CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 245

_id cf5c
authors Carpenter, B.
year 1992
title The logic of typed feature structures with applications to unification grammars, logic programs and constraint resolution
source Cambridge Tracts in Theoretical Computer Science, Cambridge University Press
summary This book develops the theory of typed feature structures, a new form of data structure that generalizes both the first-order terms of logic programs and feature-structures of unification-based grammars to include inheritance, typing, inequality, cycles and intensionality. It presents a synthesis of many existing ideas into a uniform framework, which serves as a logical foundation for grammars, logic programming and constraint-based reasoning systems. Throughout the text, a logical perspective is adopted that employs an attribute-value description language along with complete equational axiomatizations of the various systems of feature structures. Efficiency concerns are discussed and complexity and representability results are provided. The application of feature structures to phrase structure grammars is described and completeness results are shown for standard evaluation strategies. Definite clause logic programs are treated as a special case of phrase structure grammars. Constraint systems are introduced and an enumeration technique is given for solving arbitrary attribute-value logic constraints. This book with its innovative approach to data structures will be essential reading for researchers in computational linguistics, logic programming and knowledge representation. Its self-contained presentation makes it flexible enough to serve as both a research tool and a textbook.
series other
last changed 2003/04/23 15:14

_id caadria2004_k-1
id caadria2004_k-1
authors Kalay, Yehuda E.
year 2004
title CONTEXTUALIZATION AND EMBODIMENT IN CYBERSPACE
doi https://doi.org/10.52842/conf.caadria.2004.005
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 5-14
summary The introduction of VRML (Virtual Reality Markup Language) in 1994, and other similar web-enabled dynamic modeling software (such as SGI’s Open Inventor and WebSpace), have created a rush to develop on-line 3D virtual environments, with purposes ranging from art, to entertainment, to shopping, to culture and education. Some developers took their cues from the science fiction literature of Gibson (1984), Stephenson (1992), and others. Many were web-extensions to single-player video games. But most were created as a direct extension to our new-found ability to digitally model 3D spaces and to endow them with interactive control and pseudo-inhabitation. Surprisingly, this technologically-driven stampede paid little attention to the core principles of place-making and presence, derived from architecture and cognitive science, respectively: two principles that could and should inform the essence of the virtual place experience and help steer its development. Why are the principles of place-making and presence important for the development of virtual environments? Why not simply be content with our ability to create realistically-looking 3D worlds that we can visit remotely? What could we possibly learn about making these worlds better, had we understood the essence of place and presence? To answer these questions we cannot look at place-making (both physical and virtual) from a 3D space-making point of view alone, because places are not an end unto themselves. Rather, places must be considered a locus of contextualization and embodiment that ground human activities and give them meaning. In doing so, places acquire a meaning of their own, which facilitates, improves, and enriches many aspects of our lives. They provide us with a means to interpret the activities of others and to direct our own actions. Such meaning is comprised of the social and cultural conceptions and behaviors imprinted on the environment by the presence and activities of its inhabitants, who in turn, ‘read’ by them through their own corporeal embodiment of the same environment. This transactional relationship between the physical aspects of an environment, its social/cultural context, and our own embodiment of it, combine to create what is known as a sense of place: the psychological, physical, social, and cultural framework that helps us interpret the world around us, and directs our own behavior in it. In turn, it is our own (as well as others’) presence in that environment that gives it meaning, and shapes its social/cultural character. By understanding the essence of place-ness in general, and in cyberspace in particular, we can create virtual places that can better support Internet-based activities, and make them equal to, in some cases even better than their physical counterparts. One of the activities that stands to benefit most from understanding the concept of cyber-places is learning—an interpersonal activity that requires the co-presence of others (a teacher and/or fellow learners), who can point out the difference between what matters and what does not, and produce an emotional involvement that helps students learn. Thus, while many administrators and educators rush to develop webbased remote learning sites, to leverage the economic advantages of one-tomany learning modalities, these sites deprive learners of the contextualization and embodiment inherent in brick-and-mortar learning institutions, and which are needed to support the activity of learning. Can these qualities be achieved in virtual learning environments? If so, how? These are some of the questions this talk will try to answer by presenting a virtual place-making methodology and its experimental implementation, intended to create a sense of place through contextualization and embodiment in virtual learning environments.
series CAADRIA
type normal paper
last changed 2022/06/07 07:52

_id 0ac0
authors Coyne, Richard and Newton, Sidney
year 1992
title Metaphors, Computers and Architectural Education
doi https://doi.org/10.52842/conf.ecaade.1992.307
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 307-318
summary In this paper we present the case for employing metaphor to explain the impact of technology. This contrasts with the empirical-theoretical method of inquiry. We also contrast two widely held metaphors of architectural education (the EPISTEMOLOGICAL and the COMMUNITY metaphors) and of the role of the computer (the MAINFRAME and the UBIQUITOUS COMPUTING metaphors). We show how in each case both metaphors result in different kinds of decision making in relation to resourcing an architecture school.
series eCAADe
email
last changed 2022/06/07 07:56

_id 6bff
authors Coyne, Richard
year 1992
title The Role of Metaphor in Understanding Computers in Design
doi https://doi.org/10.52842/conf.acadia.1992.003
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 3-11
summary The study of metaphor provides valuable insights into the workings of thought and understanding. This chapter addresses the important question of what the study of metaphor has to say about technology, the design process and hence the role of computers in design. The conclusion is that design involves the generation of action within a collaborative environment in which there is the free play of metaphor. A recognition of the close relationship between technology and metaphor provides insights into how to evaluate and develop the effective use of computers in design.

series ACADIA
email
last changed 2022/06/07 07:56

_id 6e99
authors Hoffer, Erin Rae
year 1992
title Creating the Electronic Design Studio: Development of a Heterogeneous Networked Environment at Harvard's Graduate School of Design
doi https://doi.org/10.52842/conf.ecaade.1992.225
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 225-240
summary The migration of design education to reliance on computer-based techniques requires new ways of thinking about environments which can effectively support a diverse set of activities. Both from a spatial standpoint and a computing resource standpoint, design studios must be inevitably reconfigured to support new tools and reflect new ways of communicating. At Harvard's GSD, a commitment to incorporating computer literacy as a fundamental component of design education enables us to confront these issues through the implementation of a heterogeneous network imbedded in an electronic design environment. This evolving prototype of a new design studio, its development and its potential, will be the subject of this paper. A new style design environment is built upon an understanding of traditional techniques, and layered with an awareness of new tools and methods. Initially we borrow from existing metaphors which govern our interpretation of the way designers work. Next we seek to extend our thinking to include allied or related metaphors such as the library metaphor which informs collections of software and data, or the laboratory metaphor which informs workspace groupings, or the transportation metaphor which informs computer-based communications such as electronic mail or bulletin boards, or the utility services metaphor which informs the provision of network services and equipment. Our evaluation of this environment is based on direct feedback from its users, both faculty and students, and on subjective observation of the qualitative changes in communication which occur between and among these groups and individuals. Ultimately, the network must be judged as a framework for learning and evaluation, and its success depends both on its ability to absorb our existing metaphors for the process of design, and to prefigure the emerging metaphors to be envisioned in the future.

series eCAADe
last changed 2022/06/07 07:50

_id abce
authors Ishii, Hiroshi and Kobayashi, Minoru
year 1992
title ClearBoard: A Seamless Medium for Shared Drawing and Conversation with Eye Contact Systems for Media-Supported Collaboration
source Proceedings of ACM CHI'92 Conference on HumanFactors in Computing Systems 1992 pp. 525-532
summary This paper introduces a novel shared drawing medium called ClearBoard. It realizes (1) a seamless shared drawing space and (2) eye contact to support realtime and remote collaboration by two users. We devised the key metaphor: "talking through and drawing on a transparent glass window" to design ClearBoard. A prototype of ClearBoard is implemented based on the "Drafter-Mirror" architecture. This paper first reviews previous work on shared drawing support to clarify the design goals. We then examine three metaphors that fulfill these goals. The design requirements and the two possible system architectures of ClearBoard are described. Finally, some findings gained through the experimental use of the prototype, including the feature of "gaze awareness", are discussed.
series other
last changed 2002/07/07 16:01

_id 6d34
authors Kensek, Karen and Noble, Doug (Eds.)
year 1992
title Mission - Method - Madness [Conference Proceedings]
doi https://doi.org/10.52842/conf.acadia.1992
source ACADIA Conference Proceedings / ISBN 1-880250-01-2 ) 1992, 232 p.
summary The papers represent a wide variety of exploration into the uses of computers in architecture. We have tried to impose order onto the collection by organizing them into six sessions: Metaphor, Mission, Method, Modeling for Visualization, Modeling, and Generative Systems. As with any ordering system for such a diverse selection, some session papers are strongly related while others are loosely grouped. Madness, an additional session not in the proceedings, will include short presentations of work in progress. Regarding the individual papers, it is particularly exciting to see research being conducted that is founded on previous work done by others. It is also interesting to note that half of the papers have been submitted by teams of authors. Whether this represents "computer supported cooperative work" remains to be seen. Certainly the work in this book represents an interesting and wide variety of explorations into computer supported design in architecture.
series ACADIA
email
more http://www.acadia.org
last changed 2022/06/07 07:49

_id ascaad2022_043
id ascaad2022_043
authors Awan, Abeeha; Prokop, Simon; Vele, Jiri; Dounas, Theodor; Lombardi, Davide; Agkathidis, Asterios; Kurilla, Lukas
year 2022
title Qualitative Knowledge Graph for the Evaluation of Metaverse(s) - Is the Metaverse Hype or a Promising New Field for Architects?
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 99-116
summary With the advancement of augmented and virtual reality technologies both in scale as well as accessibility, the Metaverse (Stephenson, 1992, Hughes, 2022) has emerged as a new digital space with potential for the application of architectural creativity and design. With blockchain integration, the concept of the Metaverse shows promise in creating a “decentralised” space for design and creativity with rewards for its participants. As a platform that incorporates these technological components, does the Metaverse have utility for architectural design? Is there something truly novel in what the Metaverse brings to architectural computing, and architectural design? The paper constructs a qualitative knowledge graph that can be used for the evaluation of various kinds of Metaverses in and for architectural design. We use Design Science Research methods to develop the knowledge graph and its evaluative capacity, stemming from our experience with two Metaverses, Decentraland and Cryptovoxels. The paper concludes with a discussion of knowledge and practice gaps that are evident, framing the opportunities that architects might have in the future in terms of developing Metaverse(s).
series ASCAAD
email
last changed 2024/02/16 13:24

_id 2cb4
authors Bille, Pia
year 1992
title CAD at the AAA
doi https://doi.org/10.52842/conf.ecaade.1992.279
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 279-288
summary Teaching computer science at the Aarhus School of Architecture goes back as far as to the beginning of the 80’s, when a few teachers and students were curious towards the new media seeing its great developing perspectives and its possible use in the design of architecture. The curiosity and excitement about technology continued, although the results were modest and the usefulness not a dominant aspect in this early period. In the middle of the 80’s the School of Architecture was given the opportunity by means of state funding to buy the first 10 IBM PC's to run AutoCad among other programmes. Beside this a bigger CAD-system Gable 4D Series was introduced running on MicroVax Workstations. The software was dedicated to drafting buildings in 2 and 3 dimensions - an important task within the profession of architects.

series eCAADe
email
last changed 2022/06/07 07:52

_id 2312
authors Carrara, G., Kalay Y.E. and Novembri, G.
year 1992
title Multi-modal Representation of Design Knowledge
doi https://doi.org/10.52842/conf.ecaade.1992.055
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 55-66
summary Explicit representation of design knowledge is needed if scientific methods are to be applied in design research, and if computers are to be used in the aid of design education and practice. The representation of knowledge in general, and design knowledge in particular, have been the subject matter of computer science, design methods, and computer-aided design research for quite some time. Several models of design knowledge representation have been developed over the last 30 years, addressing specific aspects of the problem. This paper describes a different approach to design knowledge representation that recognizes the multimodal nature of design knowledge. It uses a variety of computational tools to encode different kinds of design knowledge, including the descriptive (objects), the prescriptive (goals) and the operational (methods) kinds. The representation is intended to form a parsimonious, communicable and presentable knowledge-base that can be used as a tool for design research and education as well as for CAAD.
keywords Design Methods, Design Process Goals, Knowledge Representation, Semantic Networks
series eCAADe
email
last changed 2022/06/07 07:55

_id 6ef4
authors Carrara, Gianfranco and Kalay, Yehuda E.
year 1992
title Multi-Model Representation of Design Knowledge
doi https://doi.org/10.52842/conf.acadia.1992.077
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 77-88
summary Explicit representation of design knowledge is needed if scientific methods are to be applied in design research, and if comPuters are to be used in the aid of design education and practice. The representation of knowledge in general, and design knowledge in particular, have been the subject matter of computer science, design methods, and computer- aided design research for quite some time. Several models of design knowledge representation have been developed over the last 30 years, addressing specific aspects of the problem. This paper describes a different approach to design knowledge representation that recognizes the Multi-modal nature of design knowledge. It uses a variety of computational tools to encode different kinds of design knowledge, including the descriptive (objects), the prescriptive (goals) and the operational (methods) kinds. The representation is intended to form a parsimonious, communicable and presentable knowledge-base that can be used as a tool for design research and education as well as for CAAD.
keywords Design Methods, Design Process, Goals, Knowledge Representation, Semantic Networks
series ACADIA
email
last changed 2022/06/07 07:55

_id c434
authors Colajanni, B., Pellitteri, G. and Scianna, A.
year 1992
title Two Approaches to Teaching Computers in Architecture: The Experience in the Faculty of Engineering in Palermo, Italy
doi https://doi.org/10.52842/conf.ecaade.1992.295
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 295-306
summary Teaching the use of computers in architecture poses the same kind of problems as teaching mathematics. To both there are two possible approaches. The first presents the discipline as a tool of which the merely instrumental aspect is emphasized. Teaching is limited to show the results obtainable by existing programs and how to get them. The second approach, on the contrary emphasizes the autonomous nature of the discipline, mathematics as much as computing, on the basis of the convincement that the maximum of instrumental usefulness can be obtained through the knowledge at the highest degree of generality and, then, of abstraction. The first approach changes little in the mind of the student. He simply learns that is possible, and then worthy doing, a certain amount of operations, mainly checks of performances (and not only the control of the aspect, now easy with one of the many existing CAD) or searches of technical informations in some database. The second approach gives the student the consciousness of the manageability of abstract structures of relationships. He acquires then the idea of creating by himself particular structures of relationships and managing them. This can modify the very idea of the design procedure giving the student the consciousness that he can intervene directly in every segment of the design procedure, reshaping it to some extent in a way better suited to the particular problem he is dealing with. Of course this second approach implies learning not only a language but also the capability of coming to terms with languages. And again it is a cultural acquisition that can be very useful when referred to the languages of architecture. Furthermore the capability of simulating on the computer also a small segment of the design process gives the student a better understanding both of the particular problem he is dealing with and of the very nature of design. As for the first effect, it happens whenever a translation is done from a language to another one. One is obliged to get to the core of the matter in order to overcome the difficulties rising from the different bias of the two languages. The second effect comes from the necessity of placing the studied segment in the general flow of the design process. The organisation in a linear sequence of action to be accomplished recursively in an order always varying in any design occasion is an extremely useful exercise to understand the signification and the techniques of formalisation of design problems.
series eCAADe
email
last changed 2022/06/07 07:56

_id ddss9206
id ddss9206
authors Drach, A., Langenegger, M. and Heitz, S.
year 1993
title Working with prototypes: from cad to flexible tools for integrated building design
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary The formulation of design knowledge as concepts, goals and rules cannot be captured in fixed and valid statements. The dynamic modelling of concepts and goals is, on the contrary, part of the design process itself. Tools that effectively support architects in their design should therefore never use predefined mechanisms, but must be definable interactively according to design specifications. We propose the concept of prototypes as a cognitive model to represent and structure design knowledge. Prototypes incorporate an individual view of design in a synthetic and organizational model for a defined area of interest. They actively control and guide design processes in supporting the organizational concepts for solutions. The a+Tool implements these concepts on the basis of a modelling language. It provides a dynamic toolkit and user interface to support design as well as knowledge modelling.
series DDSS
last changed 2003/08/07 16:36

_id 6ea4
authors Eastman, C.M.
year 1992
title A Data Model Analysis of Modularity and Extensibility in Building Databases
source Building and Environment, Vol 27, No: 2, pp. 135-148
summary This paper uses data modeling techniques to define how database schemas for an intelligent integrated architectural CAD system can be made extensible. It reviews the product data modeling language EDM, then applies it to define a part of an architectural data model. Extensions are then investigated, regarding how users could integrate various design-specific packages into a uniquely configured system. Both, extension by substituting one technology for another and by adding a new evaluation application, are considered. Data modeling allows specification of a CAD database and identification of the kind of modularization that will work and what problems may arise.''
series journal paper
email
last changed 2003/04/23 15:14

_id 7ce5
authors Gal, Shahaf
year 1992
title Computers and Design Activities: Their Mediating Role in Engineering Education
source Sociomedia, ed. Edward Barret. MIT Press
summary Sociomedia: With all the new words used to describe electronic communication (multimedia, hypertext, cyberspace, etc.), do we need another one? Edward Barrett thinks we do; hence, he coins the term "sociomedia." It is meant to displace a computing economy in which technicity is hypostasized over sociality. Sociomedia, a compilation of twenty-five articles on the theory, design and practice of educational multimedia and hypermedia, attempts to re-value the communicational face of computing. Value, of course, is "ultimately a social construct." As such, it has everything to do with knowledge, power, education and technology. The projects discussed in this book represent the leading edge of electronic knowledge production in academia (not to mention major funding) and are determining the future of educational media. For these reasons, Sociomedia warrants close inspection. Barrett's introduction sets the tone. For him, designing computer media involves hardwiring a mechanism for the social construction of knowledge (1). He links computing to a process of social and communicative interactivity for constructing and desseminating knowledge. Through a mechanistic mapping of the university as hypercontext (a huge network that includes classrooms as well as services and offices), Barrett models intellectual work in such a way as to avoid "limiting definitions of human nature or human development." Education, then, can remain "where it should be--in the human domain (public and private) of sharing ideas and information through the medium of language." By leaving education in a virtual realm (where we can continue to disagree about its meaning and execution), it remains viral, mutating and contaminating in an intellectually healthy way. He concludes that his mechanistic model, by means of its reductionist approach, preserves value (7). This "value" is the social construction of knowledge. While I support the social orientation of Barrett's argument, discussions of value are related to power. I am not referring to the traditional teacher-student power structure that is supposedly dismantled through cooperative and constructivist learning strategies. The power to be reckoned with in the educational arena is foundational, that which (pre)determines value and the circulation of knowledge. "Since each of you reading this paragraph has a different perspective on the meaning of 'education' or 'learning,' and on the processes involved in 'getting an education,' think of the hybris in trying to capture education in a programmable function, in a displayable object, in a 'teaching machine'" (7). Actually, we must think about that hybris because it is, precisely, what informs teaching machines. Moreover, the basic epistemological premises that give rise to such productions are too often assumed. In the case of instructional design, the episteme of cognitive sciences are often taken for granted. It is ironic that many of the "postmodernists" who support electronic hypertextuality seem to have missed Jacques Derrida's and Michel Foucault's "deconstructions" of the epistemology underpinning cognitive sciences (if not of epistemology itself). Perhaps it is the glitz of the technology that blinds some users (qua developers) to the belief systems operating beneath the surface. Barrett is not guilty of reactionary thinking or politics; he is, in fact, quite in line with much American deconstructive and postmodern thinking. The problem arises in that he leaves open the definitions of "education," "learning" and "getting an education." One cannot engage in the production of new knowledge without orienting its design, production and dissemination, and without negotiating with others' orientations, especially where largescale funding is involved. Notions of human nature and development are structural, even infrastructural, whatever the medium of the teaching machine. Although he addresses some dynamics of power, money and politics when he talks about the recession and its effects on the conference, they are readily visible dynamics of power (3-4). Where does the critical factor of value determination, of power, of who gets what and why, get mapped onto a mechanistic model of learning institutions? Perhaps a mapping of contributors' institutions, of the funding sources for the projects showcased and for participation in the conference, and of the disciplines receiving funding for these sorts of projects would help visualize the configurations of power operative in the rising field of educational multimedia. Questions of power and money notwithstanding, Barrett's introduction sets the social and textual thematics for the collection of essays. His stress on interactivity, on communal knowledge production, on the society of texts, and on media producers and users is carried foward through the other essays, two of which I will discuss. Section I of the book, "Perspectives...," highlights the foundations, uses and possible consequences of multimedia and hypertextuality. The second essay in this section, "Is There a Class in This Text?," plays on the robust exchange surrounding Stanley Fish's book, Is There a Text in This Class?, which presents an attack on authority in reading. The author, John Slatin, has introduced electronic hypertextuality and interaction into his courses. His article maps the transformations in "the content and nature of work, and the workplace itself"-- which, in this case, is not industry but an English poetry class (25). Slatin discovered an increase of productive and cooperative learning in his electronically- mediated classroom. For him, creating knowledge in the electronic classroom involves interaction between students, instructors and course materials through the medium of interactive written discourse. These interactions lead to a new and persistent understanding of the course materials and of the participants' relation to the materials and to one another. The work of the course is to build relationships that, in my view, constitute not only the meaning of individual poems, but poetry itself. The class carries out its work in the continual and usually interactive production of text (31). While I applaud his strategies which dismantle traditional hierarchical structures in academia, the evidence does not convince me that the students know enough to ask important questions or to form a self-directing, learning community. Stanley Fish has not relinquished professing, though he, too, espouses the indeterminancy of the sign. By the fourth week of his course, Slatin's input is, by his own reckoning, reduced to 4% (39). In the transcript of the "controversial" Week 6 exchange on Gertrude Stein--the most disliked poet they were discussing at the time (40)--we see the blind leading the blind. One student parodies Stein for three lines and sums up his input with "I like it." Another, finds Stein's poetry "almost completey [sic] lacking in emotion or any artistic merit" (emphasis added). On what grounds has this student become an arbiter of "artistic merit"? Another student, after admitting being "lost" during the Wallace Steven discussion, talks of having more "respect for Stevens' work than Stein's" and adds that Stein's poetry lacks "conceptual significance[, s]omething which people of varied opinion can intelligently discuss without feeling like total dimwits...." This student has progressed from admitted incomprehension of Stevens' work to imposing her (groundless) respect for his work over Stein's. Then, she exposes her real dislike for Stein's poetry: that she (the student) missed the "conceptual significance" and hence cannot, being a person "of varied opinion," intelligently discuss it "without feeling like [a] total dimwit." Slatin's comment is frightening: "...by this point in the semester students have come to feel increasingly free to challenge the instructor" (41). The students that I have cited are neither thinking critically nor are their preconceptions challenged by student-governed interaction. Thanks to the class format, one student feels self-righteous in her ignorance, and empowered to censure. I believe strongly in student empowerment in the classroom, but only once students have accrued enough knowledge to make informed judgments. Admittedly, Slatin's essay presents only partial data (there are six hundred pages of course transcripts!); still, I wonder how much valuable knowledge and metaknowledge was gained by the students. I also question the extent to which authority and professorial dictature were addressed in this course format. The power structures that make it possible for a college to require such a course, and the choice of texts and pedagogy, were not "on the table." The traditional professorial position may have been displaced, but what took its place?--the authority of consensus with its unidentifiable strong arm, and the faceless reign of software design? Despite Slatin's claim that the students learned about the learning process, there is no evidence (in the article) that the students considered where their attitudes came from, how consensus operates in the construction of knowledge, how power is established and what relationship they have to bureaucratic insitutions. How do we, as teaching professionals, negotiate a balance between an enlightened despotism in education and student-created knowledge? Slatin, and other authors in this book, bring this fundamental question to the fore. There is no definitive answer because the factors involved are ultimately social, and hence, always shifting and reconfiguring. Slatin ends his article with the caveat that computerization can bring about greater estrangement between students, faculty and administration through greater regimentation and control. Of course, it can also "distribute authority and power more widely" (50). Power or authority without a specific face, however, is not necessarily good or just. Shahaf Gal's "Computers and Design Activities: Their Mediating Role in Engineering Education" is found in the second half of the volume, and does not allow for a theory/praxis dichotomy. Gal recounts a brief history of engineering education up to the introduction of Growltiger (GT), a computer-assisted learning aid for design. He demonstrates GT's potential to impact the learning of engineering design by tracking its use by four students in a bridge-building contest. What his text demonstrates clearly is that computers are "inscribing and imaging devices" that add another viewpoint to an on-going dialogue between student, teacher, earlier coursework, and other teaching/learning tools. The less proficient students made a serious error by relying too heavily on the technology, or treating it as a "blueprint provider." They "interacted with GT in a way that trusted the data to represent reality. They did not see their interaction with GT as a negotiation between two knowledge systems" (495). Students who were more thoroughly informed in engineering discourses knew to use the technology as one voice among others--they knew enough not simply to accept the input of the computer as authoritative. The less-advanced students learned a valuable lesson from the competition itself: the fact that their designs were not able to hold up under pressure (literally) brought the fact of their insufficient knowledge crashing down on them (and their bridges). They also had, post factum, several other designs to study, especially the winning one. Although competition and comparison are not good pedagogical strategies for everyone (in this case the competitors had volunteered), at some point what we think we know has to be challenged within the society of discourses to which it belongs. Students need critique in order to learn to push their learning into auto-critique. This is what is lacking in Slatin's discussion and in the writings of other avatars of constructivist, collaborative and computer-mediated pedagogies. Obviously there are differences between instrumental types of knowledge acquisition and discoursive knowledge accumulation. Indeed, I do not promote the teaching of reading, thinking and writing as "skills" per se (then again, Gal's teaching of design is quite discursive, if not dialogic). Nevertheless, the "soft" sciences might benefit from "bridge-building" competitions or the re-institution of some forms of agonia. Not everything agonistic is inhuman agony--the joy of confronting or creating a sound argument supported by defensible evidence, for example. Students need to know that soundbites are not sound arguments despite predictions that electronic writing will be aphoristic rather than periodic. Just because writing and learning can be conceived of hypertextually does not mean that rigor goes the way of the dinosaur. Rigor and hypertextuality are not mutually incompatible. Nor is rigorous thinking and hard intellectual work unpleasurable, although American anti-intellectualism, especially in the mass media, would make it so. At a time when the spurious dogmatics of a Rush Limbaugh and Holocaust revisionist historians circulate "aphoristically" in cyberspace, and at a time when knowledge is becoming increasingly textualized, the role of critical thinking in education will ultimately determine the value(s) of socially constructed knowledge. This volume affords the reader an opportunity to reconsider knowledge, power, and new communications technologies with respect to social dynamics and power relationships.
series other
last changed 2003/04/23 15:14

_id acadia03_036
id acadia03_036
authors Gerzso, J. Michael
year 2003
title On the Limitations of Shape Grammars: Comments on Aaron Fleisher’s Article “Grammatical Architecture?”
doi https://doi.org/10.52842/conf.acadia.2003.279
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 279-287
summary Shape grammars were introduced by Gips and Stiny in 1972. Since then, there have been many articles and books written by them and their associates. In 1992, Aaron Fleisher, a professor at the School of Planning, MIT, wrote a critique of their work in an article titled “Grammatical Architecture?” published in the journal Environment and Planning B. According to him, Gips, Stiny and later Mitchell, propose a hypothesis that states that shape grammars are presumed to represent knowledge of architectural form, that grammars are “formable,” and that there is a visual correspondence to verbal grammar. The strong version of “the hypothesis requires that an architectural form be equivalent to a grammar.” Fleisher considers these hypotheses unsustainable, and argues his case by analyzing the differences between language, and architecture, and by dealing with the concepts of lexicons, syntax and semantics. He concludes by stating that architectural design is negotiated in two modalities: the verbal and the visual, and that equivalences are not at issue; they do not exist. If there is such thing as a language for design, it would provide the means to maintain a discussion of the consequences in one mode, of the state and conditions of the other. Fleisher’s observations serve as the basis of this paper, a tribute to him, and also an opportunity to present an outline to an alternate approach or hypothesis to shape grammars, which is “nonlinguistic” but “generative,” in the sense that it uses production rules. A basic aspect of this hypothesis is that the only similarity between syntactic rules in language and some rules in architecture is that they are recursive.
series ACADIA
last changed 2022/06/07 07:51

_id 7bf4
authors Hornyanszky-Dalholm, Elisabeth and Rydberg-Mitchell, Birgitta
year 1992
title COMMUNICATING WITH LAYPEOPLE
source Proceedings of the 4rd European Full-Scale Modelling Conference / Lausanne (Switzerland) 9-12 September 1992, Part B, pp. 25-32
summary The purpose of the architect's tools is, as generally stated, to help the architects themselves to develop and visualize their spatial ideas and intentions. But the tools can also be used to communicate with other groups of professionals and with laypeople. This paper deals with the question how the choice of tools can effect the communication between laypeople and architects. It also stresses the need of combining different media in order to create the best conditions for user's participation. If the users will be able to influence the planning of an environment they must understand the "language" of the medium and have the ability to use it themselves. Models on diverse scales, and first of all the scale 1:1, fulfil these demands better than drawings. There are distinct limitations of the full-scale model, when it comes to give the users a comprehension of the entire mock-up, and thus models on smaller scales are required. Limitations of both full-scale and small scale models concerning visualizing the exterior and the building's interaction with the environment could possibly be worked out with the help of computer technique.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
type normal paper
email
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 15:39

_id ca47
authors Lee, Shu Wan
year 1996
title A Cognitive Approach to Architectural Style Several Characteristics of Design Thinking in Architecture
doi https://doi.org/10.52842/conf.caadria.1996.223
source CAADRIA ‘96 [Proceedings of The First Conference on Computer Aided Architectural Design Research in Asia / ISBN 9627-75-703-9] Hong Kong (Hong Kong) 25-27 April 1996, pp. 223-226
summary Designing is a complicated human behaviour and method, and is often treated as a mysterious "black box” operation in human mind. In the early period as for theory-studying of design thinking, the way of thinking that the researchers took were mostly descriptive discussions. Therefore, they lacked direct and empirical evidence although those studies provided significant exploration of design thinking (Wang, 1995). In recent years as for the study of cognitive science, they have tried to make design "glass box”. That is to try to make the thinking processes embedded in designers publicized. That is also to externalize the design procedure which provided the design studies another theoretical basis of more accurate and deeply researched procedure (Jones, 1992). Hence the studying of design thinking has become more important and the method of designing has also progressed a lot. For example, the classification of the nature of design problem such as ill-defined and well-defined (Newell, Shaw, and Simon, 1967), and different theoretical procedure modes for different disciplines, such as viewing architectural models as conjecture-analysis models and viewing engineering models as analysis-synthesis (Cross, 1991).
series CAADRIA
last changed 2022/06/07 07:52

_id 181b
authors Liou, Shuenn-Ren
year 1992
title A computer-based framework for analyzing and deriving the morphological structure of architectural designs
source University of Michigan
summary An approach to the acquisition and utilization of knowledge about the morphological structure of notable orthogonal building plans and other two-dimensional compositions is formulated and tested. This approach consists of two levels of abstraction within which the analysis and comparison of existing designs and the derivation of new designs can be undertaken systematically and efficiently. Specifically, the morphological structure of orthogonal building plans and other two-dimensional compositions is conceived as a language defined by shape grammar and architectural grammar corresponding to the geometric and spatial structures of the compositions. Lines constitute the shape grammar and walls and columns the architectural grammar. A computer program named ANADER is designed and implemented using the C++ object-oriented language to describe feasible compositions. It is argued that the gap between morphological analysis and synthesis is bridged partially because the proposed framework facilitates systematic comparisons of the morphological structures of two-dimensional orthogonal compositions and provides insight into the form-making process used to derive them. As an analytical system, the framework contributes to the generation of new and the assessment of existing morphological knowledge. Specifically, it is demonstrated that it is feasible to specify an existing architectural design by a set of universal rule schemata and the sequence of their application. As a generative system, the framework allows many of the tasks involved in the derivation of two-dimensional orthogonal compositions to be carried out. As well, it promotes the use of analytical results. In conclusion, it is argued that the proposed computer-based framework will provide the research and the educator with increasing opportunities for addressing persistent architectural questions in new ways. Of particular interest to this author are questions concerning the decision-making activities involved in form- and space-making as well as the description, classification, and derivation of architecutural form and space. It is suggested that, at least in reference to the cases examined, but probably also in reference to many other morphological classes, these and other related questions can be addressed systematically, efficiently, and fruitfully by using the proposed framework.  
series thesis:PhD
last changed 2003/02/12 22:37

_id a72b
authors Madrazo, Leandro
year 1992
title Design as Formal Language
doi https://doi.org/10.52842/conf.ecaade.1992.319
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 319-330
summary Geometry and language are disciplines with which architecture holds a strong relationship. They have highly structured natures, which make them well-suited for computer implementation. Architecture, on the other hand, lacks such an abstract and hierarchical system. This is one of the main obstacles to the integration of computers in architecture at this point. This paper presents the results of a pedagogic approach based on the association of language, geometry and computers. This association can be successfully used in the education of basic design principles that, although not directly related with architecture, are fundamental to the education of an architect.
series eCAADe
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 12HOMELOGIN (you are user _anon_980904 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002