CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 244

_id 3ff5
authors Abbo, I.A., La Scalea, L., Otero, E. and Castaneda, L.
year 1992
title Full-Scale Simulations as Tool for Developing Spatial Design Ability
source Proceedings of the 4rd European Full-Scale Modelling Conference / Lausanne (Switzerland) 9-12 September 1992, Part C, pp. 7-10
summary Spatial Design Ability has been defined as the capability to anticipate effects (psychological impressions on potential observers or users) produced by mental manipulation of elements of architectural or urban spaces. This ability, of great importance in choosing the appropriate option during the design process, is not specifically developed in schools of architecture and is partially obtained as a by-product of drawing, designing or architectural criticism. We use our Laboratory as a tool to present spaces to people so that they can evaluate them. By means of a series of exercises, students confront their anticipations with the psychological impressions produced in other people. For this occasion, we present an experience in which students had to propose a space for an exhibition hag in which architectural projects (student thesis) were to be shown. Following the Spatial Design Ability Development Model which we have been using for several years, students first get acquainted with the use of evaluation instruments for psychological impressions as well as with research methodology. In this case, due to the short period available, we reduced research to investigate the effects produced by the manipulation of only 2 independents variables: students manipulated first the form of the roof, walls and interiors elements, secondly, color and texture of those elements. They evaluated spatial quality, character and the other psychological impressions that manipulations produced in people. They used three dimensional scale models 1/10 and 1/1.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
email
more http://info.tuwien.ac.at/efa
last changed 2003/08/25 10:12

_id 2312
authors Carrara, G., Kalay Y.E. and Novembri, G.
year 1992
title Multi-modal Representation of Design Knowledge
doi https://doi.org/10.52842/conf.ecaade.1992.055
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 55-66
summary Explicit representation of design knowledge is needed if scientific methods are to be applied in design research, and if computers are to be used in the aid of design education and practice. The representation of knowledge in general, and design knowledge in particular, have been the subject matter of computer science, design methods, and computer-aided design research for quite some time. Several models of design knowledge representation have been developed over the last 30 years, addressing specific aspects of the problem. This paper describes a different approach to design knowledge representation that recognizes the multimodal nature of design knowledge. It uses a variety of computational tools to encode different kinds of design knowledge, including the descriptive (objects), the prescriptive (goals) and the operational (methods) kinds. The representation is intended to form a parsimonious, communicable and presentable knowledge-base that can be used as a tool for design research and education as well as for CAAD.
keywords Design Methods, Design Process Goals, Knowledge Representation, Semantic Networks
series eCAADe
email
last changed 2022/06/07 07:55

_id 6ef4
authors Carrara, Gianfranco and Kalay, Yehuda E.
year 1992
title Multi-Model Representation of Design Knowledge
doi https://doi.org/10.52842/conf.acadia.1992.077
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 77-88
summary Explicit representation of design knowledge is needed if scientific methods are to be applied in design research, and if comPuters are to be used in the aid of design education and practice. The representation of knowledge in general, and design knowledge in particular, have been the subject matter of computer science, design methods, and computer- aided design research for quite some time. Several models of design knowledge representation have been developed over the last 30 years, addressing specific aspects of the problem. This paper describes a different approach to design knowledge representation that recognizes the Multi-modal nature of design knowledge. It uses a variety of computational tools to encode different kinds of design knowledge, including the descriptive (objects), the prescriptive (goals) and the operational (methods) kinds. The representation is intended to form a parsimonious, communicable and presentable knowledge-base that can be used as a tool for design research and education as well as for CAAD.
keywords Design Methods, Design Process, Goals, Knowledge Representation, Semantic Networks
series ACADIA
email
last changed 2022/06/07 07:55

_id 6d1d
authors Daru, R. and Daru, M.
year 1992
title Personal Working Styles in the CMD Studio
doi https://doi.org/10.52842/conf.ecaade.1992.451
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 451-472
summary Normative and problem-solving approaches of architectural design ignore the personality aspects of the designing activity. Every architect approaches projects according to her/his own strategies and tactics. Usually they do not conform to the prescriptive models of design theoreticians. Computer aided design tools should be adapted to their utility within the strategies and tactics of each and every architectural student. We are testing the usefulness of CAAD tools developed by others or ourselves and identifying the needs for missing tools. It is already clear that many CAAD tools reflect the point of view of the programmer about strategies and tactics of designing and that they do not take into account the idiosyncrasies of the end user. Forcing the tools on students breeds the risk of fostering repulsion against ill-adapted tools, and consequently against CMD. Our research group pursues empirical research on working styles of designing by practising architects within the frame of a personality theory of actions. The results indicate that there are three main directions for designing strategies. If we want to take into account the real-world behaviour in design practice within architectural education, this implies the diversification of the exercises we offer to the students in threefold, corresponding with the three directions. To this, we add the didactic options of complementation, compensation and support, depending on what we know about the strong or weak points of the students involved. We have started proposing choices for the exercises of our design morphology studio. Students are offered approaches and tools we consider best adapted to their own working

series eCAADe
email
last changed 2022/06/07 07:55

_id e412
authors Fargas, Josep and Papazian, Pegor
year 1992
title Modeling Regulations and Intentions for Urban Development: The Role of Computer Simulation in the Urban Design Studio
doi https://doi.org/10.52842/conf.ecaade.1992.201
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 201-212
summary In this paper we present a strategy for modeling urban development in order to study the role of urban regulations and policies in the transformation of cities. We also suggest a methodology for using computer models as experimental tools in the urban design studio in order to make explicit the factors involved in shaping cities, and for the automatic visualization of projected development. The structure of the proposed model is based on different modules which represent, on the one hand, the rules regulating the physical growth of a city and, on the other hand, heuristics corresponding to different interests such as Real Estate Developers, City Hall Planners, Advocacy and Community Groups, and so on. Here we present a case study dealing with the Boston Redevelopment Authority zoning code for the Midtown Cultural District of Boston. We introduce a computer program which develops the district, adopting a particular point of view regarding urban regulation. We then generalize the notion of this type of computer modeling and simulation, and draw some conclusions about its possible uses in the teaching and practice of design.
series eCAADe
email
last changed 2022/06/07 07:55

_id 7ce5
authors Gal, Shahaf
year 1992
title Computers and Design Activities: Their Mediating Role in Engineering Education
source Sociomedia, ed. Edward Barret. MIT Press
summary Sociomedia: With all the new words used to describe electronic communication (multimedia, hypertext, cyberspace, etc.), do we need another one? Edward Barrett thinks we do; hence, he coins the term "sociomedia." It is meant to displace a computing economy in which technicity is hypostasized over sociality. Sociomedia, a compilation of twenty-five articles on the theory, design and practice of educational multimedia and hypermedia, attempts to re-value the communicational face of computing. Value, of course, is "ultimately a social construct." As such, it has everything to do with knowledge, power, education and technology. The projects discussed in this book represent the leading edge of electronic knowledge production in academia (not to mention major funding) and are determining the future of educational media. For these reasons, Sociomedia warrants close inspection. Barrett's introduction sets the tone. For him, designing computer media involves hardwiring a mechanism for the social construction of knowledge (1). He links computing to a process of social and communicative interactivity for constructing and desseminating knowledge. Through a mechanistic mapping of the university as hypercontext (a huge network that includes classrooms as well as services and offices), Barrett models intellectual work in such a way as to avoid "limiting definitions of human nature or human development." Education, then, can remain "where it should be--in the human domain (public and private) of sharing ideas and information through the medium of language." By leaving education in a virtual realm (where we can continue to disagree about its meaning and execution), it remains viral, mutating and contaminating in an intellectually healthy way. He concludes that his mechanistic model, by means of its reductionist approach, preserves value (7). This "value" is the social construction of knowledge. While I support the social orientation of Barrett's argument, discussions of value are related to power. I am not referring to the traditional teacher-student power structure that is supposedly dismantled through cooperative and constructivist learning strategies. The power to be reckoned with in the educational arena is foundational, that which (pre)determines value and the circulation of knowledge. "Since each of you reading this paragraph has a different perspective on the meaning of 'education' or 'learning,' and on the processes involved in 'getting an education,' think of the hybris in trying to capture education in a programmable function, in a displayable object, in a 'teaching machine'" (7). Actually, we must think about that hybris because it is, precisely, what informs teaching machines. Moreover, the basic epistemological premises that give rise to such productions are too often assumed. In the case of instructional design, the episteme of cognitive sciences are often taken for granted. It is ironic that many of the "postmodernists" who support electronic hypertextuality seem to have missed Jacques Derrida's and Michel Foucault's "deconstructions" of the epistemology underpinning cognitive sciences (if not of epistemology itself). Perhaps it is the glitz of the technology that blinds some users (qua developers) to the belief systems operating beneath the surface. Barrett is not guilty of reactionary thinking or politics; he is, in fact, quite in line with much American deconstructive and postmodern thinking. The problem arises in that he leaves open the definitions of "education," "learning" and "getting an education." One cannot engage in the production of new knowledge without orienting its design, production and dissemination, and without negotiating with others' orientations, especially where largescale funding is involved. Notions of human nature and development are structural, even infrastructural, whatever the medium of the teaching machine. Although he addresses some dynamics of power, money and politics when he talks about the recession and its effects on the conference, they are readily visible dynamics of power (3-4). Where does the critical factor of value determination, of power, of who gets what and why, get mapped onto a mechanistic model of learning institutions? Perhaps a mapping of contributors' institutions, of the funding sources for the projects showcased and for participation in the conference, and of the disciplines receiving funding for these sorts of projects would help visualize the configurations of power operative in the rising field of educational multimedia. Questions of power and money notwithstanding, Barrett's introduction sets the social and textual thematics for the collection of essays. His stress on interactivity, on communal knowledge production, on the society of texts, and on media producers and users is carried foward through the other essays, two of which I will discuss. Section I of the book, "Perspectives...," highlights the foundations, uses and possible consequences of multimedia and hypertextuality. The second essay in this section, "Is There a Class in This Text?," plays on the robust exchange surrounding Stanley Fish's book, Is There a Text in This Class?, which presents an attack on authority in reading. The author, John Slatin, has introduced electronic hypertextuality and interaction into his courses. His article maps the transformations in "the content and nature of work, and the workplace itself"-- which, in this case, is not industry but an English poetry class (25). Slatin discovered an increase of productive and cooperative learning in his electronically- mediated classroom. For him, creating knowledge in the electronic classroom involves interaction between students, instructors and course materials through the medium of interactive written discourse. These interactions lead to a new and persistent understanding of the course materials and of the participants' relation to the materials and to one another. The work of the course is to build relationships that, in my view, constitute not only the meaning of individual poems, but poetry itself. The class carries out its work in the continual and usually interactive production of text (31). While I applaud his strategies which dismantle traditional hierarchical structures in academia, the evidence does not convince me that the students know enough to ask important questions or to form a self-directing, learning community. Stanley Fish has not relinquished professing, though he, too, espouses the indeterminancy of the sign. By the fourth week of his course, Slatin's input is, by his own reckoning, reduced to 4% (39). In the transcript of the "controversial" Week 6 exchange on Gertrude Stein--the most disliked poet they were discussing at the time (40)--we see the blind leading the blind. One student parodies Stein for three lines and sums up his input with "I like it." Another, finds Stein's poetry "almost completey [sic] lacking in emotion or any artistic merit" (emphasis added). On what grounds has this student become an arbiter of "artistic merit"? Another student, after admitting being "lost" during the Wallace Steven discussion, talks of having more "respect for Stevens' work than Stein's" and adds that Stein's poetry lacks "conceptual significance[, s]omething which people of varied opinion can intelligently discuss without feeling like total dimwits...." This student has progressed from admitted incomprehension of Stevens' work to imposing her (groundless) respect for his work over Stein's. Then, she exposes her real dislike for Stein's poetry: that she (the student) missed the "conceptual significance" and hence cannot, being a person "of varied opinion," intelligently discuss it "without feeling like [a] total dimwit." Slatin's comment is frightening: "...by this point in the semester students have come to feel increasingly free to challenge the instructor" (41). The students that I have cited are neither thinking critically nor are their preconceptions challenged by student-governed interaction. Thanks to the class format, one student feels self-righteous in her ignorance, and empowered to censure. I believe strongly in student empowerment in the classroom, but only once students have accrued enough knowledge to make informed judgments. Admittedly, Slatin's essay presents only partial data (there are six hundred pages of course transcripts!); still, I wonder how much valuable knowledge and metaknowledge was gained by the students. I also question the extent to which authority and professorial dictature were addressed in this course format. The power structures that make it possible for a college to require such a course, and the choice of texts and pedagogy, were not "on the table." The traditional professorial position may have been displaced, but what took its place?--the authority of consensus with its unidentifiable strong arm, and the faceless reign of software design? Despite Slatin's claim that the students learned about the learning process, there is no evidence (in the article) that the students considered where their attitudes came from, how consensus operates in the construction of knowledge, how power is established and what relationship they have to bureaucratic insitutions. How do we, as teaching professionals, negotiate a balance between an enlightened despotism in education and student-created knowledge? Slatin, and other authors in this book, bring this fundamental question to the fore. There is no definitive answer because the factors involved are ultimately social, and hence, always shifting and reconfiguring. Slatin ends his article with the caveat that computerization can bring about greater estrangement between students, faculty and administration through greater regimentation and control. Of course, it can also "distribute authority and power more widely" (50). Power or authority without a specific face, however, is not necessarily good or just. Shahaf Gal's "Computers and Design Activities: Their Mediating Role in Engineering Education" is found in the second half of the volume, and does not allow for a theory/praxis dichotomy. Gal recounts a brief history of engineering education up to the introduction of Growltiger (GT), a computer-assisted learning aid for design. He demonstrates GT's potential to impact the learning of engineering design by tracking its use by four students in a bridge-building contest. What his text demonstrates clearly is that computers are "inscribing and imaging devices" that add another viewpoint to an on-going dialogue between student, teacher, earlier coursework, and other teaching/learning tools. The less proficient students made a serious error by relying too heavily on the technology, or treating it as a "blueprint provider." They "interacted with GT in a way that trusted the data to represent reality. They did not see their interaction with GT as a negotiation between two knowledge systems" (495). Students who were more thoroughly informed in engineering discourses knew to use the technology as one voice among others--they knew enough not simply to accept the input of the computer as authoritative. The less-advanced students learned a valuable lesson from the competition itself: the fact that their designs were not able to hold up under pressure (literally) brought the fact of their insufficient knowledge crashing down on them (and their bridges). They also had, post factum, several other designs to study, especially the winning one. Although competition and comparison are not good pedagogical strategies for everyone (in this case the competitors had volunteered), at some point what we think we know has to be challenged within the society of discourses to which it belongs. Students need critique in order to learn to push their learning into auto-critique. This is what is lacking in Slatin's discussion and in the writings of other avatars of constructivist, collaborative and computer-mediated pedagogies. Obviously there are differences between instrumental types of knowledge acquisition and discoursive knowledge accumulation. Indeed, I do not promote the teaching of reading, thinking and writing as "skills" per se (then again, Gal's teaching of design is quite discursive, if not dialogic). Nevertheless, the "soft" sciences might benefit from "bridge-building" competitions or the re-institution of some forms of agonia. Not everything agonistic is inhuman agony--the joy of confronting or creating a sound argument supported by defensible evidence, for example. Students need to know that soundbites are not sound arguments despite predictions that electronic writing will be aphoristic rather than periodic. Just because writing and learning can be conceived of hypertextually does not mean that rigor goes the way of the dinosaur. Rigor and hypertextuality are not mutually incompatible. Nor is rigorous thinking and hard intellectual work unpleasurable, although American anti-intellectualism, especially in the mass media, would make it so. At a time when the spurious dogmatics of a Rush Limbaugh and Holocaust revisionist historians circulate "aphoristically" in cyberspace, and at a time when knowledge is becoming increasingly textualized, the role of critical thinking in education will ultimately determine the value(s) of socially constructed knowledge. This volume affords the reader an opportunity to reconsider knowledge, power, and new communications technologies with respect to social dynamics and power relationships.
series other
last changed 2003/04/23 15:14

_id cc68
authors García, Agustín Pérez
year 1992
title Learning Structural Design - Computers and Virtual Laboratories
doi https://doi.org/10.52842/conf.ecaade.1992.525
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 525-534
summary This paper shows how the spreading use of computers can improve the quality of education, specially in the field of architecture. An Innovative Teaching Project oriented to the discipline Structural Design of Buildings has been implemented at the School of Architecture of Valencia. The main objective of this project is the transformation of the computer room into a virtual laboratory for simulating the behaviour of structural typologies using mathematical models of them. An environment, specially oriented to Structural Design, has been integrated in a Computer Aided Design platform to teach how design the Structure of Buildings.
series eCAADe
last changed 2022/06/07 07:51

_id ddss9207
id ddss9207
authors Gauchel, J., Hovestadt, L., van Wyk, S. and Bhat, R.R.
year 1993
title Modular building models
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary The development and implementation of a modular building model appropriate for computer aided design is described. The limitations of a unified building model with regard to concurrence and complexity in design is discussed. Current research suggests that to model real-world complexity, one must trade centralized control for autonomy. In this paper we develop a modular approach to building modelling that is based on object-oriented autonomy and makes it possible to define these models in a distributed concurrent manner. Such a modular and autonomous implementation brings inherent uncertainty and conflict which cannot be determined a priori.
series DDSS
last changed 2003/08/07 16:36

_id 1076
authors Gero, John S. and Saunders, Robert
year 2000
title Constructed Representations and Their Functions in Computational Models of Designing
doi https://doi.org/10.52842/conf.caadria.2000.215
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 215-224
summary This paper re-examines the conclusions made by Schön and Wiggins in 1992 that computers were unable to reproduce processes crucial to designing. We propose that recent developments in artificial intelligence and design computing put us in a position where we can begin to computationally model designing as conceived by Schön and Wiggins. We present a computational model of designing using situated processes that construct representations. We show how constructed representations support computational processes that model the different kinds of seeing reported in designing. We also present recently developed computational processes that can identify unexpected consequences of design actions using adaptive novelty detection.
series CAADRIA
email
last changed 2022/06/07 07:51

_id 6df3
authors Gross, Mark D. and Zimring, Craig
year 1992
title Predicting Wayfinding Behavior in Buildings : A Schema-Based Approach
source New York: John Wiley & Sons, 1992. pp. 367-377 : ill. includes bibliography
summary Postoccupancy evaluations of large buildings often reveal significant wayfinding problems caused by poor floor-plan layout. Predicting wayfinding problems early in the design process could avoid costly remodeling and make better buildings. However, we lack formal, predictive models of human wayfinding behavior. Computational models of wayfinding in buildings have addressed constructing a topological and geometric representations of the plan layout incrementally during exploration. The authors propose to combine this with a schema model of building memory. It is argued that people orient themselves and wayfind in new buildings using schemas, or generic expectations about building layout. In this paper the authors give their preliminary thoughts toward developing a computational model of wayfinding based on this approach
keywords wayfinding, evaluation, applications, architecture, floor plans, layout, building, prediction
series CADline
email
last changed 2002/09/05 15:02

_id 6cfd
authors Harfmann, Anton C. and Majkowski, Bruce R.
year 1992
title Component-Based Spatial Reasoning
doi https://doi.org/10.52842/conf.acadia.1992.103
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 103-111
summary The design process and ordering of individual components through which architecture is realized relies on the use of abstract "models" to represent a proposed design. The emergence and use of these abstract "models" for building representation has a long history and tradition in the field of architecture. Models have been made and continue to be made for the patron, occasionally the public, and as a guide for the builders. Models have also been described as a means to reflect on the design and to allow the design to be in dialogue with the creator.

The term "model" in the above paragraph has been used in various ways and in this context is defined as any representation through which design intent is expressed. This includes accurate/ rational or abstract drawings (2- dimensional and 3-dimensional), physical models (realistic and abstract) and computer models (solid, void and virtual reality). The various models that fall within the categories above have been derived from the need to "view" the proposed design in various ways in order to support intuitive reasoning about the proposal and for evaluation purposes. For example, a 2-dimensional drawing of a floor plan is well suited to support reasoning about spatial relationships and circulation patterns while scaled 3-dimensional models facilitate reasoning about overall form, volume, light, massing etc. However, the common denominator of all architectural design projects (if the intent is to construct them in actual scale, physical form) are the discrete building elements from which the design will be constructed. It is proposed that a single computational model representing individual components supports all of the above "models" and facilitates "viewing"' the design according to the frame of reference of the viewer.

Furthermore, it is the position of the authors that all reasoning stems from this rudimentary level of modeling individual components.

The concept of component representation has been derived from the fact that a "real" building (made from individual components such as nuts, bolts and bar joists) can be "viewed" differently according to the frame of reference of the viewer. Each individual has the ability to infer and abstract from the assemblies of components a variety of different "models" ranging from a visceral, experiential understanding to a very technical, physical understanding. The component concept has already proven to be a valuable tool for reasoning about assemblies, interferences between components, tracing of load path and numerous other component related applications. In order to validate the component-based modeling concept this effort will focus on the development of spatial understanding from the component-based model. The discussions will, therefore, center about the representation of individual components and the development of spatial models and spatial reasoning from the component model. In order to frame the argument that spatial modeling and reasoning can be derived from the component representation, a review of the component-based modeling concept will precede the discussions of spatial issues.

series ACADIA
email
last changed 2022/06/07 07:49

_id 32eb
authors Henry, Daniel
year 1992
title Spatial Perception in Virtual Environments : Evaluating an Architectural Application
source University of Washington
summary Over the last several years, professionals from many different fields have come to the Human Interface Technology Laboratory (H.I.T.L) to discover and learn about virtual environments. In general, they are impressed by their experiences and express the tremendous potential the tool has in their respective fields. But the potentials are always projected far in the future, and the tool remains just a concept. This is justifiable because the quality of the visual experience is so much less than what people are used to seeing; high definition television, breathtaking special cinematographic effects and photorealistic computer renderings. Instead, the models in virtual environments are very simple looking; they are made of small spaces, filled with simple or abstract looking objects of little color distinctions as seen through displays of noticeably low resolution and at an update rate which leaves much to be desired. Clearly, for most applications, the requirements of precision have not been met yet with virtual interfaces as they exist today. However, there are a few domains where the relatively low level of the technology could be perfectly appropriate. In general, these are applications which require that the information be presented in symbolic or representational form. Having studied architecture, I knew that there are moments during the early part of the design process when conceptual decisions are made which require precisely the simple and representative nature available in existing virtual environments. This was a marvelous discovery for me because I had found a viable use for virtual environments which could be immediately beneficial to architecture, my shared area of interest. It would be further beneficial to architecture in that the virtual interface equipment I would be evaluating at the H.I.T.L. happens to be relatively less expensive and more practical than other configurations such as the "Walkthrough" at the University of North Carolina. The set-up at the H.I.T.L. could be easily introduced into architectural firms because it takes up very little physical room (150 square feet) and it does not require expensive and space taking hardware devices (such as the treadmill device for simulating walking). Now that the potential for using virtual environments in this architectural application is clear, it becomes important to verify that this tool succeeds in accurately representing space as intended. The purpose of this study is to verify that the perception of spaces is the same, in both simulated and real environment. It is hoped that the findings of this study will guide and accelerate the process by which the technology makes its way into the field of architecture.
keywords Space Perception; Space (Architecture); Computer Simulation
series thesis:MSc
last changed 2003/02/12 22:37

_id cf2009_poster_09
id cf2009_poster_09
authors Hsu, Yin-Cheng
year 2009
title Lego Free-Form? Towards a Modularized Free-Form Construction
source T. Tidafi and T. Dorta (eds) Joining Languages Cultures and Visions: CAADFutures 2009 CD-Rom
summary Design Media is the tool designers use for concept realization (Schon and Wiggins, 1992; Liu, 1996). Design thinking of designers is deeply effected by the media they tend to use (Zevi, 1981; Liu, 1996; Lim, 2003). Historically, architecture is influenced by the design media that were available within that era (Liu, 1996; Porter and Neale, 2000; Smith, 2004). From the 2D plans first used in ancient egypt, to the 3D physical models that came about during the Renaissance period, architecture reflects the media used for design. When breakthroughs in CAD/CAM technologies were brought to the world in the twentieth century, new possibilities opened up for architects.
keywords CAD/CAM free-form construction, modularization
series CAAD Futures
type poster
last changed 2009/07/08 22:12

_id ab4d
authors Huang, Tao-Kuang, Degelman, Larry O., and Larsen, Terry R.
year 1992
title A Visualization Model for Computerized Energy Evaluation During the Conceptual Design Stage (ENERGRAPH)
doi https://doi.org/10.52842/conf.acadia.1992.195
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 195-206
summary Energy performance is a crucial step toward responsible design. Currently there are many tools that can be applied to reach this goal with reasonable accuracy. Often times, however, major flaws are not discovered until the final stage of design when it is too late to change. Not only are existing simulation models complicated to apply at the conceptual design stage, but energy principles and their applications are also abstract and hard to visualize. Because of the lack of suitable tools to visualize energy analysis output, energy conservation concepts fail to be integrated into the building design. For these reasons, designers tend not to apply energy conservation concepts at the early design stage. However, since computer graphics is a new phase of visual communication in design process, the above problems might be solved properly through a computerized graphical interface in the conceptual design stage.

The research described in this paper is the result of exploring the concept of using computer graphics to support energy efficient building designs. It focuses on the visualization of building energy through a highly interactive graphical interface in the early design stage.

series ACADIA
email
last changed 2022/06/07 07:50

_id 88ca
authors Kane, Andy and Szalapaj, Peter
year 1992
title Teaching Design By Analysis of Precedents
doi https://doi.org/10.52842/conf.ecaade.1992.477
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 477-496
summary Designers, using their intuitive understanding of the decomposition of particular design objects, whether in terms of structural, functional, or some other analytical framework, should be able to interact with computational environments such that the understanding they achieve in turn invokes changes or transformations to the spatial properties of design proposals. Decompositions and transformations of design precedents can be a very useful method of enabling design students to develop analytical strategies. The benefit of an analytical approach is that it can lead to a structured understanding of design precedents. This in turn allows students to develop their own insights and ideas which are central to the activity of designing. The creation of a 3-D library of user-defined models of precedents in a computational environment permits an under-exploited method of undertaking analysis, since by modelling design precedents through the construction of 3-D Computer-Aided Architectural Design (CAAD) models, and then analytically decomposing them in terms of relevant features, significant insights into the nature of designs can be achieved. Using CAAD systems in this way, therefore, runs counter to the more common approach of detailed modelling, rendering and animation; which produces realistic pictures that do not reflect the design thinking that went into their production. The significance of the analytical approach to design teaching is that it encourages students to represent design ideas, but not necessarily the final form of design objects. The analytical approach therefore, allows students to depict features and execute tasks that are meaningful with respect to design students' own knowledge of particular domains. Such computational interaction can also be useful in helping students explore the consequences of proposed actions in actual design contexts.
series eCAADe
last changed 2022/06/07 07:52

_id 0b53
authors Lawrence, Roderick J.
year 1992
title CHARACTERISTICS OF ARCHITECTURAL DESIGN-TOOLS
source Proceedings of the 4rd European Full-Scale Modelling Conference / Lausanne (Switzerland) 9-12 September 1992, Part B, pp. 7-14
summary The professional roles and fonctions of architects are linked to the societal context in which they practice. Furthermore, this context, which is not static, has a relationship to the ways in which institutions, groups and individuals are involved in processes for the design and construction of the built environment. This presentation illustrates how the roles and functions of architects, other professionals, their clients and the general public have a bearing on the tools and methods used by the architectural profession to simulate design projects. Traditionally, sketches, renderings and pattern books were used. Then, they were supplemented by axonometric and perspective drawings, written and diagrammatic specifications, photographs and small-scale models. In recent decades mathematical models of diverse kinds, simulation techniques -including small- and full-scale modelling kits -as well as computer aided design and drafting systems have been used. This paper briefly presents these kinds of tools and then presents a typology of them. In conclusion, possible applications for the future are discussed.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
type normal paper
email
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 15:39

_id ca47
authors Lee, Shu Wan
year 1996
title A Cognitive Approach to Architectural Style Several Characteristics of Design Thinking in Architecture
doi https://doi.org/10.52842/conf.caadria.1996.223
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 223-226
summary Designing is a complicated human behaviour and method, and is often treated as a mysterious "black box” operation in human mind. In the early period as for theory-studying of design thinking, the way of thinking that the researchers took were mostly descriptive discussions. Therefore, they lacked direct and empirical evidence although those studies provided significant exploration of design thinking (Wang, 1995). In recent years as for the study of cognitive science, they have tried to make design "glass box”. That is to try to make the thinking processes embedded in designers publicized. That is also to externalize the design procedure which provided the design studies another theoretical basis of more accurate and deeply researched procedure (Jones, 1992). Hence the studying of design thinking has become more important and the method of designing has also progressed a lot. For example, the classification of the nature of design problem such as ill-defined and well-defined (Newell, Shaw, and Simon, 1967), and different theoretical procedure modes for different disciplines, such as viewing architectural models as conjecture-analysis models and viewing engineering models as analysis-synthesis (Cross, 1991).
series CAADRIA
last changed 2022/06/07 07:52

_id ddss9208
id ddss9208
authors Lucardie, G.L.
year 1993
title A functional approach to realizing decision support systems in technical regulation management for design and construction
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary Technical building standards defining the quality of buildings, building products, building materials and building processes aim to provide acceptable levels of safety, health, usefulness and energy consumption. However, the logical consistency between these goals and the set of regulations produced to achieve them is often hard to identify. Not only the large quantities of highly complex and frequently changing building regulations to be met, but also the variety of user demands and the steadily increasing technical information on (new) materials, products and buildings have produced a very complex set of knowledge and data that should be taken into account when handling technical building regulations. Integrating knowledge technology and database technology is an important step towards managing the complexity of technical regulations. Generally, two strategies can be followed to integrate knowledge and database technology. The main emphasis of the first strategy is on transferring data structures and processing techniques from one field of research to another. The second approach is concerned exclusively with the semantic structure of what is contained in the data-based or knowledge-based system. The aim of this paper is to show that the second or knowledge-level approach, in particular the theory of functional classifications, is more fundamental and more fruitful. It permits a goal-directed rationalized strategy towards analysis, use and application of regulations. Therefore, it enables the reconstruction of (deep) models of regulations, objects and of users accounting for the flexibility and dynamics that are responsible for the complexity of technical regulations. Finally, at the systems level, the theory supports an effective development of a new class of rational Decision Support Systems (DSS), which should reduce the complexity of technical regulations and restore the logical consistency between the goals of technical regulations and the technical regulations themselves.
series DDSS
last changed 2003/08/07 16:36

_id 65aa
authors Madrazo, Leandro
year 1992
title From Sketches to Computer Images: A Strategy for the Application of Computers in Architectural Design
doi https://doi.org/10.52842/conf.ecaade.1992.331
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 331-350
summary The use of computer tools in architectural practice has been steadily increasing in recent years. Many architectural offices are already using computer tools, mostly for production tasks. Hardly any design is being done with the computer. With the new computer tools, architects are confronted with the challenge to use computers to express their design ideas right from conception.

This paper describes a project made for a competition which recently took place in Spain. Sketches and computer models were the only tools used in designing this project. A variety of computer tools were used in different stages of this project: two dimensional drawing tools were used in the early stages, then a three-dimensional modeling program for the development of the design and for the production of final drawings, and a rendering program for final presentation images.

series eCAADe
email
last changed 2022/06/07 07:59

_id 8cf3
authors Müller, Volker
year 1992
title Reint-Ops: A Tool Supporting Conceptual Design
doi https://doi.org/10.52842/conf.acadia.1992.221
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 221-232
summary Reasoning is influenced by our perception of the environment. New aspects of our environment help to provoke new thoughts. Thus, changes of what is perceived can be assumed to stimulate the generation of new ideas, as well. In CAD, computerized three-dimensional models of physical entities are produced. Their representation on the monitor is determined by our viewing position and by the rendering method used. Especially the wire-frame representations of views lend themselves to a variety of readings, due to coincident and intersecting lines. Methods by which wire-frame views can be processed to extract the shapes that they contain have been investigated and developed. The extracted shapes can be used as a base for the generation of derived entities through various operations that are called Reinterpretation Operations. They have been implemented as a prototypical extension (named Reint-Ops) to an existing modeling shell. ReintOps is a highly interactive exploratory CAD tool, which allows the user to customize criteria and factors which are used in the reinterpretation process. This tool can be regarded as having a potential to support conceptual design investigations.
keywords CAD, Three-dimensional Model, Wireframe Representation, Shape Extraction, Generation of Derived Entities, Reinterpretation, Conceptual Design
series ACADIA
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 12HOMELOGIN (you are user _anon_35921 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002