CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 150

_id 7ce5
authors Gal, Shahaf
year 1992
title Computers and Design Activities: Their Mediating Role in Engineering Education
source Sociomedia, ed. Edward Barret. MIT Press
summary Sociomedia: With all the new words used to describe electronic communication (multimedia, hypertext, cyberspace, etc.), do we need another one? Edward Barrett thinks we do; hence, he coins the term "sociomedia." It is meant to displace a computing economy in which technicity is hypostasized over sociality. Sociomedia, a compilation of twenty-five articles on the theory, design and practice of educational multimedia and hypermedia, attempts to re-value the communicational face of computing. Value, of course, is "ultimately a social construct." As such, it has everything to do with knowledge, power, education and technology. The projects discussed in this book represent the leading edge of electronic knowledge production in academia (not to mention major funding) and are determining the future of educational media. For these reasons, Sociomedia warrants close inspection. Barrett's introduction sets the tone. For him, designing computer media involves hardwiring a mechanism for the social construction of knowledge (1). He links computing to a process of social and communicative interactivity for constructing and desseminating knowledge. Through a mechanistic mapping of the university as hypercontext (a huge network that includes classrooms as well as services and offices), Barrett models intellectual work in such a way as to avoid "limiting definitions of human nature or human development." Education, then, can remain "where it should be--in the human domain (public and private) of sharing ideas and information through the medium of language." By leaving education in a virtual realm (where we can continue to disagree about its meaning and execution), it remains viral, mutating and contaminating in an intellectually healthy way. He concludes that his mechanistic model, by means of its reductionist approach, preserves value (7). This "value" is the social construction of knowledge. While I support the social orientation of Barrett's argument, discussions of value are related to power. I am not referring to the traditional teacher-student power structure that is supposedly dismantled through cooperative and constructivist learning strategies. The power to be reckoned with in the educational arena is foundational, that which (pre)determines value and the circulation of knowledge. "Since each of you reading this paragraph has a different perspective on the meaning of 'education' or 'learning,' and on the processes involved in 'getting an education,' think of the hybris in trying to capture education in a programmable function, in a displayable object, in a 'teaching machine'" (7). Actually, we must think about that hybris because it is, precisely, what informs teaching machines. Moreover, the basic epistemological premises that give rise to such productions are too often assumed. In the case of instructional design, the episteme of cognitive sciences are often taken for granted. It is ironic that many of the "postmodernists" who support electronic hypertextuality seem to have missed Jacques Derrida's and Michel Foucault's "deconstructions" of the epistemology underpinning cognitive sciences (if not of epistemology itself). Perhaps it is the glitz of the technology that blinds some users (qua developers) to the belief systems operating beneath the surface. Barrett is not guilty of reactionary thinking or politics; he is, in fact, quite in line with much American deconstructive and postmodern thinking. The problem arises in that he leaves open the definitions of "education," "learning" and "getting an education." One cannot engage in the production of new knowledge without orienting its design, production and dissemination, and without negotiating with others' orientations, especially where largescale funding is involved. Notions of human nature and development are structural, even infrastructural, whatever the medium of the teaching machine. Although he addresses some dynamics of power, money and politics when he talks about the recession and its effects on the conference, they are readily visible dynamics of power (3-4). Where does the critical factor of value determination, of power, of who gets what and why, get mapped onto a mechanistic model of learning institutions? Perhaps a mapping of contributors' institutions, of the funding sources for the projects showcased and for participation in the conference, and of the disciplines receiving funding for these sorts of projects would help visualize the configurations of power operative in the rising field of educational multimedia. Questions of power and money notwithstanding, Barrett's introduction sets the social and textual thematics for the collection of essays. His stress on interactivity, on communal knowledge production, on the society of texts, and on media producers and users is carried foward through the other essays, two of which I will discuss. Section I of the book, "Perspectives...," highlights the foundations, uses and possible consequences of multimedia and hypertextuality. The second essay in this section, "Is There a Class in This Text?," plays on the robust exchange surrounding Stanley Fish's book, Is There a Text in This Class?, which presents an attack on authority in reading. The author, John Slatin, has introduced electronic hypertextuality and interaction into his courses. His article maps the transformations in "the content and nature of work, and the workplace itself"-- which, in this case, is not industry but an English poetry class (25). Slatin discovered an increase of productive and cooperative learning in his electronically- mediated classroom. For him, creating knowledge in the electronic classroom involves interaction between students, instructors and course materials through the medium of interactive written discourse. These interactions lead to a new and persistent understanding of the course materials and of the participants' relation to the materials and to one another. The work of the course is to build relationships that, in my view, constitute not only the meaning of individual poems, but poetry itself. The class carries out its work in the continual and usually interactive production of text (31). While I applaud his strategies which dismantle traditional hierarchical structures in academia, the evidence does not convince me that the students know enough to ask important questions or to form a self-directing, learning community. Stanley Fish has not relinquished professing, though he, too, espouses the indeterminancy of the sign. By the fourth week of his course, Slatin's input is, by his own reckoning, reduced to 4% (39). In the transcript of the "controversial" Week 6 exchange on Gertrude Stein--the most disliked poet they were discussing at the time (40)--we see the blind leading the blind. One student parodies Stein for three lines and sums up his input with "I like it." Another, finds Stein's poetry "almost completey [sic] lacking in emotion or any artistic merit" (emphasis added). On what grounds has this student become an arbiter of "artistic merit"? Another student, after admitting being "lost" during the Wallace Steven discussion, talks of having more "respect for Stevens' work than Stein's" and adds that Stein's poetry lacks "conceptual significance[, s]omething which people of varied opinion can intelligently discuss without feeling like total dimwits...." This student has progressed from admitted incomprehension of Stevens' work to imposing her (groundless) respect for his work over Stein's. Then, she exposes her real dislike for Stein's poetry: that she (the student) missed the "conceptual significance" and hence cannot, being a person "of varied opinion," intelligently discuss it "without feeling like [a] total dimwit." Slatin's comment is frightening: "...by this point in the semester students have come to feel increasingly free to challenge the instructor" (41). The students that I have cited are neither thinking critically nor are their preconceptions challenged by student-governed interaction. Thanks to the class format, one student feels self-righteous in her ignorance, and empowered to censure. I believe strongly in student empowerment in the classroom, but only once students have accrued enough knowledge to make informed judgments. Admittedly, Slatin's essay presents only partial data (there are six hundred pages of course transcripts!); still, I wonder how much valuable knowledge and metaknowledge was gained by the students. I also question the extent to which authority and professorial dictature were addressed in this course format. The power structures that make it possible for a college to require such a course, and the choice of texts and pedagogy, were not "on the table." The traditional professorial position may have been displaced, but what took its place?--the authority of consensus with its unidentifiable strong arm, and the faceless reign of software design? Despite Slatin's claim that the students learned about the learning process, there is no evidence (in the article) that the students considered where their attitudes came from, how consensus operates in the construction of knowledge, how power is established and what relationship they have to bureaucratic insitutions. How do we, as teaching professionals, negotiate a balance between an enlightened despotism in education and student-created knowledge? Slatin, and other authors in this book, bring this fundamental question to the fore. There is no definitive answer because the factors involved are ultimately social, and hence, always shifting and reconfiguring. Slatin ends his article with the caveat that computerization can bring about greater estrangement between students, faculty and administration through greater regimentation and control. Of course, it can also "distribute authority and power more widely" (50). Power or authority without a specific face, however, is not necessarily good or just. Shahaf Gal's "Computers and Design Activities: Their Mediating Role in Engineering Education" is found in the second half of the volume, and does not allow for a theory/praxis dichotomy. Gal recounts a brief history of engineering education up to the introduction of Growltiger (GT), a computer-assisted learning aid for design. He demonstrates GT's potential to impact the learning of engineering design by tracking its use by four students in a bridge-building contest. What his text demonstrates clearly is that computers are "inscribing and imaging devices" that add another viewpoint to an on-going dialogue between student, teacher, earlier coursework, and other teaching/learning tools. The less proficient students made a serious error by relying too heavily on the technology, or treating it as a "blueprint provider." They "interacted with GT in a way that trusted the data to represent reality. They did not see their interaction with GT as a negotiation between two knowledge systems" (495). Students who were more thoroughly informed in engineering discourses knew to use the technology as one voice among others--they knew enough not simply to accept the input of the computer as authoritative. The less-advanced students learned a valuable lesson from the competition itself: the fact that their designs were not able to hold up under pressure (literally) brought the fact of their insufficient knowledge crashing down on them (and their bridges). They also had, post factum, several other designs to study, especially the winning one. Although competition and comparison are not good pedagogical strategies for everyone (in this case the competitors had volunteered), at some point what we think we know has to be challenged within the society of discourses to which it belongs. Students need critique in order to learn to push their learning into auto-critique. This is what is lacking in Slatin's discussion and in the writings of other avatars of constructivist, collaborative and computer-mediated pedagogies. Obviously there are differences between instrumental types of knowledge acquisition and discoursive knowledge accumulation. Indeed, I do not promote the teaching of reading, thinking and writing as "skills" per se (then again, Gal's teaching of design is quite discursive, if not dialogic). Nevertheless, the "soft" sciences might benefit from "bridge-building" competitions or the re-institution of some forms of agonia. Not everything agonistic is inhuman agony--the joy of confronting or creating a sound argument supported by defensible evidence, for example. Students need to know that soundbites are not sound arguments despite predictions that electronic writing will be aphoristic rather than periodic. Just because writing and learning can be conceived of hypertextually does not mean that rigor goes the way of the dinosaur. Rigor and hypertextuality are not mutually incompatible. Nor is rigorous thinking and hard intellectual work unpleasurable, although American anti-intellectualism, especially in the mass media, would make it so. At a time when the spurious dogmatics of a Rush Limbaugh and Holocaust revisionist historians circulate "aphoristically" in cyberspace, and at a time when knowledge is becoming increasingly textualized, the role of critical thinking in education will ultimately determine the value(s) of socially constructed knowledge. This volume affords the reader an opportunity to reconsider knowledge, power, and new communications technologies with respect to social dynamics and power relationships.
series other
last changed 2003/04/23 15:14

_id 5a7c
authors Schneiderman, B.
year 1992
title Designing the User Interface. Strategies for Effective Human-Computer Interaction
source Reading, Mass. etc, Addison-Wesley
summary Ben Shneiderman again provides a complete, current, and authoritative introduction to user-interface design. Students will learn practical techniques and guidelines needed to develop good systems designs - systems with interfaces the typical user can understand, predict, and control. This third edition features new chapters on the World Wide Web, information visualization, and computer-supported cooperative work. It contains expanded and earlier coverage of development methodologies, evaluation techniques, and user-interface building tools. The author provides provocative discussion of speech input/output, natural-language interaction, anthropomorphic design, virtual environments, and intelligent (software) agents.
series other
last changed 2003/04/23 15:14

_id 6208
authors Abou-Jaoude, Georges
year 1992
title To Master a Tool
source Proceedings of the 4rd European Full-Scale Modelling Conference / Lausanne (Switzerland) 9-12 September 1992, Part B, p. 15
summary The tool here is the computer or to be precise, a unit that includes the computer, the peripherals and the software needed to fulfill a task. These tools are getting very sophisticated and user interfaces extremly friendly, therefore it is very easy to become the slave of such electronic tools and reach self satisfaction with strait forward results and attractive images. In order to master and not to become slaves of sophisticated tools, a very solid knowledge of related fields or domains of application becomes necessary. In the case of this seminar, full scale modelling, is a way to understand the relation between a mental model and it's full-scale modelling, it is a way of communicating what is in a designers mind. Computers and design programs can have the same goal, rather than chosing one method or the other let us try to say how important it is today to complement designing with computer with other means and media such as full scale modelling, and what computer modelling and simulation can bring to full scale modelling or other means.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
more http://info.tuwien.ac.at/efa
last changed 2003/08/25 10:12

_id 4b2a
id 4b2a
authors Jabi, Wassim
year 2004
title A FRAMEWORK FOR COMPUTER-SUPPORTED COLLABORATION IN ARCHITECTURAL DESIGN
source University of Michigan
summary The development of appropriate research frameworks and guidelines for the construction of software aids in the area of architectural design can lead to a better understanding of designing and computer support for designing (Gero and Maher 1997). The field of research and development in computer-supported collaborative architectural design reflects that of the early period in the development of the field of computersupported cooperative work (CSCW). In the early 1990s, the field of CSCW relied on unsystematic attempts to generate software that increases the productivity of people working together (Robinson 1992). Furthermore, a shift is taking place by which researchers in the field of architecture are increasingly becoming consumers of rather than innovators of technology (Gero and Maher . In particular, the field of architecture is rapidly becoming dependent on commercial software implementations that are slow to respond to new research or to user demands. Additionally, these commercial systems force a particular view of the domain they serve and as such might hinder rather than help its development. The aim of this dissertation is to provide information to architects and others to help them build their own tools or, at a minimum, be critical of commercial solutions.
series thesis:PhD
type normal paper
email
last changed 2004/10/24 22:35

_id 88ca
authors Kane, Andy and Szalapaj, Peter
year 1992
title Teaching Design By Analysis of Precedents
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 477-496
doi https://doi.org/10.52842/conf.ecaade.1992.477
summary Designers, using their intuitive understanding of the decomposition of particular design objects, whether in terms of structural, functional, or some other analytical framework, should be able to interact with computational environments such that the understanding they achieve in turn invokes changes or transformations to the spatial properties of design proposals. Decompositions and transformations of design precedents can be a very useful method of enabling design students to develop analytical strategies. The benefit of an analytical approach is that it can lead to a structured understanding of design precedents. This in turn allows students to develop their own insights and ideas which are central to the activity of designing. The creation of a 3-D library of user-defined models of precedents in a computational environment permits an under-exploited method of undertaking analysis, since by modelling design precedents through the construction of 3-D Computer-Aided Architectural Design (CAAD) models, and then analytically decomposing them in terms of relevant features, significant insights into the nature of designs can be achieved. Using CAAD systems in this way, therefore, runs counter to the more common approach of detailed modelling, rendering and animation; which produces realistic pictures that do not reflect the design thinking that went into their production. The significance of the analytical approach to design teaching is that it encourages students to represent design ideas, but not necessarily the final form of design objects. The analytical approach therefore, allows students to depict features and execute tasks that are meaningful with respect to design students' own knowledge of particular domains. Such computational interaction can also be useful in helping students explore the consequences of proposed actions in actual design contexts.
series eCAADe
last changed 2022/06/07 07:52

_id cbed
authors Yakubu, G.S.
year 1994
title Maximising the Benefits of CAD Systems in Architectural Education
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 228
doi https://doi.org/10.52842/conf.ecaade.1994.x.u8n
summary The positive impact of Computer Aided Design (CAD) in professional architectural practice has been in focus in recent times but relatively little has been written on its significance in the education of the contemporary architect. It is common knowledge that the profession of architecture is currently undergoing enormous strains as it battles to keep abreast of trends and developments in a period of series of rapid advancement in science, technology and management (RIBA, 1992). Whilst attempts are being made to redress the shortcomings of the profession in the above context, the requirements for architectural education are yet to forge a coherent strategy for the implementation of CAD/IT in the curriculum of schools of architecture. In almost every other field, including engineering, medicine and the humanities, computing application to problem-solving and decision-making is seen as a way forward as we move into 21st century. Architectural education must integrate CAD/IT into the teaching of core modules that give the architect distinctive competence: studio design. That is one of the best ways of doing justice to the education of the architect of today and the future. Some approaches to the teaching of CAD in schools of architecture have been touched upon in the recent past. Building upon this background as well as an understanding of the nature of design teaching/learning, this paper examines ways of maximising the benefits of CAD systems in architectural education and of bringing computer aided designing into the studio not only to enhance design thinking and creativity but also to support interactive processes. In order to maximise or optimise any function, one approach is to use the hard systems methodology which utilises analytic, analogic and iconic models to show the effect of those factors which are significant for the purposes being considered. The other approach is to use the soft systems methodology in which the analysis encompasses the concept of a human activity system as a means of improving a situation. The use of soft systems methodology is considered more appropriate for dealing with the problem of design which is characterised by a flux of interacting events and ideas that unroll through time. The paper concludes that the main impediment to maximising the benefits of CAD systems in architectural education is not only the inappropriate definition of the objectives for the implementation of CAD education but also that the control subsystems are usually ill-structured and relatively poorly defined. Schools must attempt to define a coherent and consistent policy on the use of CAD systems as an integral part of studio design and evolve an in-house strategic and operational controls that enable the set objectives to be met. Furthermore, it is necessary to support the high level of productivity from CAD systems with a more efficient management system, especially in dealing with communication, data sharing via relational database, co-ordination and integration. Finally, the use of soft systems methodology is recommended as the way forward to optimising CAD systems in design education as it would provide continuous improvements while maintaining their productive value.

series eCAADe
last changed 2022/06/07 07:50

_id 6e99
authors Hoffer, Erin Rae
year 1992
title Creating the Electronic Design Studio: Development of a Heterogeneous Networked Environment at Harvard's Graduate School of Design
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 225-240
doi https://doi.org/10.52842/conf.ecaade.1992.225
summary The migration of design education to reliance on computer-based techniques requires new ways of thinking about environments which can effectively support a diverse set of activities. Both from a spatial standpoint and a computing resource standpoint, design studios must be inevitably reconfigured to support new tools and reflect new ways of communicating. At Harvard's GSD, a commitment to incorporating computer literacy as a fundamental component of design education enables us to confront these issues through the implementation of a heterogeneous network imbedded in an electronic design environment. This evolving prototype of a new design studio, its development and its potential, will be the subject of this paper. A new style design environment is built upon an understanding of traditional techniques, and layered with an awareness of new tools and methods. Initially we borrow from existing metaphors which govern our interpretation of the way designers work. Next we seek to extend our thinking to include allied or related metaphors such as the library metaphor which informs collections of software and data, or the laboratory metaphor which informs workspace groupings, or the transportation metaphor which informs computer-based communications such as electronic mail or bulletin boards, or the utility services metaphor which informs the provision of network services and equipment. Our evaluation of this environment is based on direct feedback from its users, both faculty and students, and on subjective observation of the qualitative changes in communication which occur between and among these groups and individuals. Ultimately, the network must be judged as a framework for learning and evaluation, and its success depends both on its ability to absorb our existing metaphors for the process of design, and to prefigure the emerging metaphors to be envisioned in the future.

series eCAADe
last changed 2022/06/07 07:50

_id caadria2004_k-1
id caadria2004_k-1
authors Kalay, Yehuda E.
year 2004
title CONTEXTUALIZATION AND EMBODIMENT IN CYBERSPACE
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 5-14
doi https://doi.org/10.52842/conf.caadria.2004.005
summary The introduction of VRML (Virtual Reality Markup Language) in 1994, and other similar web-enabled dynamic modeling software (such as SGI’s Open Inventor and WebSpace), have created a rush to develop on-line 3D virtual environments, with purposes ranging from art, to entertainment, to shopping, to culture and education. Some developers took their cues from the science fiction literature of Gibson (1984), Stephenson (1992), and others. Many were web-extensions to single-player video games. But most were created as a direct extension to our new-found ability to digitally model 3D spaces and to endow them with interactive control and pseudo-inhabitation. Surprisingly, this technologically-driven stampede paid little attention to the core principles of place-making and presence, derived from architecture and cognitive science, respectively: two principles that could and should inform the essence of the virtual place experience and help steer its development. Why are the principles of place-making and presence important for the development of virtual environments? Why not simply be content with our ability to create realistically-looking 3D worlds that we can visit remotely? What could we possibly learn about making these worlds better, had we understood the essence of place and presence? To answer these questions we cannot look at place-making (both physical and virtual) from a 3D space-making point of view alone, because places are not an end unto themselves. Rather, places must be considered a locus of contextualization and embodiment that ground human activities and give them meaning. In doing so, places acquire a meaning of their own, which facilitates, improves, and enriches many aspects of our lives. They provide us with a means to interpret the activities of others and to direct our own actions. Such meaning is comprised of the social and cultural conceptions and behaviors imprinted on the environment by the presence and activities of its inhabitants, who in turn, ‘read’ by them through their own corporeal embodiment of the same environment. This transactional relationship between the physical aspects of an environment, its social/cultural context, and our own embodiment of it, combine to create what is known as a sense of place: the psychological, physical, social, and cultural framework that helps us interpret the world around us, and directs our own behavior in it. In turn, it is our own (as well as others’) presence in that environment that gives it meaning, and shapes its social/cultural character. By understanding the essence of place-ness in general, and in cyberspace in particular, we can create virtual places that can better support Internet-based activities, and make them equal to, in some cases even better than their physical counterparts. One of the activities that stands to benefit most from understanding the concept of cyber-places is learning—an interpersonal activity that requires the co-presence of others (a teacher and/or fellow learners), who can point out the difference between what matters and what does not, and produce an emotional involvement that helps students learn. Thus, while many administrators and educators rush to develop webbased remote learning sites, to leverage the economic advantages of one-tomany learning modalities, these sites deprive learners of the contextualization and embodiment inherent in brick-and-mortar learning institutions, and which are needed to support the activity of learning. Can these qualities be achieved in virtual learning environments? If so, how? These are some of the questions this talk will try to answer by presenting a virtual place-making methodology and its experimental implementation, intended to create a sense of place through contextualization and embodiment in virtual learning environments.
series CAADRIA
type normal paper
last changed 2022/06/07 07:52

_id 3105
authors Novak, T.P., Hoffman, D.L., and Yung, Y.-F.
year 1996
title Modeling the structure of the flow experience
source INFORMS Marketing Science and the Internet Mini-Conference, MIT
summary The flow construct (Csikszentmihalyi 1977) has recently been proposed by Hoffman and Novak (1996) as essential to understanding consumer navigation behavior in online environments such as the World Wide Web. Previous researchers (e.g. Csikszentmihalyi 1990; Ghani, Supnick and Rooney 1991; Trevino and Webster 1992; Webster, Trevino and Ryan 1993) have noted that flow is a useful construct for describing more general human-computer interactions. Hoffman and Novak define flow as the state occurring during network navigation which is: 1) characterized by a seamless sequence of responses facilitated by machine interactivity, 2) intrinsically enjoyable, 3) accompanied by a loss of self-consciousness, and 4) selfreinforcing." To experience flow while engaged in an activity, consumers must perceive a balance between their skills and the challenges of the activity, and both their skills and challenges must be above a critical threshold. Hoffman and Novak (1996) propose that flow has a number of positive consequences from a marketing perspective, including increased consumer learning, exploratory behavior, and positive affect."
series other
last changed 2003/04/23 15:50

_id 0a34
authors Ronchi, Alfredo M.
year 1992
title Education in Computing - Computing in Education
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 387-398
doi https://doi.org/10.52842/conf.ecaade.1992.387
summary The theme of this presentation which is entitled 'Education in Computing & Computing in Education' is certainly of great importance in the present climate characterized on the one hand by availability of highly efficient hardware, low-cost procedures and environments which are of great interest also as far as education is concerned. Within this topic it is of primary importance to ask oneself the question 'To learn architecture with computers must students learn computers?', and should the answer be 'yes', to ask 'To what extent? What level of complexity needs to be attained in order to realize this aim? What resources need to be dedicated to the learning of computer science? Should deep involvement be necessary, at what point should we refer to a computer scientist?' In an attempt to answer these questions, it is useful to examine the state of the art within computer science vs. engineering and computer science vs. education.
series eCAADe
email
last changed 2022/06/07 07:56

_id d9fa
authors Salomon, Gavriel
year 1990
title Effects with and of Computers and the Study of Computer-based Learning Environments
source Chapter in Computer-Based Learning Environments and Problem Solving, ed. E. De Corte, M. C. Linn, H. Mandl, and L. Verschaffel. New York: Springer-Verlag
summary Several factors have contributed to the developments in computer-based learning environments. Improvements and advances in hardware capabilities have afforded greater computing power. Advances in cognitive and instructional science have moved thinking beyond the limits of behavioural psychology. The new systems of computer-based learning environments are being designed with a view to facilitating complex problem-solving through integrating wholes of knowledge (Dijkstra, Krammer & Merriënboer, 1992). Thus, many see in the computer a means to enhance students' cognitive skills and general problem-solving ability. This is in spite of the fact that studies have failed to conclusively confirm the hypothesis that computer-based learning environments facilitate the acquisition and transfer of higher-order thinking and learning skills (Dijkstra, Krammer & Merriënboer, 1992). Salomon (1992) argues that computers make possible student involvement in higher-order thinking skills by performing many of the lower-level cognitive tasks, by providing memory support and by juggling interrelated variables. Through a partnership with the computer, the user may also benefit from the effect of cognitive residue resulting in improvement or mastery of a skill or strategy. Salomon explains: The intellectual partnership with computer tools creates a zone of proximal development whereby learners are capable of carrying out tasks they could not possible carry out without the help and support provided by the computer. This partnership can both offer guidance that might be internalized to become self-guidance and stimulate the development of yet underdeveloped skills, resulting in a higher level of skill mastery (p.252).
series other
last changed 2003/04/23 15:14

_id 3ff5
authors Abbo, I.A., La Scalea, L., Otero, E. and Castaneda, L.
year 1992
title Full-Scale Simulations as Tool for Developing Spatial Design Ability
source Proceedings of the 4rd European Full-Scale Modelling Conference / Lausanne (Switzerland) 9-12 September 1992, Part C, pp. 7-10
summary Spatial Design Ability has been defined as the capability to anticipate effects (psychological impressions on potential observers or users) produced by mental manipulation of elements of architectural or urban spaces. This ability, of great importance in choosing the appropriate option during the design process, is not specifically developed in schools of architecture and is partially obtained as a by-product of drawing, designing or architectural criticism. We use our Laboratory as a tool to present spaces to people so that they can evaluate them. By means of a series of exercises, students confront their anticipations with the psychological impressions produced in other people. For this occasion, we present an experience in which students had to propose a space for an exhibition hag in which architectural projects (student thesis) were to be shown. Following the Spatial Design Ability Development Model which we have been using for several years, students first get acquainted with the use of evaluation instruments for psychological impressions as well as with research methodology. In this case, due to the short period available, we reduced research to investigate the effects produced by the manipulation of only 2 independents variables: students manipulated first the form of the roof, walls and interiors elements, secondly, color and texture of those elements. They evaluated spatial quality, character and the other psychological impressions that manipulations produced in people. They used three dimensional scale models 1/10 and 1/1.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
email
more http://info.tuwien.ac.at/efa
last changed 2003/08/25 10:12

_id 735a
authors Anh, Tran Hoai
year 1992
title FULL-SCALE EXPERIMENT ON KITCHEN FUNCTION IN HANOI
source Proceedings of the 4rd European Full-Scale Modelling Conference / Lausanne (Switzerland) 9-12 September 1992, Part A, pp. 19-30
summary This study is a part of a licentiate thesis on "Functional kitchen for the Vietnamese cooking way"at the Department of Architecture and Development studies, Lund University. The issues it is dealing with are: (1) Inadequacy of kitchen design in the apartment buildings in Hanoi, where the kitchen is often designed as a mere cooking place - other parts of the food making process are not given any attention. (2) Lack of standard dimensional and planning criteria for functional kitchen which can serve as bases for kitchen design. // The thesis aims at finding out indicators on functional spatial requirements for kitchen, which can serve as guide-line for designing functional kitchen for Hanoi. One of the main propositions in the thesis is that functional kitchens for Hanoi should be organised to permit the culinary activities done according to the Vietnamese urban culinary practice. This is based on the concept that the culinary activity is an expression Of culture, thus the practice of preparing meal in the present context of the urban households in Hanoi has an established pattern, method which demand a suitable area and arrangement in the kitchen. This pattern and cooking method should make up the functional requirement for kitchen in Hanoi, and be taken in to account if functional kitchen designing is to be achieved. In the context of the space-limited apartment building of Hanoi, special focus is given to find out indicators on the minimum functional spatial requirements of the kitchen works.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 15:29

_id aa78
authors Bayazit, Nigan
year 1992
title Requirements of an Expert System for Design Studios
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 187-194
doi https://doi.org/10.52842/conf.ecaade.1992.187
summary The goal of this paper is to study problems of the transition from traditional architectural studio teaching to CAAD studio teaching which requires a CAAD expert system as studio tutor, and to study the behavior of the student in this new environment. The differences between the traditional and computerized studio teaching and the experiences in this field are explained referring to the requirements for designing time in relation to the expertise of the student in the application of a CAD program. Learning styles and the process of design in computerized and non-computerized studio teaching are discussed. Design studio requirements of the students in traditional studio environment while doing design works are clarified depending on the results of an empirical study which explained the relations between the tutor and the student while they were doing studio critiques. Main complaints of the students raised in the empirical study were the lack of data in the specific design problem area, difficulties of realization of ideas and thoughts, not knowing the starting point of design, having no information about the references to be used for the specific design task, having difficulties in the application of presentation techniques. In the concluding parts of the paper are discussed the different styles of teaching and their relation to the CAAD environment, the transformation of the instructional programs for the new design environment, the future expectations from the CAAD programs, properties of the new teaching environment and the roles of the expert systems in design studio education.

keywords CAAD Education, Expert System, Architectural Design Studio, Knowledge Acquisition
series eCAADe
email
last changed 2022/06/07 07:54

_id 6d1d
authors Daru, R. and Daru, M.
year 1992
title Personal Working Styles in the CMD Studio
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 451-472
doi https://doi.org/10.52842/conf.ecaade.1992.451
summary Normative and problem-solving approaches of architectural design ignore the personality aspects of the designing activity. Every architect approaches projects according to her/his own strategies and tactics. Usually they do not conform to the prescriptive models of design theoreticians. Computer aided design tools should be adapted to their utility within the strategies and tactics of each and every architectural student. We are testing the usefulness of CAAD tools developed by others or ourselves and identifying the needs for missing tools. It is already clear that many CAAD tools reflect the point of view of the programmer about strategies and tactics of designing and that they do not take into account the idiosyncrasies of the end user. Forcing the tools on students breeds the risk of fostering repulsion against ill-adapted tools, and consequently against CMD. Our research group pursues empirical research on working styles of designing by practising architects within the frame of a personality theory of actions. The results indicate that there are three main directions for designing strategies. If we want to take into account the real-world behaviour in design practice within architectural education, this implies the diversification of the exercises we offer to the students in threefold, corresponding with the three directions. To this, we add the didactic options of complementation, compensation and support, depending on what we know about the strong or weak points of the students involved. We have started proposing choices for the exercises of our design morphology studio. Students are offered approaches and tools we consider best adapted to their own working

series eCAADe
email
last changed 2022/06/07 07:55

_id 1076
authors Gero, John S. and Saunders, Robert
year 2000
title Constructed Representations and Their Functions in Computational Models of Designing
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 215-224
doi https://doi.org/10.52842/conf.caadria.2000.215
summary This paper re-examines the conclusions made by Schön and Wiggins in 1992 that computers were unable to reproduce processes crucial to designing. We propose that recent developments in artificial intelligence and design computing put us in a position where we can begin to computationally model designing as conceived by Schön and Wiggins. We present a computational model of designing using situated processes that construct representations. We show how constructed representations support computational processes that model the different kinds of seeing reported in designing. We also present recently developed computational processes that can identify unexpected consequences of design actions using adaptive novelty detection.
series CAADRIA
email
last changed 2022/06/07 07:51

_id e7c8
authors Kalisperis, Loukas N., Steinman, Mitch and Summers, Luis H.
year 1992
title Design Knowledge, Environmental Complexity in Nonorthogonal Space
source New York: John Wiley & Sons, 1992. pp. 273-291 : ill. includes bibliography
summary Mechanization and industrialization of society has resulted in most people spending the greater part of their lives in enclosed environments. Optimal design of indoor artificial climates is therefore of increasing importance. Wherever artificial climates are created for human occupation, the aim is that the environment be designed so that individuals are in thermal comfort. Current design methodologies for radiant panel heating systems do not adequately account for the complexities of human thermal comfort, because they monitor air temperature alone and do not account for thermal neutrality in complex enclosures. Thermal comfort for a person is defined as that condition of mind which expresses satisfaction with the thermal environment. Thermal comfort is dependent on Mean Radiant Temperature and Operative Temperature among other factors. In designing artificial climates for human occupancy the interaction of the human with the heated surfaces as well the surface-to-surface heat exchange must be accounted for. Early work in the area provided an elaborate and difficult method for calculating radiant heat exchange for simplistic and orthogonal enclosures. A new improved method developed by the authors for designing radiant panel heating systems based on human thermal comfort and mean radiant temperature is presented. Through automation and elaboration this method overcomes the limitations of the early work. The design procedure accounts for human thermal comfort in nonorthogonal as well as orthogonal spaces based on mean radiant temperature prediction. The limitation of simplistic orthogonal geometries has been overcome with the introduction of the MRT-Correction method and inclined surface-to-person shape factor methodology. The new design method increases the accuracy of calculation and prediction of human thermal comfort and will allow designers to simulate complex enclosures utilizing the latest design knowledge of radiant heat exchange to increase human thermal comfort
keywords applications, architecture, building, energy, systems, design, knowledge
series CADline
last changed 2003/06/02 10:24

_id ca47
authors Lee, Shu Wan
year 1996
title A Cognitive Approach to Architectural Style Several Characteristics of Design Thinking in Architecture
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 223-226
doi https://doi.org/10.52842/conf.caadria.1996.223
summary Designing is a complicated human behaviour and method, and is often treated as a mysterious "black box” operation in human mind. In the early period as for theory-studying of design thinking, the way of thinking that the researchers took were mostly descriptive discussions. Therefore, they lacked direct and empirical evidence although those studies provided significant exploration of design thinking (Wang, 1995). In recent years as for the study of cognitive science, they have tried to make design "glass box”. That is to try to make the thinking processes embedded in designers publicized. That is also to externalize the design procedure which provided the design studies another theoretical basis of more accurate and deeply researched procedure (Jones, 1992). Hence the studying of design thinking has become more important and the method of designing has also progressed a lot. For example, the classification of the nature of design problem such as ill-defined and well-defined (Newell, Shaw, and Simon, 1967), and different theoretical procedure modes for different disciplines, such as viewing architectural models as conjecture-analysis models and viewing engineering models as analysis-synthesis (Cross, 1991).
series CAADRIA
last changed 2022/06/07 07:52

_id 65aa
authors Madrazo, Leandro
year 1992
title From Sketches to Computer Images: A Strategy for the Application of Computers in Architectural Design
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 331-350
doi https://doi.org/10.52842/conf.ecaade.1992.331
summary The use of computer tools in architectural practice has been steadily increasing in recent years. Many architectural offices are already using computer tools, mostly for production tasks. Hardly any design is being done with the computer. With the new computer tools, architects are confronted with the challenge to use computers to express their design ideas right from conception.

This paper describes a project made for a competition which recently took place in Spain. Sketches and computer models were the only tools used in designing this project. A variety of computer tools were used in different stages of this project: two dimensional drawing tools were used in the early stages, then a three-dimensional modeling program for the development of the design and for the production of final drawings, and a rendering program for final presentation images.

series eCAADe
email
last changed 2022/06/07 07:59

_id 6f8a
authors Pittioni, Gernot
year 1992
title Concepts of CAAD-Instruction
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 363-376
doi https://doi.org/10.52842/conf.ecaade.1992.363
summary Today we can look back on several years of data processing support in architecture. When computer aided architectural design - CAAD - entered the field there was a lot of utter confusion in the beginning, a lot more than usually in other more technical application-fields of CAD. The architect is a very special CAD-user, as he is a very special member of all those other very analytical and scientific faculties around. There is a lot of tradition involved, tradition that has got its roots far back in medieval and classic periods and is rich of art and creativity and intuition. Mostly lots more of this than scientific analysis, exact research, and similar stuff. We could spot a large number of architects who would have been horrified when they are confronted with the analytic research of the very basic problem as how architects are designing - the methods, the procedures and the ways of thinking. And there CAAD was entering the architects' studios. No question that this caused a lot of trouble. CAD in architecture is a very provoking subject as the new tool is going to gain ground against the tradition of centuries of handmade architectural designs and drawings. And there we don't even touch the future aspects of the computer's architectural design support - what about the imminent threat of computer support in the holy domain of architectural creativity and intuition. What about the uneasy idea of CAAD in connection with artificial intelligence? The problem of CAAD-education has been largely neglected through a number of years. If there existed a certain horror looking at the mere idea of CAD-support in architecture, horror became to outrage, when university education was discussed. In our days we can stay a good deal more relaxed, when we speak of CAAD education - we not only got used to it, we are convinced, that the whole subject is of high importance.

keywords Concepts of Education
series eCAADe
email
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 7HOMELOGIN (you are user _anon_997151 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002