CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 232

_id c5d7
authors Kuffer, Monika
year 2003
title Monitoring the Dynamics of Informal Settlements in Dar Es Salaam by Remote Sensing: Exploring the Use of Spot, Ers and Small Format Aerial Photography
source CORP 2003, Vienna University of Technology, 25.2.-28.2.2003 [Proceedings on CD-Rom]
summary Dar es Salaam is exemplary for cities in the developing world facing an enormous population growth. In the last decades, unplanned settlements have tremendously expanded, causing that around 70 percent of the urban dwellers are living now-a-days in these areas. Tools for monitoring such tremendous growth are relatively weak in developing countries, thus an effective satellite based monitoring system can provide a useful instrument for monitoring the dynamics of urban development. An investigation to asses the ability of extracting reliable information on the expansion and consolidation levels (density) of urban development of the city of Dar es Salaam from SPOT-HRV and ERS-SAR images is described. The use of SPOT and ERS should provide data that is complementary to data derived from the most recent aerial photography and from digital topographic maps. In a series of experiments various classification and fusion techniques are applied to the SPOT-HRV and ERS-SAR data to extract information on building density that is comparable to that obtained from the 1992 data. Ultimately, building density is estimated by linear and non-linear regression models on the basis of an one ha kernel and further aggregation is made to the level of informal settlements for a final analysis. In order to assess the reliability, use is made of several sample areas that are relatively stable over the study period, as well as, of data derived from small format aerial photography. The experiments show a high correlation between the density data derived from the satellite images and the test areas.
series other
email
last changed 2003/03/11 20:39

_id ecaadesigradi2019_449
id ecaadesigradi2019_449
authors Becerra Santacruz, Axel
year 2019
title The Architecture of ScarCity Game - The craft and the digital as an alternative design process
doi https://doi.org/10.52842/conf.ecaade.2019.3.045
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 45-52
summary The Architecture of ScarCity Game is a board game used as a pedagogical tool that challenges architecture students by involving them in a series of experimental design sessions to understand the design process of scarcity and the actual relation between the craft and the digital. This means "pragmatic delivery processes and material constraints, where the exchange between the artisan of handmade, representing local skills and technology of the digitally conceived is explored" (Huang 2013). The game focuses on understanding the different variables of the crafted design process of traditional communities under conditions of scarcity (Michel and Bevan 1992). This requires first analyzing the spatial environmental model of interaction, available human and natural resources, and the dynamic relationship of these variables in a digital era. In the first stage (Pre-Agency), the game set the concept of the craft by limiting students design exploration from a minimum possible perspective developing locally available resources and techniques. The key elements of the design process of traditional knowledge communities have to be identified (Preez 1984). In other words, this stage is driven by limited resources + chance + contingency. In the second stage (Post-Agency) students taking the architects´ role within this communities, have to speculate and explore the interface between the craft (local knowledge and low technological tools), and the digital represented by computation data, new technologies available and construction. This means the introduction of strategy + opportunity + chance as part of the design process. In this sense, the game has a life beyond its mechanics. This other life challenges the participants to exploit the possibilities of breaking the actual boundaries of design. The result is a tool to challenge conventional methods of teaching and leaning controlling a prescribed design process. It confronts the rules that professionals in this field take for granted. The game simulates a 'fake' reality by exploring in different ways with surveyed information. As a result, participants do not have anything 'real' to lose. Instead, they have all the freedom to innovate and be creative.
keywords Global south, scarcity, low tech, digital-craft, design process and innovation by challenge.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id 6cfd
authors Harfmann, Anton C. and Majkowski, Bruce R.
year 1992
title Component-Based Spatial Reasoning
doi https://doi.org/10.52842/conf.acadia.1992.103
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 103-111
summary The design process and ordering of individual components through which architecture is realized relies on the use of abstract "models" to represent a proposed design. The emergence and use of these abstract "models" for building representation has a long history and tradition in the field of architecture. Models have been made and continue to be made for the patron, occasionally the public, and as a guide for the builders. Models have also been described as a means to reflect on the design and to allow the design to be in dialogue with the creator.

The term "model" in the above paragraph has been used in various ways and in this context is defined as any representation through which design intent is expressed. This includes accurate/ rational or abstract drawings (2- dimensional and 3-dimensional), physical models (realistic and abstract) and computer models (solid, void and virtual reality). The various models that fall within the categories above have been derived from the need to "view" the proposed design in various ways in order to support intuitive reasoning about the proposal and for evaluation purposes. For example, a 2-dimensional drawing of a floor plan is well suited to support reasoning about spatial relationships and circulation patterns while scaled 3-dimensional models facilitate reasoning about overall form, volume, light, massing etc. However, the common denominator of all architectural design projects (if the intent is to construct them in actual scale, physical form) are the discrete building elements from which the design will be constructed. It is proposed that a single computational model representing individual components supports all of the above "models" and facilitates "viewing"' the design according to the frame of reference of the viewer.

Furthermore, it is the position of the authors that all reasoning stems from this rudimentary level of modeling individual components.

The concept of component representation has been derived from the fact that a "real" building (made from individual components such as nuts, bolts and bar joists) can be "viewed" differently according to the frame of reference of the viewer. Each individual has the ability to infer and abstract from the assemblies of components a variety of different "models" ranging from a visceral, experiential understanding to a very technical, physical understanding. The component concept has already proven to be a valuable tool for reasoning about assemblies, interferences between components, tracing of load path and numerous other component related applications. In order to validate the component-based modeling concept this effort will focus on the development of spatial understanding from the component-based model. The discussions will, therefore, center about the representation of individual components and the development of spatial models and spatial reasoning from the component model. In order to frame the argument that spatial modeling and reasoning can be derived from the component representation, a review of the component-based modeling concept will precede the discussions of spatial issues.

series ACADIA
email
last changed 2022/06/07 07:49

_id 32eb
authors Henry, Daniel
year 1992
title Spatial Perception in Virtual Environments : Evaluating an Architectural Application
source University of Washington
summary Over the last several years, professionals from many different fields have come to the Human Interface Technology Laboratory (H.I.T.L) to discover and learn about virtual environments. In general, they are impressed by their experiences and express the tremendous potential the tool has in their respective fields. But the potentials are always projected far in the future, and the tool remains just a concept. This is justifiable because the quality of the visual experience is so much less than what people are used to seeing; high definition television, breathtaking special cinematographic effects and photorealistic computer renderings. Instead, the models in virtual environments are very simple looking; they are made of small spaces, filled with simple or abstract looking objects of little color distinctions as seen through displays of noticeably low resolution and at an update rate which leaves much to be desired. Clearly, for most applications, the requirements of precision have not been met yet with virtual interfaces as they exist today. However, there are a few domains where the relatively low level of the technology could be perfectly appropriate. In general, these are applications which require that the information be presented in symbolic or representational form. Having studied architecture, I knew that there are moments during the early part of the design process when conceptual decisions are made which require precisely the simple and representative nature available in existing virtual environments. This was a marvelous discovery for me because I had found a viable use for virtual environments which could be immediately beneficial to architecture, my shared area of interest. It would be further beneficial to architecture in that the virtual interface equipment I would be evaluating at the H.I.T.L. happens to be relatively less expensive and more practical than other configurations such as the "Walkthrough" at the University of North Carolina. The set-up at the H.I.T.L. could be easily introduced into architectural firms because it takes up very little physical room (150 square feet) and it does not require expensive and space taking hardware devices (such as the treadmill device for simulating walking). Now that the potential for using virtual environments in this architectural application is clear, it becomes important to verify that this tool succeeds in accurately representing space as intended. The purpose of this study is to verify that the perception of spaces is the same, in both simulated and real environment. It is hoped that the findings of this study will guide and accelerate the process by which the technology makes its way into the field of architecture.
keywords Space Perception; Space (Architecture); Computer Simulation
series thesis:MSc
last changed 2003/02/12 22:37

_id avocaad_2001_20
id avocaad_2001_20
authors Shen-Kai Tang
year 2001
title Toward a procedure of computer simulation in the restoration of historical architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the field of architectural design, “visualization¨ generally refers to some media, communicating and representing the idea of designers, such as ordinary drafts, maps, perspectives, photos and physical models, etc. (Rahman, 1992; Susan, 2000). The main reason why we adopt visualization is that it enables us to understand clearly and to control complicated procedures (Gombrich, 1990). Secondly, the way we get design knowledge is more from the published visualized images and less from personal experiences (Evans, 1989). Thus the importance of the representation of visualization is manifested.Due to the developments of computer technology in recent years, various computer aided design system are invented and used in a great amount, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and collaboration, etc. (Lawson, 1995; Liu, 1996). The conventional media are greatly replaced by computer media, and the visualization is further brought into the computerized stage. The procedure of visual impact analysis and assessment (VIAA), addressed by Rahman (1992), is renewed and amended for the intervention of computer (Liu, 2000). Based on the procedures above, a great amount of applied researches are proceeded. Therefore it is evident that the computer visualization is helpful to the discussion and evaluation during the design process (Hall, 1988, 1990, 1992, 1995, 1996, 1997, 1998; Liu, 1997; Sasada, 1986, 1988, 1990, 1993, 1997, 1998). In addition to the process of architectural design, the computer visualization is also applied to the subject of construction, which is repeatedly amended and corrected by the images of computer simulation (Liu, 2000). Potier (2000) probes into the contextual research and restoration of historical architecture by the technology of computer simulation before the practical restoration is constructed. In this way he established a communicative mode among archeologists, architects via computer media.In the research of restoration and preservation of historical architecture in Taiwan, many scholars have been devoted into the studies of historical contextual criticism (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000). Clues that accompany the historical contextual criticism (such as oral information, writings, photographs, pictures, etc.) help to explore the construction and the procedure of restoration (Hung, 1995), and serve as an aid to the studies of the usage and durability of the materials in the restoration of historical architecture (Dasser, 1990; Wang, 1998). Many clues are lost, because historical architecture is often age-old (Hung, 1995). Under the circumstance, restoration of historical architecture can only be proceeded by restricted pictures, written data and oral information (Shi, 1989). Therefore, computer simulation is employed by scholars to simulate the condition of historical architecture with restricted information after restoration (Potier, 2000). Yet this is only the early stage of computer-aid restoration. The focus of the paper aims at exploring that whether visual simulation of computer can help to investigate the practice of restoration and the estimation and evaluation after restoration.By exploring the restoration of historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example), this study aims to establish a complete work on computer visualization, including the concept of restoration, the practice of restoration, and the estimation and evaluation of restoration.This research is to simulate the process of restoration by computer simulation based on visualized media (restricted pictures, restricted written data and restricted oral information) and the specialized experience of historical architects (Potier, 2000). During the process of practicing, communicates with craftsmen repeatedly with some simulated alternatives, and makes the result as the foundation of evaluating and adjusting the simulating process and outcome. In this way we address a suitable and complete process of computer visualization for historical architecture.The significance of this paper is that we are able to control every detail more exactly, and then prevent possible problems during the process of restoration of historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id fd02
authors Tsou, Jin-Yeu
year 1992
title Using conceptual modelling and an object-oriented environment to support building cost control during early design
source College of Architecture and Urban Planning, University of Michigan
summary This research investigated formal information modelling techniques and the object-oriented knowledge representation on the domain of building cost control during early design stages. The findings contribute to an understanding of the advantages and disadvantages of applying formal modelling techniques to the analysis of architectural problems and the representation of domain knowledge in an object-oriented environment. In this study, information modelling techniques were reviewed, formal information analysis was performed, a conceptual model based on the cost control problem domain was created, a computational model based on the object-oriented approach was developed, a mechanism to support information broadcasting for representing interrelationships was implemented, and an object-oriented cost analysis system for early design (OBCIS) was demonstrated. The conceptual model, based on the elemental proposition analysis of NIAM, supports a formal approach for analyzing the problem domain; the analysis results are represented by high-level graphical notations, based on the AEC Building System Model, to visually display the information framework of the domain. The conceptual model provides an intermediate step between the system designer's view of the domain and the internal representation of the implementation platform. The object-oriented representation provides extensive data modelling abilities to help system designers intuitively represent the semantics of the problem domain. The object-oriented representation also supports more structured and integrated modules than conventional programming approaches. Although there are many advantages to applying this technique to represent the semantics of cost control knowledge, there are several issues which need to be considered: no single satisfactory classification method can be directly applied; object-oriented systems are difficult to learn; and designing reusable classes is difficult. The dependency graph and information broadcasting implemented in this research is an attempt to represent the interrelationships between domain objects. The mechanism allows users to explicitly define the interrelationships, based on semantic requirements, among domain objects. In the conventional approach, these relationships are directly interpreted by system designers and intertwined into the programming code. There are several issues which need to be studied further: indirect dependency relationship, conflict resolution, and request-update looping based on least-commitment approach.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 9feb
authors Turk, G.
year 1992
title Re-tiling polygonal surfaces
source E.E. Catmull, (ed) Computer Graphics (Siggraph ¥92 proc.), vol 26, pp. 55-64, July 1992
summary This paper presents an automatic method of creating surface models at several levels of detail from an original polygonal description of a given object. Representing models at various levels of detail is important for achieving high frame rates in interactive graphics applications and also for speeding-up the off-line rendering of complex scenes. Unfortunately, generating these levels of detail is a time-consuming task usually left to a human modeler. This paper shows how a new set of vertices can be distributed over the surface of a model and connected to one another to create a re-tiling of a surface that is faithful to both the geometry and the topology of the original surface. The main contributions of this paper are: 1) a robust method of connecting together new vertices over a surface, 2) a way of using an estimate of surface curvature to distribute more new vertices at regions of higher curvature and 3) a method of smoothly interpolating between models that represent the same object at different levels of detail. The key notion in the re-tiling procedure is the creation of an intermediate model called the mutual tessellation of a surface that contains both the vertices from the original model and the new points that are to become vertices in the re-tiled surface. The new model is then created by removing each original vertex and locally re-triangulating the surface in a way that matches the local connectedness of the initial surface. This technique for surface retessellation has been successfully applied to iso-surface models derived from volume data, Connolly surface molecular models and a tessellation of a minimal surface of interest to mathematicians.
series other
last changed 2003/04/23 15:50

_id 3ff5
authors Abbo, I.A., La Scalea, L., Otero, E. and Castaneda, L.
year 1992
title Full-Scale Simulations as Tool for Developing Spatial Design Ability
source Proceedings of the 4rd European Full-Scale Modelling Conference / Lausanne (Switzerland) 9-12 September 1992, Part C, pp. 7-10
summary Spatial Design Ability has been defined as the capability to anticipate effects (psychological impressions on potential observers or users) produced by mental manipulation of elements of architectural or urban spaces. This ability, of great importance in choosing the appropriate option during the design process, is not specifically developed in schools of architecture and is partially obtained as a by-product of drawing, designing or architectural criticism. We use our Laboratory as a tool to present spaces to people so that they can evaluate them. By means of a series of exercises, students confront their anticipations with the psychological impressions produced in other people. For this occasion, we present an experience in which students had to propose a space for an exhibition hag in which architectural projects (student thesis) were to be shown. Following the Spatial Design Ability Development Model which we have been using for several years, students first get acquainted with the use of evaluation instruments for psychological impressions as well as with research methodology. In this case, due to the short period available, we reduced research to investigate the effects produced by the manipulation of only 2 independents variables: students manipulated first the form of the roof, walls and interiors elements, secondly, color and texture of those elements. They evaluated spatial quality, character and the other psychological impressions that manipulations produced in people. They used three dimensional scale models 1/10 and 1/1.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
email
more http://info.tuwien.ac.at/efa
last changed 2003/08/25 10:12

_id ddss9210
id ddss9210
authors Poortman, E.R.
year 1993
title Ratios for cost control
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary The design of buildings takes place in phases representing a development from rough to precision planning. Estimates are made in order to test whether the result is still within the budget set by the client or developer. In this way, the decisions taken during the design phase can be quantified and expressed in monetary terms. To prevent blaming the wrong person when an overrun is discovered, the cost control process has to be improved. For that purpose, two new procedures have been developed: (i) a new translation activity; and (ii) ratios by which quantities can be characterized. 'Translation is the opposite of estimation. A monetary budget is converted -'translated' - into quantities, reflecting the desired quality of the building materials. The financial constraints of the client are thus converted into quantities - the building components used by the designers. Characteristic quantity figures play an important role in this activity. In working out an estimate, the form factor (i.e., the ratio between two characteristic values of a building component) has to be determined. The unit cost is then tested against that ratio. The introduction of the 'translation' activity and the use of characteristic quantity figures and form factors enhance existing estimation methods. By implementing these procedures, cost control becomes considerably more reliable.
series DDSS
last changed 2003/08/07 16:36

_id 6208
authors Abou-Jaoude, Georges
year 1992
title To Master a Tool
source Proceedings of the 4rd European Full-Scale Modelling Conference / Lausanne (Switzerland) 9-12 September 1992, Part B, p. 15
summary The tool here is the computer or to be precise, a unit that includes the computer, the peripherals and the software needed to fulfill a task. These tools are getting very sophisticated and user interfaces extremly friendly, therefore it is very easy to become the slave of such electronic tools and reach self satisfaction with strait forward results and attractive images. In order to master and not to become slaves of sophisticated tools, a very solid knowledge of related fields or domains of application becomes necessary. In the case of this seminar, full scale modelling, is a way to understand the relation between a mental model and it's full-scale modelling, it is a way of communicating what is in a designers mind. Computers and design programs can have the same goal, rather than chosing one method or the other let us try to say how important it is today to complement designing with computer with other means and media such as full scale modelling, and what computer modelling and simulation can bring to full scale modelling or other means.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
more http://info.tuwien.ac.at/efa
last changed 2003/08/25 10:12

_id 8d37
authors Bradford, J.W., Ng, F.F. and Will, B.F.
year 1992
title Models and Hypermedia for Architectural Education
doi https://doi.org/10.52842/conf.ecaade.1992.019
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 19-42
summary Hypermedia uses the hypertext style of interactive navigation through computer-based multimedia materials to provide access to a wealth of information for use by teachers and students. Academic disciplines concerned about the enlightenment of future designers of the built environment require an additional medium not yet available in hypermedia - interactive 3-D computer models. This paper discusses a hypermedia CAI system currently being developed at the University of Hong Kong for use in architectural education. The system uses interactive 3D computer models as another medium for instructional information, and as user orientation and database access devices. An object oriented, 3-D model hierarchy is used as the organizational structure for the database. A prototype which uses the system to teach undergraduate architecture students about a traditional Chinese temple is also illustrated. The prototype demonstrates the use of a computer as the medium for bilingual English and Chinese instruction.

keywords 3-D Modelling, Architectural Education, Computer Aided Instruction, Hypermedia, Multimedia
series eCAADe
email
last changed 2022/06/07 07:54

_id 2312
authors Carrara, G., Kalay Y.E. and Novembri, G.
year 1992
title Multi-modal Representation of Design Knowledge
doi https://doi.org/10.52842/conf.ecaade.1992.055
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 55-66
summary Explicit representation of design knowledge is needed if scientific methods are to be applied in design research, and if computers are to be used in the aid of design education and practice. The representation of knowledge in general, and design knowledge in particular, have been the subject matter of computer science, design methods, and computer-aided design research for quite some time. Several models of design knowledge representation have been developed over the last 30 years, addressing specific aspects of the problem. This paper describes a different approach to design knowledge representation that recognizes the multimodal nature of design knowledge. It uses a variety of computational tools to encode different kinds of design knowledge, including the descriptive (objects), the prescriptive (goals) and the operational (methods) kinds. The representation is intended to form a parsimonious, communicable and presentable knowledge-base that can be used as a tool for design research and education as well as for CAAD.
keywords Design Methods, Design Process Goals, Knowledge Representation, Semantic Networks
series eCAADe
email
last changed 2022/06/07 07:55

_id 6ef4
authors Carrara, Gianfranco and Kalay, Yehuda E.
year 1992
title Multi-Model Representation of Design Knowledge
doi https://doi.org/10.52842/conf.acadia.1992.077
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 77-88
summary Explicit representation of design knowledge is needed if scientific methods are to be applied in design research, and if comPuters are to be used in the aid of design education and practice. The representation of knowledge in general, and design knowledge in particular, have been the subject matter of computer science, design methods, and computer- aided design research for quite some time. Several models of design knowledge representation have been developed over the last 30 years, addressing specific aspects of the problem. This paper describes a different approach to design knowledge representation that recognizes the Multi-modal nature of design knowledge. It uses a variety of computational tools to encode different kinds of design knowledge, including the descriptive (objects), the prescriptive (goals) and the operational (methods) kinds. The representation is intended to form a parsimonious, communicable and presentable knowledge-base that can be used as a tool for design research and education as well as for CAAD.
keywords Design Methods, Design Process, Goals, Knowledge Representation, Semantic Networks
series ACADIA
email
last changed 2022/06/07 07:55

_id sigradi2017_068
id sigradi2017_068
authors da Motta Gaspar, João Alberto; Regina Coeli Ruschel
year 2017
title A evolução do significado atribuído ao acrônimo BIM: Uma perspectiva no tempo [The evolution of the meaning ascribed to the acronym BIM: A perspective in time]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.461-469
summary The term Building Information Model emerged in 1992. It has evolved over time and has its meaning currently associated with an object-oriented modeling technology and an associated set of processes to produce, communicate and analyze building models. Its origin is related to several other, older terms. This paper registers the evolution of BIM and related definitions over time by means of a systematic literature review. We present a list of BIM-related terms and their meanings, organized by date of emergence, and charts showing which ones are most used over time, contributing to better understanding of the meaning of BIM.
keywords BIM; History of BIM; Building Information Model.
series SIGRADI
email
last changed 2021/03/28 19:58

_id 6d1d
authors Daru, R. and Daru, M.
year 1992
title Personal Working Styles in the CMD Studio
doi https://doi.org/10.52842/conf.ecaade.1992.451
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 451-472
summary Normative and problem-solving approaches of architectural design ignore the personality aspects of the designing activity. Every architect approaches projects according to her/his own strategies and tactics. Usually they do not conform to the prescriptive models of design theoreticians. Computer aided design tools should be adapted to their utility within the strategies and tactics of each and every architectural student. We are testing the usefulness of CAAD tools developed by others or ourselves and identifying the needs for missing tools. It is already clear that many CAAD tools reflect the point of view of the programmer about strategies and tactics of designing and that they do not take into account the idiosyncrasies of the end user. Forcing the tools on students breeds the risk of fostering repulsion against ill-adapted tools, and consequently against CMD. Our research group pursues empirical research on working styles of designing by practising architects within the frame of a personality theory of actions. The results indicate that there are three main directions for designing strategies. If we want to take into account the real-world behaviour in design practice within architectural education, this implies the diversification of the exercises we offer to the students in threefold, corresponding with the three directions. To this, we add the didactic options of complementation, compensation and support, depending on what we know about the strong or weak points of the students involved. We have started proposing choices for the exercises of our design morphology studio. Students are offered approaches and tools we consider best adapted to their own working

series eCAADe
email
last changed 2022/06/07 07:55

_id ddss9209
id ddss9209
authors De Gelder, J.T. and Lucardie, G.L.
year 1993
title Knowledge and data modelling in cad/cam applications
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary Modelling knowledge and data in CAD/CAM applications is complex because different goals and contexts have to be taken into account. This complexity makes particular demands upon representation formalisms. Today many modelling tools are based on record structures. By analyzing the requirements for a product model of a portal structure in steel, this paper shows that in many situations record structures are not well suited as a representation formalism for storing knowledge and data in CAD/CAM applications. This is illustrated by performing a knowledge-level analysis of the knowledge and data generated in the design and manufacturing process of a portal structure in steel.
series DDSS
last changed 2003/08/07 16:36

_id e412
authors Fargas, Josep and Papazian, Pegor
year 1992
title Modeling Regulations and Intentions for Urban Development: The Role of Computer Simulation in the Urban Design Studio
doi https://doi.org/10.52842/conf.ecaade.1992.201
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 201-212
summary In this paper we present a strategy for modeling urban development in order to study the role of urban regulations and policies in the transformation of cities. We also suggest a methodology for using computer models as experimental tools in the urban design studio in order to make explicit the factors involved in shaping cities, and for the automatic visualization of projected development. The structure of the proposed model is based on different modules which represent, on the one hand, the rules regulating the physical growth of a city and, on the other hand, heuristics corresponding to different interests such as Real Estate Developers, City Hall Planners, Advocacy and Community Groups, and so on. Here we present a case study dealing with the Boston Redevelopment Authority zoning code for the Midtown Cultural District of Boston. We introduce a computer program which develops the district, adopting a particular point of view regarding urban regulation. We then generalize the notion of this type of computer modeling and simulation, and draw some conclusions about its possible uses in the teaching and practice of design.
series eCAADe
email
last changed 2022/06/07 07:55

_id 7ce5
authors Gal, Shahaf
year 1992
title Computers and Design Activities: Their Mediating Role in Engineering Education
source Sociomedia, ed. Edward Barret. MIT Press
summary Sociomedia: With all the new words used to describe electronic communication (multimedia, hypertext, cyberspace, etc.), do we need another one? Edward Barrett thinks we do; hence, he coins the term "sociomedia." It is meant to displace a computing economy in which technicity is hypostasized over sociality. Sociomedia, a compilation of twenty-five articles on the theory, design and practice of educational multimedia and hypermedia, attempts to re-value the communicational face of computing. Value, of course, is "ultimately a social construct." As such, it has everything to do with knowledge, power, education and technology. The projects discussed in this book represent the leading edge of electronic knowledge production in academia (not to mention major funding) and are determining the future of educational media. For these reasons, Sociomedia warrants close inspection. Barrett's introduction sets the tone. For him, designing computer media involves hardwiring a mechanism for the social construction of knowledge (1). He links computing to a process of social and communicative interactivity for constructing and desseminating knowledge. Through a mechanistic mapping of the university as hypercontext (a huge network that includes classrooms as well as services and offices), Barrett models intellectual work in such a way as to avoid "limiting definitions of human nature or human development." Education, then, can remain "where it should be--in the human domain (public and private) of sharing ideas and information through the medium of language." By leaving education in a virtual realm (where we can continue to disagree about its meaning and execution), it remains viral, mutating and contaminating in an intellectually healthy way. He concludes that his mechanistic model, by means of its reductionist approach, preserves value (7). This "value" is the social construction of knowledge. While I support the social orientation of Barrett's argument, discussions of value are related to power. I am not referring to the traditional teacher-student power structure that is supposedly dismantled through cooperative and constructivist learning strategies. The power to be reckoned with in the educational arena is foundational, that which (pre)determines value and the circulation of knowledge. "Since each of you reading this paragraph has a different perspective on the meaning of 'education' or 'learning,' and on the processes involved in 'getting an education,' think of the hybris in trying to capture education in a programmable function, in a displayable object, in a 'teaching machine'" (7). Actually, we must think about that hybris because it is, precisely, what informs teaching machines. Moreover, the basic epistemological premises that give rise to such productions are too often assumed. In the case of instructional design, the episteme of cognitive sciences are often taken for granted. It is ironic that many of the "postmodernists" who support electronic hypertextuality seem to have missed Jacques Derrida's and Michel Foucault's "deconstructions" of the epistemology underpinning cognitive sciences (if not of epistemology itself). Perhaps it is the glitz of the technology that blinds some users (qua developers) to the belief systems operating beneath the surface. Barrett is not guilty of reactionary thinking or politics; he is, in fact, quite in line with much American deconstructive and postmodern thinking. The problem arises in that he leaves open the definitions of "education," "learning" and "getting an education." One cannot engage in the production of new knowledge without orienting its design, production and dissemination, and without negotiating with others' orientations, especially where largescale funding is involved. Notions of human nature and development are structural, even infrastructural, whatever the medium of the teaching machine. Although he addresses some dynamics of power, money and politics when he talks about the recession and its effects on the conference, they are readily visible dynamics of power (3-4). Where does the critical factor of value determination, of power, of who gets what and why, get mapped onto a mechanistic model of learning institutions? Perhaps a mapping of contributors' institutions, of the funding sources for the projects showcased and for participation in the conference, and of the disciplines receiving funding for these sorts of projects would help visualize the configurations of power operative in the rising field of educational multimedia. Questions of power and money notwithstanding, Barrett's introduction sets the social and textual thematics for the collection of essays. His stress on interactivity, on communal knowledge production, on the society of texts, and on media producers and users is carried foward through the other essays, two of which I will discuss. Section I of the book, "Perspectives...," highlights the foundations, uses and possible consequences of multimedia and hypertextuality. The second essay in this section, "Is There a Class in This Text?," plays on the robust exchange surrounding Stanley Fish's book, Is There a Text in This Class?, which presents an attack on authority in reading. The author, John Slatin, has introduced electronic hypertextuality and interaction into his courses. His article maps the transformations in "the content and nature of work, and the workplace itself"-- which, in this case, is not industry but an English poetry class (25). Slatin discovered an increase of productive and cooperative learning in his electronically- mediated classroom. For him, creating knowledge in the electronic classroom involves interaction between students, instructors and course materials through the medium of interactive written discourse. These interactions lead to a new and persistent understanding of the course materials and of the participants' relation to the materials and to one another. The work of the course is to build relationships that, in my view, constitute not only the meaning of individual poems, but poetry itself. The class carries out its work in the continual and usually interactive production of text (31). While I applaud his strategies which dismantle traditional hierarchical structures in academia, the evidence does not convince me that the students know enough to ask important questions or to form a self-directing, learning community. Stanley Fish has not relinquished professing, though he, too, espouses the indeterminancy of the sign. By the fourth week of his course, Slatin's input is, by his own reckoning, reduced to 4% (39). In the transcript of the "controversial" Week 6 exchange on Gertrude Stein--the most disliked poet they were discussing at the time (40)--we see the blind leading the blind. One student parodies Stein for three lines and sums up his input with "I like it." Another, finds Stein's poetry "almost completey [sic] lacking in emotion or any artistic merit" (emphasis added). On what grounds has this student become an arbiter of "artistic merit"? Another student, after admitting being "lost" during the Wallace Steven discussion, talks of having more "respect for Stevens' work than Stein's" and adds that Stein's poetry lacks "conceptual significance[, s]omething which people of varied opinion can intelligently discuss without feeling like total dimwits...." This student has progressed from admitted incomprehension of Stevens' work to imposing her (groundless) respect for his work over Stein's. Then, she exposes her real dislike for Stein's poetry: that she (the student) missed the "conceptual significance" and hence cannot, being a person "of varied opinion," intelligently discuss it "without feeling like [a] total dimwit." Slatin's comment is frightening: "...by this point in the semester students have come to feel increasingly free to challenge the instructor" (41). The students that I have cited are neither thinking critically nor are their preconceptions challenged by student-governed interaction. Thanks to the class format, one student feels self-righteous in her ignorance, and empowered to censure. I believe strongly in student empowerment in the classroom, but only once students have accrued enough knowledge to make informed judgments. Admittedly, Slatin's essay presents only partial data (there are six hundred pages of course transcripts!); still, I wonder how much valuable knowledge and metaknowledge was gained by the students. I also question the extent to which authority and professorial dictature were addressed in this course format. The power structures that make it possible for a college to require such a course, and the choice of texts and pedagogy, were not "on the table." The traditional professorial position may have been displaced, but what took its place?--the authority of consensus with its unidentifiable strong arm, and the faceless reign of software design? Despite Slatin's claim that the students learned about the learning process, there is no evidence (in the article) that the students considered where their attitudes came from, how consensus operates in the construction of knowledge, how power is established and what relationship they have to bureaucratic insitutions. How do we, as teaching professionals, negotiate a balance between an enlightened despotism in education and student-created knowledge? Slatin, and other authors in this book, bring this fundamental question to the fore. There is no definitive answer because the factors involved are ultimately social, and hence, always shifting and reconfiguring. Slatin ends his article with the caveat that computerization can bring about greater estrangement between students, faculty and administration through greater regimentation and control. Of course, it can also "distribute authority and power more widely" (50). Power or authority without a specific face, however, is not necessarily good or just. Shahaf Gal's "Computers and Design Activities: Their Mediating Role in Engineering Education" is found in the second half of the volume, and does not allow for a theory/praxis dichotomy. Gal recounts a brief history of engineering education up to the introduction of Growltiger (GT), a computer-assisted learning aid for design. He demonstrates GT's potential to impact the learning of engineering design by tracking its use by four students in a bridge-building contest. What his text demonstrates clearly is that computers are "inscribing and imaging devices" that add another viewpoint to an on-going dialogue between student, teacher, earlier coursework, and other teaching/learning tools. The less proficient students made a serious error by relying too heavily on the technology, or treating it as a "blueprint provider." They "interacted with GT in a way that trusted the data to represent reality. They did not see their interaction with GT as a negotiation between two knowledge systems" (495). Students who were more thoroughly informed in engineering discourses knew to use the technology as one voice among others--they knew enough not simply to accept the input of the computer as authoritative. The less-advanced students learned a valuable lesson from the competition itself: the fact that their designs were not able to hold up under pressure (literally) brought the fact of their insufficient knowledge crashing down on them (and their bridges). They also had, post factum, several other designs to study, especially the winning one. Although competition and comparison are not good pedagogical strategies for everyone (in this case the competitors had volunteered), at some point what we think we know has to be challenged within the society of discourses to which it belongs. Students need critique in order to learn to push their learning into auto-critique. This is what is lacking in Slatin's discussion and in the writings of other avatars of constructivist, collaborative and computer-mediated pedagogies. Obviously there are differences between instrumental types of knowledge acquisition and discoursive knowledge accumulation. Indeed, I do not promote the teaching of reading, thinking and writing as "skills" per se (then again, Gal's teaching of design is quite discursive, if not dialogic). Nevertheless, the "soft" sciences might benefit from "bridge-building" competitions or the re-institution of some forms of agonia. Not everything agonistic is inhuman agony--the joy of confronting or creating a sound argument supported by defensible evidence, for example. Students need to know that soundbites are not sound arguments despite predictions that electronic writing will be aphoristic rather than periodic. Just because writing and learning can be conceived of hypertextually does not mean that rigor goes the way of the dinosaur. Rigor and hypertextuality are not mutually incompatible. Nor is rigorous thinking and hard intellectual work unpleasurable, although American anti-intellectualism, especially in the mass media, would make it so. At a time when the spurious dogmatics of a Rush Limbaugh and Holocaust revisionist historians circulate "aphoristically" in cyberspace, and at a time when knowledge is becoming increasingly textualized, the role of critical thinking in education will ultimately determine the value(s) of socially constructed knowledge. This volume affords the reader an opportunity to reconsider knowledge, power, and new communications technologies with respect to social dynamics and power relationships.
series other
last changed 2003/04/23 15:14

_id cc68
authors García, Agustín Pérez
year 1992
title Learning Structural Design - Computers and Virtual Laboratories
doi https://doi.org/10.52842/conf.ecaade.1992.525
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 525-534
summary This paper shows how the spreading use of computers can improve the quality of education, specially in the field of architecture. An Innovative Teaching Project oriented to the discipline Structural Design of Buildings has been implemented at the School of Architecture of Valencia. The main objective of this project is the transformation of the computer room into a virtual laboratory for simulating the behaviour of structural typologies using mathematical models of them. An environment, specially oriented to Structural Design, has been integrated in a Computer Aided Design platform to teach how design the Structure of Buildings.
series eCAADe
last changed 2022/06/07 07:51

_id ddss9207
id ddss9207
authors Gauchel, J., Hovestadt, L., van Wyk, S. and Bhat, R.R.
year 1993
title Modular building models
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary The development and implementation of a modular building model appropriate for computer aided design is described. The limitations of a unified building model with regard to concurrence and complexity in design is discussed. Current research suggests that to model real-world complexity, one must trade centralized control for autonomy. In this paper we develop a modular approach to building modelling that is based on object-oriented autonomy and makes it possible to define these models in a distributed concurrent manner. Such a modular and autonomous implementation brings inherent uncertainty and conflict which cannot be determined a priori.
series DDSS
last changed 2003/08/07 16:36

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 11HOMELOGIN (you are user _anon_788003 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002