceived of hypertextually does not mean that rigor goes the way of the dinosaur. Rigor and hypertextuality are not mutually incompatible. Nor is rigorous thinking and hard intellectual work unpleasurable, although American anti-intellectualism, especially in the mass media, would make it so. At a time when the spurious dogmatics of a Rush Limbaugh and Holocaust revisionist historians circulate "aphoristically" in cyberspace, and at a time when knowledge is becoming increasingly textualized, the role of critical thinking in education will ultimately determine the value(s) of socially constructed knowledge. This volume affords the reader an opportunity to reconsider knowledge, power, and new communications technologies with respect to social dynamics and power relationships.
series other
last changed 2003/04/23 15:14

_id e8f0
authors Mackey, David L.
year 1992
title Mission Possible: Computer Aided Design for Everyone
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 65-73
doi https://doi.org/10.52842/conf.acadia.1992.065
summary A pragmatic model for the building of an electronic architectural design curriculum which will offer students and faculty the opportunity to fully integrate information age technologies into the educational experience is becoming increasingly desirable.

The majority of architectural programs teach technology topics through content specific courses which appear as an educational sequence within the curriculum. These technology topics have traditionally included structural design, environmental systems, and construction materials and methods. Likewise, that course model has been broadly applied to the teaching of computer aided design, which is identified as a technology topic. Computer technology has resulted in a proliferation of courses which similarly introduce the student to computer graphic and design systems through a traditional course structure.

Inevitably, competition for priority arises within the curriculum, introducing the potential risk that otherwise valuable courses and/or course content will be replaced by the "'newer" technology, and providing fertile ground for faculty and administrative resistance to computerization as traditional courses are pushed aside or seem threatened.

An alternative view is that computer technology is not a "topic", but rather the medium for creating a design (and studio) environment for informed decision making.... deciding what it is we should build. Such a viewpoint urges the development of a curricular structure, through which the impact of computer technology may be understood as that medium for design decision making, as the initial step in addressing the current and future needs of architectural education.

One example of such a program currently in place at the College of Architecture and Planning, Ball State University takes an approach which overlays, like a transparent tissue, the computer aided design content (or a computer emphasis) onto the primary curriculum.

With the exception of a general introductory course at the freshman level, computer instruction and content issues may be addressed effectively within existing studio courses. The level of operational and conceptual proficiency achieved by the student, within an electronic design studio, makes the electronic design environment selfsustaining and maintainable across the entire curriculum. The ability to broadly apply computer aided design to the educational experience can be independent of the availability of many specialized computer aided design faculty.

series ACADIA
last changed 2022/06/07 07:59

_id 612c
authors Madrazo, Leandro
year 1998
title Computers and Architectural Design: Going Beyond the Tool
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 44-57
doi https://doi.org/10.52842/conf.acadia.1998.044
summary More often than not, discussions taking place in specialised conferences dealing with computers and design tend to focus mostly on the tool itself. What the computer can do that other tools cannot, how computers might improve design and whether a new aesthetic would result from the computer; these are among the most recurrent issues addressed in those forums. But, by placing the instrument at the center of the debate, we might be distorting the nature of design. In the course KEYWORDS, carried out in the years 1992 and 1993 at the ETH Zurich, the goal was to transcend the discourses that concentrate on the computer, integrating it in a wider theoretical framework including principles of modern art and architecture. This paper presents a summary of the content and results of this course.

series ACADIA
email
last changed 2022/06/07 07:59

_id 80b9
authors Madrazo, Leandro
year 2000
title Computers and architectural design: going beyond the tool
source Automation in Construction 9 (1) (2000) pp. 5-17
summary More often than not, discussions taking place in specialised conferences dealing with computers and design tend to focus mostly on the tool itself. What the computer can do that other tools cannot, how computers might improve design and whether a new aesthetic would result from the computer; these are among the most recurrent issues addressed in those forums. But, by placing the instrument at the center of the debate, we might be distorting the nature of design. In the course KEYWORDS, carried out in the years 1992 and 1993 at the ETH Zurich, the goal was to transcend the discourses that concentrate on the computer, integrating it in a wider theoretical framework including principles of modern art and architecture. This paper presents a summary of the content and results of this course.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 244d
authors Monedero, J., Casaus, A. and Coll, J.
year 1992
title From Barcelona. Chronicle and Provisional Evaluation of a New Course on Architectural Solid Modelling by Computerized Means
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 351-362
doi https://doi.org/10.52842/conf.ecaade.1992.351
summary The first step made at the ETSAB in the computer field goes back to 1965, when professors Margarit and Buxade acquired an IBM computer, an electromechanical machine which used perforated cards and which was used to produce an innovative method of structural calculation. This method was incorporated in the academic courses and, at that time, this repeated question "should students learn programming?" was readily answered: the exercises required some knowledge of Fortran and every student needed this knowledge to do the exercises. This method, well known in Europe at that time, also provided a service for professional practice and marked the beginning of what is now the CC (Centro de Calculo) of our school. In 1980 the School bought a PDP1134, a computer which had 256 Kb of RAM, two disks of 5 Mb and one of lO Mb, and a multiplexor of 8 lines. Some time later the general politics of the UPC changed their course and this was related to the purchase of a VAX which is still the base of the CC and carries most of the administrative burden of the school. 1985 has probably been the first year in which we can talk of a general policy of the school directed towards computers. A report has been made that year, which includes an inquest adressed to the six Departments of the School (Graphic Expression, Projects, Structures, Construction, Composition and Urbanism) and that contains interesting data. According to the report, there were four departments which used computers in their current courses, while the two others (Projects and Composition) did not use them at all. The main user was the Department of Structures while the incidence of the remaining three was rather sporadic. The kind of problems detected in this report are very typical: lack of resources for hardware and software and for maintenance of the few computers that the school had at that moment; a demand (posed by the students) greatly exceeding the supply (computers and teachers). The main problem appeared to be the lack of computer graphic devices and proper software.

series eCAADe
email
last changed 2022/06/07 07:58

_id 1992
authors Russell, Peter
year 2002
title Using Higher Level Programming in Interdisciplinary teams as a means of training for Concurrent Engineering
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 14-19
doi https://doi.org/10.52842/conf.ecaade.2002.014
summary The paper explains a didactical method for training students that has been run three times to date. The premise of the course is to combine students from different faculties into interdisciplinary teams. These teams then have a complex problem to resolve within an extremely short time span. In light of recent works from Joy and Kurzweil, the theme Robotics was chosen as an exercise that is timely, interesting and related, but not central to the studies of the various faculties. In groups of 3 to 5, students from faculties of architecture, computer science and mechanical engineering are entrusted to design, build and program a robot which must successfully execute a prescribed set of actions in a competitive atmosphere. The entire course lasts ten days and culminates with the competitive evaluation. The robots must navigate a labyrinth, communicate with on another and be able to cover longer distances with some speed. In order to simplify the resources available to the students, the Lego Mindstorms Robotic syshed backgrounds instaed of synthetic ones. The combination of digitally produced (scanned) sperical images together with the use of HDR open a wide range of new implementation in the field of architecture, especially in combining synthetic elements in existing buildings, e.g. new interior elements in an existing historical museum).ural presentations in the medium of computer animation. These new forms of expression of design thoughts and ideas go beyond mere model making, and move more towards scenemaking and storytelling. The latter represents new methods of expression within computational environments for architects and designers.its boundaries. The project was conducted using the pedagogical framework of the netzentwurf.de; a relatively well established Internet based communication platform. This means that the studio was organised in the „traditional“ structure consisting of an initial 3 day workshop, a face to face midterm review, and a collective final review, held 3,5 months later in the Museum of Communication in Frankfurt am Main, Germany. In teams of 3 (with each student from a different university and a tutor located at a fourth) the students worked over the Internet to produce collaborative design solutions. The groups ended up with designs that spanned a range of solutions between real and virtual architecture. Examples of the student’s work (which is all available online) as well as their working methods are described. It must be said that the energy invested in the studio by the organisers of the virtual campus (as well as the students who took part) was considerably higher than in normal design studios and the paper seeks to look critically at the effort in relation to the outcomes achieved. The range and depth of the student’s work was surprising to many in the project, especially considering the initial hurdles (both social and technological) that had to overcome. The self-referential nature of the theme, the method and the working environment encouraged the students to take a more philosg and programming a winning robot. These differences became apparent early in the sessions and each group had to find ways to communicate their ideas and to collectively develop them by building on the strengths of each team member.
series eCAADe
type normal paper
email
last changed 2022/06/07 07:56

_id 831d
authors Seebohm, Thomas
year 1992
title Discoursing on Urban History Through Structured Typologies
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 157-175
doi https://doi.org/10.52842/conf.acadia.1992.157
summary How can urban history be studied with the aid of three-dimensional computer modeling? One way is to model known cities at various times in history, using historical records as sources of data. While such studies greatly enhance the understanding of the form and structure of specific cities at specific points in time, it is questionable whether such studies actually provide a true understanding of history. It can be argued that they do not because such studies only show a record of one of many possible courses of action at various moments in time. To gain a true understanding of urban history one has to place oneself back in historical time to consider all of the possible courses of action which were open in the light of the then current situation of the city, to act upon a possible course of action and to view the consequences in the physical form of the city. Only such an understanding of urban history can transcend the memory of the actual and hence the behavior of the possible. Moreover, only such an understanding can overcome the limitations of historical relativism, which contends that historical fact is of value only in historical context, with the realization, due to Benedetto Croce and echoed by Rudolf Bultmann, that the horizon of "'deeper understanding" lies in "'the actuality of decision"' (Seebohm and van Pelt 1990).

One cannot conduct such studies on real cities except, perhaps, as a point of departure at some specific point in time to provide an initial layout for a city knowing that future forms derived by the studies will diverge from that recorded in history. An entirely imaginary city is therefore chosen. Although the components of this city at the level of individual buildings are taken from known cities in history, this choice does not preclude alternative forms of the city. To some degree, building types are invariants and, as argued in the Appendix, so are the urban typologies into which they may be grouped. In this imaginary city students of urban history play the role of citizens or groups of citizens. As they defend their interests and make concessions, while interacting with each other in their respective roles, they determine the nature of the city as it evolves through the major periods of Western urban history in the form of threedimensional computer models.

My colleague R.J. van Pelt and I presented this approach to the study of urban history previously at ACADIA (Seebohm and van Pelt 1990). Yet we did not pay sufficient attention to the manner in which such urban models should be structured and how the efforts of the participants should be coordinated. In the following sections I therefore review what the requirements are for three-dimensional modeling to support studies in urban history as outlined both from the viewpoint of file structure of the models and other viewpoints which have bearing on this structure. Three alternative software schemes of progressively increasing complexity are then discussed with regard to their ability to satisfy these requirements. This comparative study of software alternatives and their corresponding file structures justifies the present choice of structure in relation to the simpler and better known generic alternatives which do not have the necessary flexibility for structuring the urban model. Such flexibility means, of course, that in the first instance the modeling software is more timeconsuming to learn than a simple point and click package in accord with the now established axiom that ease of learning software tools is inversely related to the functional power of the tools. (Smith 1987).

series ACADIA
email
last changed 2022/06/07 07:56

_id 25b7
authors Smeltzer, G., Roelen, W. and Maver, T.W.
year 1992
title Design Modelling and Design Presentation From a Computer-Generated Image Towards a Multi-user Design System
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 137-144
doi https://doi.org/10.52842/conf.ecaade.1992.137
summary CAD systems regularly offer new techniques for the presentation of design proposals like computer-generated (stereo-) images, animations, holography and virtual reality. These techniques are mainly used for the presentation of a final design or for the presentation of buildings that have already been constructed. As in the course of time the quality of the CAD systems and their users have improved enormously, it is also possible to use these systems for the evaluation of several temporary design proposals during the design process. Since 'beautiful pictures' and 'wonderful animations' have already shown their great value when presenting a design, it is sometimes as if CAD systems are considered suitable for this propose only. Even new techniques like virtual reality systems seem to be valued only through the 'tinted glasses' of the presentation capabilities. Hardly any attention is paid to the possibilities that these new techniques offer as an instrument to support modelling and evaluation during the design process. This article will outline the results of research and development in the field of virtual reality. Virtual reality systems are based on the combination of a number of already existing presentation techniques like photo-realistic images, stereo images and real time animations. The added value of this type of CAD system is determined by the use of a new type of user interface. In effect this interface consists of sensors that register how its user moves and looks around. Through this, and by using a so- called 'eye phone' (comparable to stereo headphones for sound) the user, with some imaginative powers, thinks he is standing in the environment that he modelled, or in front of his building design. After this we will first sketch the outlines of some presentation techniques, that can also be found in a virtual reality system. Special attention will be paid to some specific characteristics of these techniques themselves. Next, a more detailed description will be given of virtual reality systems, focusing on the system that is being developed at Calibre itself.

series eCAADe
email
last changed 2022/06/07 07:56

_id a302
authors Saggio, Antonino
year 1992
title A New Tool for Studio Teaching - Object Based Modeling
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 251-264
doi https://doi.org/10.52842/conf.ecaade.1992.251
summary The scope of this paper is to present Computer Aided Architectural Design (and more particularly the dynamic and incremental modeling characteristics of Object Based Modeling) as a tool to reinforce the teaching of architectural design. Utilized within a method based on a cyclical application of "Concept and Testing", OBM has the possibility to work as an amplifier of design ideas and as a meaningful tool for the advancement of architectural design. Three related experiences support this hypothesis. The role played in concrete designs by an Object Based Modeling environment. Teaching with CAAD and OBM in the realm of documentation and analysis of architecture. Previous applications of the Concept-Testing methodology in design studios. The central sections of the paper focus on the analysis of these experiences, while the last section provides a 15 week, semester based, studio structure that incorporates OBM in the overall calendar and in key assignments. While the scope of this work coincides with the thesis presented at the Acadia '92 conference in Charleston (South Carolina), to focus the argument more clearly content, text and illustrations differ in several parts.

series eCAADe
email
last changed 2022/06/07 07:56

_id c93a
authors Saggio, Antonino
year 1992
title Object Based Modeling and Concept-Testing: A Framework for Studio Teaching
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 49-63
doi https://doi.org/10.52842/conf.acadia.1992.049
summary This chapter concludes with a proposal for a studio structure that incorporates computers as a creative stimulus in the design process. Three related experiences support this hypothesis: the role played in concrete designs by an Object Based Modeling environment, teaching with Computer Aided Architectural Design and OBM in the realm of documentation and analysis of architecture, previous applications of the Concept-Testing methodology in design studios. Examples from these three areas provide the framework for mutual support between OBM and a C-T approach for studio teaching. The central sections of the chapter focus on the analysis of these experiences, while the last section provides a 15 week, semester based, studio structure that incorporates OBM in the overall calendar and in key assignments.

series ACADIA
email
last changed 2022/06/07 07:56

_id ddss9201
id ddss9201
authors Van Bakel, A.P.M.
year 1993
title Personality assessment in regard to design strategies
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary This paper discusses some preliminary results of several knowledge-acquisition and documentation-structuring techniques that were used to assess the working styles of architects. The focus of this assessment was on their strategic design behaviour. Hettema's Interactive Personality Model (Hettema 1979, 1989) was used to explain and interpret these results. The methods used to acquire the necessary data are protocol analysis, card sorting and interviews. The results suggest that at least three parameters can be used to explain and differentiate the strategic design behaviour of architects. These parameters are S (site-oriented), B (brief-oriented) and C (concept-oriented). A priority hierarchy of these parameters reveals six major distinguishable working styles. These results are captured in a new design model that can be used in data bank implementations.
series DDSS
last changed 2003/08/07 16:36

No more hits.

HOMELOGIN (you are user _anon_983172 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002