CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 243

_id 4857
authors Escola Tecnica Superior D'arquitectura de Barcelona (Ed.)
year 1992
title CAAD Instruction: The New Teaching of an Architect?
doi https://doi.org/10.52842/conf.ecaade.1992
source eCAADe Conference Proceedings / Barcelona (Spain) 12-14 November 1992, 551 p.
summary The involvement of computer graphic systems in the transmission of knowledge in the areas of urban planning and architectural design will bring a significant change to the didactic programs and methods of those schools which have decided to adopt these new instruments. Workshops of urban planning and architectural design will have to modify their structures, and teaching teams will have to revise their current programs. Some european schools and faculties of architecture have taken steps in this direction. Others are willing to join them.

This process is only delayed by the scarcity of material resources, and by the slowness with which a sufficient number of teachers are adopting these methods.

ECAADE has set out to analyze the state of this issue during its next conference, and it will be discussed from various points of view. From this confrontation of ideas will come, surely, the guidelines for progress in the years to come.

The different sessions will be grouped together following these four themes:

(A.) Multimedia and Course Work / State of the art of the synthesis of graphical and textual information favored by new available multimedia computer programs. Their repercussions on academic programs. (B.) The New Design Studio / Physical characteristics, data concentration and accessibility of a computerized studio can be better approached in a computerized workshop. (C.) How to manage the new education system / Problems and possibilities raised, from the practical and organizational points of view, of architectural education by the introduction of computers in the classrooms. (D.) CAAI. Formal versus informal structure / How will the traditional teaching structure be affected by the incidence of these new systems in which the access to knowledge and information can be obtained in a random way and guided by personal and subjective criteria.

series eCAADe
email
last changed 2022/06/07 07:49

_id 7ce5
authors Gal, Shahaf
year 1992
title Computers and Design Activities: Their Mediating Role in Engineering Education
source Sociomedia, ed. Edward Barret. MIT Press
summary Sociomedia: With all the new words used to describe electronic communication (multimedia, hypertext, cyberspace, etc.), do we need another one? Edward Barrett thinks we do; hence, he coins the term "sociomedia." It is meant to displace a computing economy in which technicity is hypostasized over sociality. Sociomedia, a compilation of twenty-five articles on the theory, design and practice of educational multimedia and hypermedia, attempts to re-value the communicational face of computing. Value, of course, is "ultimately a social construct." As such, it has everything to do with knowledge, power, education and technology. The projects discussed in this book represent the leading edge of electronic knowledge production in academia (not to mention major funding) and are determining the future of educational media. For these reasons, Sociomedia warrants close inspection. Barrett's introduction sets the tone. For him, designing computer media involves hardwiring a mechanism for the social construction of knowledge (1). He links computing to a process of social and communicative interactivity for constructing and desseminating knowledge. Through a mechanistic mapping of the university as hypercontext (a huge network that includes classrooms as well as services and offices), Barrett models intellectual work in such a way as to avoid "limiting definitions of human nature or human development." Education, then, can remain "where it should be--in the human domain (public and private) of sharing ideas and information through the medium of language." By leaving education in a virtual realm (where we can continue to disagree about its meaning and execution), it remains viral, mutating and contaminating in an intellectually healthy way. He concludes that his mechanistic model, by means of its reductionist approach, preserves value (7). This "value" is the social construction of knowledge. While I support the social orientation of Barrett's argument, discussions of value are related to power. I am not referring to the traditional teacher-student power structure that is supposedly dismantled through cooperative and constructivist learning strategies. The power to be reckoned with in the educational arena is foundational, that which (pre)determines value and the circulation of knowledge. "Since each of you reading this paragraph has a different perspective on the meaning of 'education' or 'learning,' and on the processes involved in 'getting an education,' think of the hybris in trying to capture education in a programmable function, in a displayable object, in a 'teaching machine'" (7). Actually, we must think about that hybris because it is, precisely, what informs teaching machines. Moreover, the basic epistemological premises that give rise to such productions are too often assumed. In the case of instructional design, the episteme of cognitive sciences are often taken for granted. It is ironic that many of the "postmodernists" who support electronic hypertextuality seem to have missed Jacques Derrida's and Michel Foucault's "deconstructions" of the epistemology underpinning cognitive sciences (if not of epistemology itself). Perhaps it is the glitz of the technology that blinds some users (qua developers) to the belief systems operating beneath the surface. Barrett is not guilty of reactionary thinking or politics; he is, in fact, quite in line with much American deconstructive and postmodern thinking. The problem arises in that he leaves open the definitions of "education," "learning" and "getting an education." One cannot engage in the production of new knowledge without orienting its design, production and dissemination, and without negotiating with others' orientations, especially where largescale funding is involved. Notions of human nature and development are structural, even infrastructural, whatever the medium of the teaching machine. Although he addresses some dynamics of power, money and politics when he talks about the recession and its effects on the conference, they are readily visible dynamics of power (3-4). Where does the critical factor of value determination, of power, of who gets what and why, get mapped onto a mechanistic model of learning institutions? Perhaps a mapping of contributors' institutions, of the funding sources for the projects showcased and for participation in the conference, and of the disciplines receiving funding for these sorts of projects would help visualize the configurations of power operative in the rising field of educational multimedia. Questions of power and money notwithstanding, Barrett's introduction sets the social and textual thematics for the collection of essays. His stress on interactivity, on communal knowledge production, on the society of texts, and on media producers and users is carried foward through the other essays, two of which I will discuss. Section I of the book, "Perspectives...," highlights the foundations, uses and possible consequences of multimedia and hypertextuality. The second essay in this section, "Is There a Class in This Text?," plays on the robust exchange surrounding Stanley Fish's book, Is There a Text in This Class?, which presents an attack on authority in reading. The author, John Slatin, has introduced electronic hypertextuality and interaction into his courses. His article maps the transformations in "the content and nature of work, and the workplace itself"-- which, in this case, is not industry but an English poetry class (25). Slatin discovered an increase of productive and cooperative learning in his electronically- mediated classroom. For him, creating knowledge in the electronic classroom involves interaction between students, instructors and course materials through the medium of interactive written discourse. These interactions lead to a new and persistent understanding of the course materials and of the participants' relation to the materials and to one another. The work of the course is to build relationships that, in my view, constitute not only the meaning of individual poems, but poetry itself. The class carries out its work in the continual and usually interactive production of text (31). While I applaud his strategies which dismantle traditional hierarchical structures in academia, the evidence does not convince me that the students know enough to ask important questions or to form a self-directing, learning community. Stanley Fish has not relinquished professing, though he, too, espouses the indeterminancy of the sign. By the fourth week of his course, Slatin's input is, by his own reckoning, reduced to 4% (39). In the transcript of the "controversial" Week 6 exchange on Gertrude Stein--the most disliked poet they were discussing at the time (40)--we see the blind leading the blind. One student parodies Stein for three lines and sums up his input with "I like it." Another, finds Stein's poetry "almost completey [sic] lacking in emotion or any artistic merit" (emphasis added). On what grounds has this student become an arbiter of "artistic merit"? Another student, after admitting being "lost" during the Wallace Steven discussion, talks of having more "respect for Stevens' work than Stein's" and adds that Stein's poetry lacks "conceptual significance[, s]omething which people of varied opinion can intelligently discuss without feeling like total dimwits...." This student has progressed from admitted incomprehension of Stevens' work to imposing her (groundless) respect for his work over Stein's. Then, she exposes her real dislike for Stein's poetry: that she (the student) missed the "conceptual significance" and hence cannot, being a person "of varied opinion," intelligently discuss it "without feeling like [a] total dimwit." Slatin's comment is frightening: "...by this point in the semester students have come to feel increasingly free to challenge the instructor" (41). The students that I have cited are neither thinking critically nor are their preconceptions challenged by student-governed interaction. Thanks to the class format, one student feels self-righteous in her ignorance, and empowered to censure. I believe strongly in student empowerment in the classroom, but only once students have accrued enough knowledge to make informed judgments. Admittedly, Slatin's essay presents only partial data (there are six hundred pages of course transcripts!); still, I wonder how much valuable knowledge and metaknowledge was gained by the students. I also question the extent to which authority and professorial dictature were addressed in this course format. The power structures that make it possible for a college to require such a course, and the choice of texts and pedagogy, were not "on the table." The traditional professorial position may have been displaced, but what took its place?--the authority of consensus with its unidentifiable strong arm, and the faceless reign of software design? Despite Slatin's claim that the students learned about the learning process, there is no evidence (in the article) that the students considered where their attitudes came from, how consensus operates in the construction of knowledge, how power is established and what relationship they have to bureaucratic insitutions. How do we, as teaching professionals, negotiate a balance between an enlightened despotism in education and student-created knowledge? Slatin, and other authors in this book, bring this fundamental question to the fore. There is no definitive answer because the factors involved are ultimately social, and hence, always shifting and reconfiguring. Slatin ends his article with the caveat that computerization can bring about greater estrangement between students, faculty and administration through greater regimentation and control. Of course, it can also "distribute authority and power more widely" (50). Power or authority without a specific face, however, is not necessarily good or just. Shahaf Gal's "Computers and Design Activities: Their Mediating Role in Engineering Education" is found in the second half of the volume, and does not allow for a theory/praxis dichotomy. Gal recounts a brief history of engineering education up to the introduction of Growltiger (GT), a computer-assisted learning aid for design. He demonstrates GT's potential to impact the learning of engineering design by tracking its use by four students in a bridge-building contest. What his text demonstrates clearly is that computers are "inscribing and imaging devices" that add another viewpoint to an on-going dialogue between student, teacher, earlier coursework, and other teaching/learning tools. The less proficient students made a serious error by relying too heavily on the technology, or treating it as a "blueprint provider." They "interacted with GT in a way that trusted the data to represent reality. They did not see their interaction with GT as a negotiation between two knowledge systems" (495). Students who were more thoroughly informed in engineering discourses knew to use the technology as one voice among others--they knew enough not simply to accept the input of the computer as authoritative. The less-advanced students learned a valuable lesson from the competition itself: the fact that their designs were not able to hold up under pressure (literally) brought the fact of their insufficient knowledge crashing down on them (and their bridges). They also had, post factum, several other designs to study, especially the winning one. Although competition and comparison are not good pedagogical strategies for everyone (in this case the competitors had volunteered), at some point what we think we know has to be challenged within the society of discourses to which it belongs. Students need critique in order to learn to push their learning into auto-critique. This is what is lacking in Slatin's discussion and in the writings of other avatars of constructivist, collaborative and computer-mediated pedagogies. Obviously there are differences between instrumental types of knowledge acquisition and discoursive knowledge accumulation. Indeed, I do not promote the teaching of reading, thinking and writing as "skills" per se (then again, Gal's teaching of design is quite discursive, if not dialogic). Nevertheless, the "soft" sciences might benefit from "bridge-building" competitions or the re-institution of some forms of agonia. Not everything agonistic is inhuman agony--the joy of confronting or creating a sound argument supported by defensible evidence, for example. Students need to know that soundbites are not sound arguments despite predictions that electronic writing will be aphoristic rather than periodic. Just because writing and learning can be conceived of hypertextually does not mean that rigor goes the way of the dinosaur. Rigor and hypertextuality are not mutually incompatible. Nor is rigorous thinking and hard intellectual work unpleasurable, although American anti-intellectualism, especially in the mass media, would make it so. At a time when the spurious dogmatics of a Rush Limbaugh and Holocaust revisionist historians circulate "aphoristically" in cyberspace, and at a time when knowledge is becoming increasingly textualized, the role of critical thinking in education will ultimately determine the value(s) of socially constructed knowledge. This volume affords the reader an opportunity to reconsider knowledge, power, and new communications technologies with respect to social dynamics and power relationships.
series other
last changed 2003/04/23 15:14

_id 1076
authors Gero, John S. and Saunders, Robert
year 2000
title Constructed Representations and Their Functions in Computational Models of Designing
doi https://doi.org/10.52842/conf.caadria.2000.215
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 215-224
summary This paper re-examines the conclusions made by Schön and Wiggins in 1992 that computers were unable to reproduce processes crucial to designing. We propose that recent developments in artificial intelligence and design computing put us in a position where we can begin to computationally model designing as conceived by Schön and Wiggins. We present a computational model of designing using situated processes that construct representations. We show how constructed representations support computational processes that model the different kinds of seeing reported in designing. We also present recently developed computational processes that can identify unexpected consequences of design actions using adaptive novelty detection.
series CAADRIA
email
last changed 2022/06/07 07:51

_id 7bf4
authors Hornyanszky-Dalholm, Elisabeth and Rydberg-Mitchell, Birgitta
year 1992
title COMMUNICATING WITH LAYPEOPLE
source Proceedings of the 4rd European Full-Scale Modelling Conference / Lausanne (Switzerland) 9-12 September 1992, Part B, pp. 25-32
summary The purpose of the architect's tools is, as generally stated, to help the architects themselves to develop and visualize their spatial ideas and intentions. But the tools can also be used to communicate with other groups of professionals and with laypeople. This paper deals with the question how the choice of tools can effect the communication between laypeople and architects. It also stresses the need of combining different media in order to create the best conditions for user's participation. If the users will be able to influence the planning of an environment they must understand the "language" of the medium and have the ability to use it themselves. Models on diverse scales, and first of all the scale 1:1, fulfil these demands better than drawings. There are distinct limitations of the full-scale model, when it comes to give the users a comprehension of the entire mock-up, and thus models on smaller scales are required. Limitations of both full-scale and small scale models concerning visualizing the exterior and the building's interaction with the environment could possibly be worked out with the help of computer technique.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
type normal paper
email
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 15:39

_id 2c22
authors O'Neill, Michael J.
year 1992
title Neural Network Simulation as a Computer- Aided design Tool For Predicting Wayfinding Performance
source New York: John Wiley & Sons, 1992. pp. 347-366 : ill. includes bibliography
summary Complex public facilities such as libraries, hospitals, and governmental buildings often present problems to users who must find their way through them. Research shows that difficulty in wayfinding has costs in terms of time, money, public safety, and stress that results from being lost. While a wide range of architectural research supports the notion that ease of wayfinding should be a criterion for good design, architects have no method for evaluating how well their building designs will support the wayfinding task. People store and retrieve information about the layout of the built environment in a knowledge representation known as the cognitive map. People depend on the information stored in the cognitive map to find their way through buildings. Although there are numerous simulations of the cognitive map, the mechanisms of these models are not constrained by what is known about the neurophysiology of the brain. Rather, these models incorporate search mechanisms that act on semantically encoded information about the environment. In this paper the author describes the evaluation and application of an artificial neural network simulation of the cognitive map as a means of predicting wayfinding behavior in buildings. This simulation is called NAPS-PC (Network Activity Processing Simulator--PC version). This physiologically plausible model represents knowledge about the layout of the environment through a network of inter-connected processing elements. The performance of NAPS-PC was evaluated against actual human wayfinding performance. The study found that the simulation generated behavior that matched the performance of human participants. After the validation, NAPS-PC was modified so that it could read environmental information directly from AutoCAD (a popular micro-computer-based CAD software package) drawing files, and perform 'wayfinding' tasks based on that environmental information. This prototype tool, called AutoNet, is conceptualized as a means of allowing designers to predict the wayfinding performance of users in a building before it is actually built
keywords simulation, cognition, neural networks, evaluation, floor plans, applications, wayfinding, layout, building
series CADline
last changed 2003/06/02 13:58

_id a5fc
authors Shinners, Neil, D’Cruz, Neville and Marriott, Andrew
year 1992
title Multi-Faceted Architectural Visualization
doi https://doi.org/10.52842/conf.acadia.1992.141
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 141-153
summary As well as learning traditional design techniques, students in architecture courses learn how to use powerful workstations with CAD systems, color scanners and laser printers and software for the rendering, compositing and animating of their designs.

They learn to use raytracing and radiosity rendering systems to provide visual realism, alpha-channel compositing systems to put a client in the picture (literally) or the design in situ, and keyframe animation systems to allow realistic walkthroughs.

Student Presentations are now based on videos, photographic slides, slide shows or real time animation. Images (as data files) are imported into full color publishing systems for final year thesis presentation.

The architectural graphics environment at Curtin University facilitates the integration of slide and video examples of raytraced and chroma-keyed images with computer aided design techniques for architectural student presentations.

series ACADIA
email
last changed 2022/06/07 07:56

_id ddss9216
id ddss9216
authors Winteraeken-Bruls, P.W.M.
year 1993
title ROP: An interactive spatial optimization and grouping computer application
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary As a part of a research project at Eindhoven University of Technology, the computer application ROP for space-planning problems was tested in practice. The use of the application in a real-world project was evaluated. The decision-making process for the development of alternatives for a courthouse was observed to see how the computer application could support decision-making. The aim of this paper is to describe the performance of ROP in a real-world setting. ROP appears to be a useful instrument in decision-making for space-planning problems. Especially in the early stages of the design process, it enhances insight among all participants in a project team. It can also be used in situations where little information is available. To conclude, ROP appears to enhance communi-cation between members of a design team.
series DDSS
last changed 2003/08/07 16:36

_id avocaad_2001_17
id avocaad_2001_17
authors Ying-Hsiu Huang, Yu-Tung Liu, Cheng-Yuan Lin, Yi-Ting Cheng, Yu-Chen Chiu
year 2001
title The comparison of animation, virtual reality, and scenario scripting in design process
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Design media is a fundamental tool, which can incubate concrete ideas from ambiguous concepts. Evolved from freehand sketches, physical models to computerized drafting, modeling (Dave, 2000), animations (Woo, et al., 1999), and virtual reality (Chiu, 1999; Klercker, 1999; Emdanat, 1999), different media are used to communicate to designers or users with different conceptual levels¡@during the design process. Extensively employed in design process, physical models help designers in managing forms and spaces more precisely and more freely (Millon, 1994; Liu, 1996).Computerized drafting, models, animations, and VR have gradually replaced conventional media, freehand sketches and physical models. Diversely used in the design process, computerized media allow designers to handle more divergent levels of space than conventional media do. The rapid emergence of computers in design process has ushered in efforts to the visual impact of this media, particularly (Rahman, 1992). He also emphasized the use of computerized media: modeling and animations. Moreover, based on Rahman's study, Bai and Liu (1998) applied a new design media¡Xvirtual reality, to the design process. In doing so, they proposed an evaluation process to examine the visual impact of this new media in the design process. That same investigation pointed towards the facilitative role of the computerized media in enhancing topical comprehension, concept realization, and development of ideas.Computer technology fosters the growth of emerging media. A new computerized media, scenario scripting (Sasada, 2000; Jozen, 2000), markedly enhances computer animations and, in doing so, positively impacts design processes. For the three latest media, i.e., computerized animation, virtual reality, and scenario scripting, the following question arises: What role does visual impact play in different design phases of these media. Moreover, what is the origin of such an impact? Furthermore, what are the similarities and variances of computing techniques, principles of interaction, and practical applications among these computerized media?This study investigates the similarities and variances among computing techniques, interacting principles, and their applications in the above three media. Different computerized media in the design process are also adopted to explore related phenomenon by using these three media in two projects. First, a renewal planning project of the old district of Hsinchu City is inspected, in which animations and scenario scripting are used. Second, the renewal project is compared with a progressive design project for the Hsinchu Digital Museum, as designed by Peter Eisenman. Finally, similarity and variance among these computerized media are discussed.This study also examines the visual impact of these three computerized media in the design process. In computerized animation, although other designers can realize the spatial concept in design, users cannot fully comprehend the concept. On the other hand, other media such as virtual reality and scenario scripting enable users to more directly comprehend what the designer's presentation.Future studies should more closely examine how these three media impact the design process. This study not only provides further insight into the fundamental characteristics of the three computerized media discussed herein, but also enables designers to adopt different media in the design stages. Both designers and users can more fully understand design-related concepts.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 6208
authors Abou-Jaoude, Georges
year 1992
title To Master a Tool
source Proceedings of the 4rd European Full-Scale Modelling Conference / Lausanne (Switzerland) 9-12 September 1992, Part B, p. 15
summary The tool here is the computer or to be precise, a unit that includes the computer, the peripherals and the software needed to fulfill a task. These tools are getting very sophisticated and user interfaces extremly friendly, therefore it is very easy to become the slave of such electronic tools and reach self satisfaction with strait forward results and attractive images. In order to master and not to become slaves of sophisticated tools, a very solid knowledge of related fields or domains of application becomes necessary. In the case of this seminar, full scale modelling, is a way to understand the relation between a mental model and it's full-scale modelling, it is a way of communicating what is in a designers mind. Computers and design programs can have the same goal, rather than chosing one method or the other let us try to say how important it is today to complement designing with computer with other means and media such as full scale modelling, and what computer modelling and simulation can bring to full scale modelling or other means.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
more http://info.tuwien.ac.at/efa
last changed 2003/08/25 10:12

_id acadia06_455
id acadia06_455
authors Ambach, Barbara
year 2006
title Eve’s Four Faces interactive surface configurations
doi https://doi.org/10.52842/conf.acadia.2006.455
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 455-460
summary Eve’s Four Faces consists of a series of digitally animated and interactive surfaces. Their content and structure are derived from a collection of sources outside the conventional boundaries of architectural research, namely psychology and the broader spectrum of arts and culture.The investigation stems from a psychological study documenting the attributes and social relationships of four distinct personality prototypes: the Individuated, the Traditional, the Conflicted, and the Assured (York and John 1992). For the purposes of this investigation, all four prototypes are assumed to be inherent, to certain degrees, in each individual. However, the propensity towards one of the prototypes forms the basis for each individual’s “personality structure.” The attributes, social implications and prospects for habitation have been translated into animations and surfaces operating within A House for Eve’s Four Faces. The presentation illustrates the potential for constructed surfaces to be configured and transformed interactively, responding to the needs and qualities associated with each prototype. The intention is to study the effects of each configuration and how each configuration may be therapeutic in supporting, challenging or altering one’s personality as it oscillates and shifts through the four prototypical conditions.
series ACADIA
email
last changed 2022/06/07 07:54

_id 2006_040
id 2006_040
authors Ambach, Barbara
year 2006
title Eve’s Four Faces-Interactive surface configurations
doi https://doi.org/10.52842/conf.ecaade.2006.040
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 40-44
summary Eve’s Four Faces consists of a series of digitally animated and interactive surfaces. Their content and structure are derived from a collection of sources outside the conventional boundaries of architectural research, namely psychology and the broader spectrum of arts and culture. The investigation stems from a psychological study documenting the attributes and social relationships of four distinct personality prototypes; the “Individuated”, the “Traditional”, the “Conflicted” and the “Assured”. (York and John, 1992) For the purposes of this investigation, all four prototypes are assumed to be inherent, to certain degrees, in each individual; however, the propensity towards one of the prototypes forms the basis for each individual’s “personality structure”. The attributes, social implications and prospects for habitation have been translated into animations and surfaces operating within A House for Eve’s Four Faces. The presentation illustrates the potential for constructed surfaces to be configured and transformed interactively, responding to the needs and qualities associated with each prototype. The intention is to study the effects of each configuration and how it may be therapeutic in supporting, challenging or altering one’s personality as it oscillates and shifts through the four prototypical conditions.
keywords interaction; digital; environments; psychology; prototypes
series eCAADe
type normal paper
last changed 2022/06/07 07:54

_id 60e7
authors Bailey, Rohan
year 2000
title The Intelligent Sketch: Developing a Conceptual Model for a Digital Design Assistant
doi https://doi.org/10.52842/conf.acadia.2000.137
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 137-145
summary The computer is a relatively new tool in the practice of Architecture. Since its introduction, there has been a desire amongst designers to use this new tool quite early in the design process. However, contrary to this desire, most Architects today use pen and paper in the very early stages of design to sketch. Architects solve problems by thinking visually. One of the most important tools that the Architect has at his disposal in the design process is the hand sketch. This iterative way of testing ideas and informing the design process with images fundamentally directs and aids the architect’s decision making. It has been said (Schön and Wiggins 1992) that sketching is about the reflective conversation designers have with images and ideas conveyed by the act of drawing. It is highly dependent on feedback. This “conversation” is an area worthy of investigation. Understanding this “conversation” is significant to understanding how we might apply the computer to enhance the designer’s ability to capture, manipulate and reflect on ideas during conceptual design. This paper discusses sketching and its relation to design thinking. It explores the conversations that designers engage in with the media they use. This is done through the explanation of a protocol analysis method. Protocol analysis used in the field of psychology, has been used extensively by Eastman et al (starting in the early 70s) as a method to elicit information about design thinking. In the pilot experiment described in this paper, two persons are used. One plays the role of the “hand” while the other is the “mind”- the two elements that are involved in the design “conversation”. This variation on classical protocol analysis sets out to discover how “intelligent” the hand should be to enhance design by reflection. The paper describes the procedures entailed in the pilot experiment and the resulting data. The paper then concludes by discussing future intentions for research and the far reaching possibilities for use of the computer in architectural studio teaching (as teaching aids) as well as a digital design assistant in conceptual design.
keywords CAAD, Sketching, Protocol Analysis, Design Thinking, Design Education
series ACADIA
last changed 2022/06/07 07:54

_id 898a
authors Bay, J.H.
year 2002
title Cognitive Biases and Precedent Knowledge in Human and Computer-Aided Design Thinking
doi https://doi.org/10.52842/conf.caadria.2002.213
source CAADRIA 2002 [Proceedings of the 7th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 983-2473-42-X] Cyberjaya (Malaysia) 18–20 April 2002, pp. 213-220
summary Cognitive biases (illusions) and potential errors can occur when using precedent knowledge for analogical, pre-parametric and qualitative design thinking. This paper refers largely to part of a completed research (Bay 2001) on how heuristic biases, discussed by Tversky and Kahneman (1982) in cognitive psychology, can affect judgement and learning of facts from precedents in architectural design, made explicit using a kernel of conceptual system (Tzonis et. al., 1978) and a framework of architectural representation (Tzonis 1992). These are used here to consider how such illusions and errors may be transferred to computer aided design thinking.
series CAADRIA
email
last changed 2022/06/07 07:54

_id 065b
authors Beitia, S.S., Zulueta, A. and Barrallo, J.
year 1995
title The Virtual Cathedral - An Essay about CAAD, History and Structure
doi https://doi.org/10.52842/conf.ecaade.1995.355
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 355-360
summary The Old Cathedral of Santa Maria in Vitoria is the most representative building of the Gothic style in the Basque Country. Built during the XIV century, it has been closed to the cult in 1994 because of the high risk of collapse that presents its structure. This closure was originated by the structural analysis that was entrusted to the University of the Basque Country in 1992. The topographic works developed in the Cathedral to elaborate the planimetry of the temple revealed that many structural elements of great importance like arches, buttresses and flying buttresses were removed, modified or added along the history of Santa Maria. The first structural analysis made in the church suggested that the huge deformations showed in the resistant elements, specially the piers, were originated by interventions made in the past. A deep historical investigation allowed us to know how the Cathedral was built and the changes executed until our days. With this information, we started the elaboration of a virtual model of the Cathedral of Santa Maria. This model was introduced into a Finite Elements Method system to study the deformations suffered in the church during its construction in the XIV century, and the intervention made later in the XV, XVI and XX centuries. The efficiency of the virtual model simulating the geometry of the Cathedral along history allowed us to detect the cause of the structural damage, that was finally found in many unfortunate interventions along time.

series eCAADe
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_43.htm
last changed 2022/06/07 07:54

_id b2f9
id b2f9
authors Bhzad Sidawi and Neveen Hamza
year 2012
title INTELLIGENT KNOWLEDGE-BASED REPOSITORY TO SUPPORT INFORMED DESIGN DECISION MAKING
source ITCON journal
summary Research highlights that architectural design is a social phenomenon that is underpinned by critical analysis of design precedents and the social interaction between designers including negotiation, collaboration and communication. CAAD systems are continuously developing as essential design tools in formulating and developing ideas. Researchers such as (Rosenman, Gero and Oxman 1992) have suggested suggest that knowledge based systems can be integrated with CAAD systems to provide design knowledge that would enable recalling design precedents that maybe linked to the design constraints. Currently CAAD systems are user centric being focused on architects rather than the end product. The systems provide limited assistance in the production of innovative design. Furthermore, the attention of the designers of knowledge based systems is providing a repository rather than a system that is capable to initiate innovation. Most of the CAAD systems have web communication tools that enable designers to communicate their design ideas with colleagues and partners in business. However, none of these systems have the capability to capture useful knowledge from the design negotiations. Students of the third to fifth year at College of Architecture, University of Dammam were surveyed and interviewed to find out how far design tools, communications and resources would impact the production of innovative design projects. The survey results show that knowledge extracted from design negotiations would impact the innovative design outcome. It highlights also that present design precedents are not very helpful and design negotiations between students, tutors and other students are not documented thus fully incorporated into the design scheme. The paper argues that the future CAAD systems should be capable to recognize innovative design precedents, and incorporate knowledge that is resulted from design negotiations. This would help students to gain a critical mass of knowledge that would underpin informed design decisions.
series journal paper
type normal paper
email
more http://www.itcon.org/cgi-bin/works/Show?2012_20
last changed 2012/09/19 13:41

_id 9b34
authors Butterworth, J. (et al.)
year 1992
title 3DM: A three-dimensional modeler using a head-mounted display
source Proceedings of the 1992 Symposium on Interactive 3D Graphics (Cambridge, Mass., March 29- April 1, 1992.), 135-138
summary 3dm is a three dimensional (3D) surface modeling program that draws techniques of model manipulation from both CAD and drawing programs and applies them to modeling in an intuitive way. 3dm uses a head-mounted display (HMD) to simplify the problem of 3D model manipulation and understanding. A HMD places the user in the modeling space, making three dimensional relationships more understandable. As a result, 3dm is easy to learn how to use and encourages experimentation with model shapes.
series other
last changed 2003/04/23 15:50

_id 2325
authors Chilton, John C.
year 1992
title Computer Aided Structural Design in Architectural Instruction
doi https://doi.org/10.52842/conf.ecaade.1992.443
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 443-450
summary In schools of architecture there is a tendency to associate the use of computers solely with the production of graphic images as part of the architectural design process. However, if the architecture is to work as a building it is also essential that technical aspects of the design are adequately investigated. One of the problem areas for most architectural students is structural design and they are often reluctant to use hand calculations to determine sizes of structural elements within their projects. In recent years, much of the drudgery of hand calculation has been removed from the engineer by the use of computers, and this has, hopefully, allowed a more thorough investigation of conceptual ideas and alternatives. The same benefit is now becoming available to architectural students. This is in the form of structural analysis and design programs that can be used, even by those having a limited knowledge of structural engineering, to assess the stability of designs and obtain approximate sizes for individual structural elements. The paper discusses how the use of such programs is taught, within the School of Architecture at Nottingham. Examples will be given of how they can assist students in the architectural design process. In particular, the application of GLULAM, a program for estimating sizes of laminated timber elements and SAND, a structural analysis and design package, will be described.
series eCAADe
last changed 2022/06/07 07:55

_id c434
authors Colajanni, B., Pellitteri, G. and Scianna, A.
year 1992
title Two Approaches to Teaching Computers in Architecture: The Experience in the Faculty of Engineering in Palermo, Italy
doi https://doi.org/10.52842/conf.ecaade.1992.295
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 295-306
summary Teaching the use of computers in architecture poses the same kind of problems as teaching mathematics. To both there are two possible approaches. The first presents the discipline as a tool of which the merely instrumental aspect is emphasized. Teaching is limited to show the results obtainable by existing programs and how to get them. The second approach, on the contrary emphasizes the autonomous nature of the discipline, mathematics as much as computing, on the basis of the convincement that the maximum of instrumental usefulness can be obtained through the knowledge at the highest degree of generality and, then, of abstraction. The first approach changes little in the mind of the student. He simply learns that is possible, and then worthy doing, a certain amount of operations, mainly checks of performances (and not only the control of the aspect, now easy with one of the many existing CAD) or searches of technical informations in some database. The second approach gives the student the consciousness of the manageability of abstract structures of relationships. He acquires then the idea of creating by himself particular structures of relationships and managing them. This can modify the very idea of the design procedure giving the student the consciousness that he can intervene directly in every segment of the design procedure, reshaping it to some extent in a way better suited to the particular problem he is dealing with. Of course this second approach implies learning not only a language but also the capability of coming to terms with languages. And again it is a cultural acquisition that can be very useful when referred to the languages of architecture. Furthermore the capability of simulating on the computer also a small segment of the design process gives the student a better understanding both of the particular problem he is dealing with and of the very nature of design. As for the first effect, it happens whenever a translation is done from a language to another one. One is obliged to get to the core of the matter in order to overcome the difficulties rising from the different bias of the two languages. The second effect comes from the necessity of placing the studied segment in the general flow of the design process. The organisation in a linear sequence of action to be accomplished recursively in an order always varying in any design occasion is an extremely useful exercise to understand the signification and the techniques of formalisation of design problems.
series eCAADe
email
last changed 2022/06/07 07:56

_id 0ac0
authors Coyne, Richard and Newton, Sidney
year 1992
title Metaphors, Computers and Architectural Education
doi https://doi.org/10.52842/conf.ecaade.1992.307
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 307-318
summary In this paper we present the case for employing metaphor to explain the impact of technology. This contrasts with the empirical-theoretical method of inquiry. We also contrast two widely held metaphors of architectural education (the EPISTEMOLOGICAL and the COMMUNITY metaphors) and of the role of the computer (the MAINFRAME and the UBIQUITOUS COMPUTING metaphors). We show how in each case both metaphors result in different kinds of decision making in relation to resourcing an architecture school.
series eCAADe
email
last changed 2022/06/07 07:56

_id 6bff
authors Coyne, Richard
year 1992
title The Role of Metaphor in Understanding Computers in Design
doi https://doi.org/10.52842/conf.acadia.1992.003
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 3-11
summary The study of metaphor provides valuable insights into the workings of thought and understanding. This chapter addresses the important question of what the study of metaphor has to say about technology, the design process and hence the role of computers in design. The conclusion is that design involves the generation of action within a collaborative environment in which there is the free play of metaphor. A recognition of the close relationship between technology and metaphor provides insights into how to evaluate and develop the effective use of computers in design.

series ACADIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 12HOMELOGIN (you are user _anon_618950 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002