CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 245

_id 6f8a
authors Pittioni, Gernot
year 1992
title Concepts of CAAD-Instruction
doi https://doi.org/10.52842/conf.ecaade.1992.363
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 363-376
summary Today we can look back on several years of data processing support in architecture. When computer aided architectural design - CAAD - entered the field there was a lot of utter confusion in the beginning, a lot more than usually in other more technical application-fields of CAD. The architect is a very special CAD-user, as he is a very special member of all those other very analytical and scientific faculties around. There is a lot of tradition involved, tradition that has got its roots far back in medieval and classic periods and is rich of art and creativity and intuition. Mostly lots more of this than scientific analysis, exact research, and similar stuff. We could spot a large number of architects who would have been horrified when they are confronted with the analytic research of the very basic problem as how architects are designing - the methods, the procedures and the ways of thinking. And there CAAD was entering the architects' studios. No question that this caused a lot of trouble. CAD in architecture is a very provoking subject as the new tool is going to gain ground against the tradition of centuries of handmade architectural designs and drawings. And there we don't even touch the future aspects of the computer's architectural design support - what about the imminent threat of computer support in the holy domain of architectural creativity and intuition. What about the uneasy idea of CAAD in connection with artificial intelligence? The problem of CAAD-education has been largely neglected through a number of years. If there existed a certain horror looking at the mere idea of CAD-support in architecture, horror became to outrage, when university education was discussed. In our days we can stay a good deal more relaxed, when we speak of CAAD education - we not only got used to it, we are convinced, that the whole subject is of high importance.

keywords Concepts of Education
series eCAADe
email
last changed 2022/06/07 08:00

_id cbed
authors Yakubu, G.S.
year 1994
title Maximising the Benefits of CAD Systems in Architectural Education
doi https://doi.org/10.52842/conf.ecaade.1994.x.u8n
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 228
summary The positive impact of Computer Aided Design (CAD) in professional architectural practice has been in focus in recent times but relatively little has been written on its significance in the education of the contemporary architect. It is common knowledge that the profession of architecture is currently undergoing enormous strains as it battles to keep abreast of trends and developments in a period of series of rapid advancement in science, technology and management (RIBA, 1992). Whilst attempts are being made to redress the shortcomings of the profession in the above context, the requirements for architectural education are yet to forge a coherent strategy for the implementation of CAD/IT in the curriculum of schools of architecture. In almost every other field, including engineering, medicine and the humanities, computing application to problem-solving and decision-making is seen as a way forward as we move into 21st century. Architectural education must integrate CAD/IT into the teaching of core modules that give the architect distinctive competence: studio design. That is one of the best ways of doing justice to the education of the architect of today and the future. Some approaches to the teaching of CAD in schools of architecture have been touched upon in the recent past. Building upon this background as well as an understanding of the nature of design teaching/learning, this paper examines ways of maximising the benefits of CAD systems in architectural education and of bringing computer aided designing into the studio not only to enhance design thinking and creativity but also to support interactive processes. In order to maximise or optimise any function, one approach is to use the hard systems methodology which utilises analytic, analogic and iconic models to show the effect of those factors which are significant for the purposes being considered. The other approach is to use the soft systems methodology in which the analysis encompasses the concept of a human activity system as a means of improving a situation. The use of soft systems methodology is considered more appropriate for dealing with the problem of design which is characterised by a flux of interacting events and ideas that unroll through time. The paper concludes that the main impediment to maximising the benefits of CAD systems in architectural education is not only the inappropriate definition of the objectives for the implementation of CAD education but also that the control subsystems are usually ill-structured and relatively poorly defined. Schools must attempt to define a coherent and consistent policy on the use of CAD systems as an integral part of studio design and evolve an in-house strategic and operational controls that enable the set objectives to be met. Furthermore, it is necessary to support the high level of productivity from CAD systems with a more efficient management system, especially in dealing with communication, data sharing via relational database, co-ordination and integration. Finally, the use of soft systems methodology is recommended as the way forward to optimising CAD systems in design education as it would provide continuous improvements while maintaining their productive value.

series eCAADe
last changed 2022/06/07 07:50

_id caadria2007_659
id caadria2007_659
authors Chen, Zi-Ru
year 2007
title The Combination of Design Media and Design Creativity _ Conventional and Digital Media
doi https://doi.org/10.52842/conf.caadria.2007.x.w5x
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
summary Creativity is always interested in many fields, in particular, creativity and design creativity have many interpretations (Boden, 1991; Gero and Maher, 1992, 1993; Kim, 1990; Sternberg, 1988; Weisberg, 1986). In early conceptual design process, designers used large number of sketches and drawings (Purcell and Gero, 1998). The sketch can inspire the designer to increase the creativity of the designer’s creations(Schenk, 1991; Goldschmidt, 1994; Suwa and Tversky, 1997). The freehand sketches by conventional media have been believed to play important roles in processes of the creative design thinking(Goldschmidt, 1991; Schon and Wiggins, 1992; Goel, 1995; Suwa et al., 2000; Verstijnen et al., 1998; Elsas van and Vergeest, 1998). Recently, there are many researches on inspiration of the design creativity by digital media(Liu, 2001; Sasada, 1999). The digital media have been used to apply the creative activities and that caused the occurrenssce of unexpected discovery in early design processes(Gero and Maher, 1993; Mitchell, 1993; Schmitt, 1994; Gero, 1996, 2000; Coyne and Subrahmanian, 1993; Boden, 1998; Huang, 2001; Chen, 2001; Manolya et al. 1998; Verstijinen et al., 1998; Lynn, 2001). In addition, there are many applications by combination of conventional and digital media in the sketches conceptual process. However, previous works only discussed that the individual media were related to the design creativity. The cognitive research about the application of conceptual sketches design by integrating both conventional and digital media simultaneously is absent.
series CAADRIA
email
last changed 2022/06/07 07:50

_id 6d1d
authors Daru, R. and Daru, M.
year 1992
title Personal Working Styles in the CMD Studio
doi https://doi.org/10.52842/conf.ecaade.1992.451
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 451-472
summary Normative and problem-solving approaches of architectural design ignore the personality aspects of the designing activity. Every architect approaches projects according to her/his own strategies and tactics. Usually they do not conform to the prescriptive models of design theoreticians. Computer aided design tools should be adapted to their utility within the strategies and tactics of each and every architectural student. We are testing the usefulness of CAAD tools developed by others or ourselves and identifying the needs for missing tools. It is already clear that many CAAD tools reflect the point of view of the programmer about strategies and tactics of designing and that they do not take into account the idiosyncrasies of the end user. Forcing the tools on students breeds the risk of fostering repulsion against ill-adapted tools, and consequently against CMD. Our research group pursues empirical research on working styles of designing by practising architects within the frame of a personality theory of actions. The results indicate that there are three main directions for designing strategies. If we want to take into account the real-world behaviour in design practice within architectural education, this implies the diversification of the exercises we offer to the students in threefold, corresponding with the three directions. To this, we add the didactic options of complementation, compensation and support, depending on what we know about the strong or weak points of the students involved. We have started proposing choices for the exercises of our design morphology studio. Students are offered approaches and tools we consider best adapted to their own working

series eCAADe
email
last changed 2022/06/07 07:55

_id ddss9207
id ddss9207
authors Gauchel, J., Hovestadt, L., van Wyk, S. and Bhat, R.R.
year 1993
title Modular building models
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary The development and implementation of a modular building model appropriate for computer aided design is described. The limitations of a unified building model with regard to concurrence and complexity in design is discussed. Current research suggests that to model real-world complexity, one must trade centralized control for autonomy. In this paper we develop a modular approach to building modelling that is based on object-oriented autonomy and makes it possible to define these models in a distributed concurrent manner. Such a modular and autonomous implementation brings inherent uncertainty and conflict which cannot be determined a priori.
series DDSS
last changed 2003/08/07 16:36

_id 1076
authors Gero, John S. and Saunders, Robert
year 2000
title Constructed Representations and Their Functions in Computational Models of Designing
doi https://doi.org/10.52842/conf.caadria.2000.215
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 215-224
summary This paper re-examines the conclusions made by Schön and Wiggins in 1992 that computers were unable to reproduce processes crucial to designing. We propose that recent developments in artificial intelligence and design computing put us in a position where we can begin to computationally model designing as conceived by Schön and Wiggins. We present a computational model of designing using situated processes that construct representations. We show how constructed representations support computational processes that model the different kinds of seeing reported in designing. We also present recently developed computational processes that can identify unexpected consequences of design actions using adaptive novelty detection.
series CAADRIA
email
last changed 2022/06/07 07:51

_id ddss9218
id ddss9218
authors Hensen, J.L.M.
year 1993
title Design support via simulation of building and plant thermal interaction
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary Design decision support related to building energy consumption and/or indoor climate should be based on an integral approach to the environment, the building, heating, ventilating and air-conditioning (HVAC) system, and the occupants. The tools to achieve this are now available in the form of computer simulation systems which treat the building and plant as an integrated dynamic system. Although its potentials reach beyond the area of Computer Aided Building Design, the paper describes building and plant energy simulation within the context of CABD, design decision support and design evaluation. Currently, computer simulation is only used indirectly as a design decision support mechanism; that is, its power is not delivered very efficiently to the design profession. This paper suggests some future research directions. These are aimed at providing a mechanism to overcome this problem by developing an intelligent front end' which bridges the gap between sophisticated computer simulation tools and the design profession.
series DDSS
last changed 2003/08/07 16:36

_id 56e9
authors Huang, Tao-Kuang
year 1992
title A Graphical Feedback Model for Computerized Energy Analysis during the Conceptual Design Stage
source Texas A&M University
summary During the last two decades, considerable effort has been placed on the development of building design analysis tools. Architects and designers have begun to take advantage of computers to generate and examine design alternatives. However, because it has been difficult to adapt computer technologies to the visual orientation of the building designer, the majority of computer applications have been limited to numerical analysis and office automation tasks. Only recently, because of advances in hardware and software techniques, computers have entered into a new phase in the development of architectural design. haveters are now able to interactively display graphics solutions to architectural related problems, which is fundamental to the design process. The majority of research programs in energy efficient design have sharpened people's understanding of energy principles and their application of those principles. Energy conservation concepts, however, have not been widely used. A major problem in the implementation of these principles is that energy principles their applications are abstract, hard to visualize and separated from the architectural design process. Furthermore, one aspect of energy analysis may contain thousands of pieces of numerical information which often leads to confusion on the part of designers. If these difficulties can be overcome, it would bring a great benefit to the advancement of energy conservation concepts. This research explores the concept of an integrated computer graphics program to support energy efficient design. It focuses on (1) the integration of energy efficiently and architectural design, and (2) the visualization of building energy use through graphical interfaces during the conceptual design stage. It involves (1) the discussion of frameworks of computer-aided architectural design and computer-aided energy efficient building design, and (2) the development of an integrated computer prototype program with a graphical interface that helps the designer create building layouts, analyze building energy interactively and receive visual feedbacks dynamically. The goal is to apply computer graphics as an aid to visualize the effects of energy related decisions and therefore permit the designer to visualize and understand energy conservation concepts in the conceptual phase of architectural design.
series thesis:PhD
last changed 2003/02/12 22:37

_id caadria2004_k-1
id caadria2004_k-1
authors Kalay, Yehuda E.
year 2004
title CONTEXTUALIZATION AND EMBODIMENT IN CYBERSPACE
doi https://doi.org/10.52842/conf.caadria.2004.005
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 5-14
summary The introduction of VRML (Virtual Reality Markup Language) in 1994, and other similar web-enabled dynamic modeling software (such as SGI’s Open Inventor and WebSpace), have created a rush to develop on-line 3D virtual environments, with purposes ranging from art, to entertainment, to shopping, to culture and education. Some developers took their cues from the science fiction literature of Gibson (1984), Stephenson (1992), and others. Many were web-extensions to single-player video games. But most were created as a direct extension to our new-found ability to digitally model 3D spaces and to endow them with interactive control and pseudo-inhabitation. Surprisingly, this technologically-driven stampede paid little attention to the core principles of place-making and presence, derived from architecture and cognitive science, respectively: two principles that could and should inform the essence of the virtual place experience and help steer its development. Why are the principles of place-making and presence important for the development of virtual environments? Why not simply be content with our ability to create realistically-looking 3D worlds that we can visit remotely? What could we possibly learn about making these worlds better, had we understood the essence of place and presence? To answer these questions we cannot look at place-making (both physical and virtual) from a 3D space-making point of view alone, because places are not an end unto themselves. Rather, places must be considered a locus of contextualization and embodiment that ground human activities and give them meaning. In doing so, places acquire a meaning of their own, which facilitates, improves, and enriches many aspects of our lives. They provide us with a means to interpret the activities of others and to direct our own actions. Such meaning is comprised of the social and cultural conceptions and behaviors imprinted on the environment by the presence and activities of its inhabitants, who in turn, ‘read’ by them through their own corporeal embodiment of the same environment. This transactional relationship between the physical aspects of an environment, its social/cultural context, and our own embodiment of it, combine to create what is known as a sense of place: the psychological, physical, social, and cultural framework that helps us interpret the world around us, and directs our own behavior in it. In turn, it is our own (as well as others’) presence in that environment that gives it meaning, and shapes its social/cultural character. By understanding the essence of place-ness in general, and in cyberspace in particular, we can create virtual places that can better support Internet-based activities, and make them equal to, in some cases even better than their physical counterparts. One of the activities that stands to benefit most from understanding the concept of cyber-places is learning—an interpersonal activity that requires the co-presence of others (a teacher and/or fellow learners), who can point out the difference between what matters and what does not, and produce an emotional involvement that helps students learn. Thus, while many administrators and educators rush to develop webbased remote learning sites, to leverage the economic advantages of one-tomany learning modalities, these sites deprive learners of the contextualization and embodiment inherent in brick-and-mortar learning institutions, and which are needed to support the activity of learning. Can these qualities be achieved in virtual learning environments? If so, how? These are some of the questions this talk will try to answer by presenting a virtual place-making methodology and its experimental implementation, intended to create a sense of place through contextualization and embodiment in virtual learning environments.
series CAADRIA
type normal paper
last changed 2022/06/07 07:52

_id 2c22
authors O'Neill, Michael J.
year 1992
title Neural Network Simulation as a Computer- Aided design Tool For Predicting Wayfinding Performance
source New York: John Wiley & Sons, 1992. pp. 347-366 : ill. includes bibliography
summary Complex public facilities such as libraries, hospitals, and governmental buildings often present problems to users who must find their way through them. Research shows that difficulty in wayfinding has costs in terms of time, money, public safety, and stress that results from being lost. While a wide range of architectural research supports the notion that ease of wayfinding should be a criterion for good design, architects have no method for evaluating how well their building designs will support the wayfinding task. People store and retrieve information about the layout of the built environment in a knowledge representation known as the cognitive map. People depend on the information stored in the cognitive map to find their way through buildings. Although there are numerous simulations of the cognitive map, the mechanisms of these models are not constrained by what is known about the neurophysiology of the brain. Rather, these models incorporate search mechanisms that act on semantically encoded information about the environment. In this paper the author describes the evaluation and application of an artificial neural network simulation of the cognitive map as a means of predicting wayfinding behavior in buildings. This simulation is called NAPS-PC (Network Activity Processing Simulator--PC version). This physiologically plausible model represents knowledge about the layout of the environment through a network of inter-connected processing elements. The performance of NAPS-PC was evaluated against actual human wayfinding performance. The study found that the simulation generated behavior that matched the performance of human participants. After the validation, NAPS-PC was modified so that it could read environmental information directly from AutoCAD (a popular micro-computer-based CAD software package) drawing files, and perform 'wayfinding' tasks based on that environmental information. This prototype tool, called AutoNet, is conceptualized as a means of allowing designers to predict the wayfinding performance of users in a building before it is actually built
keywords simulation, cognition, neural networks, evaluation, floor plans, applications, wayfinding, layout, building
series CADline
last changed 2003/06/02 13:58

_id a302
authors Saggio, Antonino
year 1992
title A New Tool for Studio Teaching - Object Based Modeling
doi https://doi.org/10.52842/conf.ecaade.1992.251
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 251-264
summary The scope of this paper is to present Computer Aided Architectural Design (and more particularly the dynamic and incremental modeling characteristics of Object Based Modeling) as a tool to reinforce the teaching of architectural design. Utilized within a method based on a cyclical application of "Concept and Testing", OBM has the possibility to work as an amplifier of design ideas and as a meaningful tool for the advancement of architectural design. Three related experiences support this hypothesis. The role played in concrete designs by an Object Based Modeling environment. Teaching with CAAD and OBM in the realm of documentation and analysis of architecture. Previous applications of the Concept-Testing methodology in design studios. The central sections of the paper focus on the analysis of these experiences, while the last section provides a 15 week, semester based, studio structure that incorporates OBM in the overall calendar and in key assignments. While the scope of this work coincides with the thesis presented at the Acadia '92 conference in Charleston (South Carolina), to focus the argument more clearly content, text and illustrations differ in several parts.

series eCAADe
email
last changed 2022/06/07 07:56

_id avocaad_2001_09
id avocaad_2001_09
authors Yu-Tung Liu, Yung-Ching Yeh, Sheng-Cheng Shih
year 2001
title Digital Architecture in CAD studio and Internet-based competition
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Architectural design has been changing because of the vast and creative use of computer in different ways. From the viewpoint of designing itself, computer has been used as drawing tools in the latter phase of design (Mitchell 1977; Coyne et al. 1990), presentation and simulation tools in the middle phase (Liu and Bai 2000), and even critical media which triggers creative thinking in the very early phase (Maher et al. 2000; Liu 1999; Won 1999). All the various roles that computer can play have been adopted in a number of professional design corporations and so-called computer-aided design (CAD) studio in schools worldwide (Kvan 1997, 2000; Cheng 1998). The processes and outcomes of design have been continuously developing to capture the movement of the computer age. However, from the viewpoint of social-cultural theories of architecture, the evolvement of design cannot be achieved solely by designers or design processes. Any new idea of design can be accepted socially, culturally and historically only under one condition: The design outcomes could be reviewed and appreciated by critics in the field at the time of its production (Csikszentmihalyi 1986, 1988; Schon and Wiggins 1992; Liu 2000). In other words, aspects of design production (by designers in different design processes) are as critical as those of design appreciation (by critics in different review processes) in the observation of the future trends of architecture.Nevertheless, in the field of architectural design with computer and Internet, that is, so-called computer-aided design computer-mediated design, or internet-based design, most existing studies pay more attentions to producing design in design processes as mentioned above. Relatively few studies focus on how critics act and how they interact with designers in the review processes. Therefore, this study intends to investigate some evolving phenomena of the interaction between design production and appreciation in the environment of computer and Internet.This paper takes a CAD studio and an Internet-based competition as examples. The CAD studio includes 7 master's students and 2 critics, all from the same countries. The Internet-based competition, held in year 2000, includes 206 designers from 43 counties and 26 critics from 11 countries. 3 students and the 2 critics in the CAD studio are the competition participating designers and critics respectively. The methodological steps are as follows: 1. A qualitative analysis: observation and interview of the 3 participants and 2 reviewers who join both the CAD studio and the competition. The 4 analytical criteria are the kinds of presenting media, the kinds of supportive media (such as verbal and gesture/facial data), stages of the review processes, and interaction between the designer and critics. The behavioral data are acquired by recording the design presentation and dialogue within 3 months. 2. A quantitative analysis: statistical analysis of the detailed reviewing data in the CAD studio and the competition. The four 4 analytical factors are the reviewing time, the number of reviewing of the same project, the comparison between different projects, and grades/comments. 3. Both the qualitative and quantitative data are cross analyzed and discussed, based on the theories of design thinking, design production/appreciation, and the appreciative system (Goodman 1978, 1984).The result of this study indicates that the interaction between design production and appreciation during the review processes could differ significantly. The review processes could be either linear or cyclic due to the influences from the kinds of media, the environmental discrepancies between studio and Internet, as well as cognitive thinking/memory capacity. The design production and appreciation seem to be more linear in CAD studio whereas more cyclic in the Internet environment. This distinction coincides with the complementary observations of designing as a linear process (Jones 1970; Simon 1981) or a cyclic movement (Schon and Wiggins 1992). Some phenomena during the two processes are also illustrated in detail in this paper.This study is merely a starting point of the research in design production and appreciation in the computer and network age. The future direction of investigation is to establish a theoretical model for the interaction between design production and appreciation based on current findings. The model is expected to conduct using revised protocol analysis and interviews. The other future research is to explore how design computing creativity emerge from the process of producing and appreciating.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id acadia06_455
id acadia06_455
authors Ambach, Barbara
year 2006
title Eve’s Four Faces interactive surface configurations
doi https://doi.org/10.52842/conf.acadia.2006.455
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 455-460
summary Eve’s Four Faces consists of a series of digitally animated and interactive surfaces. Their content and structure are derived from a collection of sources outside the conventional boundaries of architectural research, namely psychology and the broader spectrum of arts and culture.The investigation stems from a psychological study documenting the attributes and social relationships of four distinct personality prototypes: the Individuated, the Traditional, the Conflicted, and the Assured (York and John 1992). For the purposes of this investigation, all four prototypes are assumed to be inherent, to certain degrees, in each individual. However, the propensity towards one of the prototypes forms the basis for each individual’s “personality structure.” The attributes, social implications and prospects for habitation have been translated into animations and surfaces operating within A House for Eve’s Four Faces. The presentation illustrates the potential for constructed surfaces to be configured and transformed interactively, responding to the needs and qualities associated with each prototype. The intention is to study the effects of each configuration and how each configuration may be therapeutic in supporting, challenging or altering one’s personality as it oscillates and shifts through the four prototypical conditions.
series ACADIA
email
last changed 2022/06/07 07:54

_id 60e7
authors Bailey, Rohan
year 2000
title The Intelligent Sketch: Developing a Conceptual Model for a Digital Design Assistant
doi https://doi.org/10.52842/conf.acadia.2000.137
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 137-145
summary The computer is a relatively new tool in the practice of Architecture. Since its introduction, there has been a desire amongst designers to use this new tool quite early in the design process. However, contrary to this desire, most Architects today use pen and paper in the very early stages of design to sketch. Architects solve problems by thinking visually. One of the most important tools that the Architect has at his disposal in the design process is the hand sketch. This iterative way of testing ideas and informing the design process with images fundamentally directs and aids the architect’s decision making. It has been said (Schön and Wiggins 1992) that sketching is about the reflective conversation designers have with images and ideas conveyed by the act of drawing. It is highly dependent on feedback. This “conversation” is an area worthy of investigation. Understanding this “conversation” is significant to understanding how we might apply the computer to enhance the designer’s ability to capture, manipulate and reflect on ideas during conceptual design. This paper discusses sketching and its relation to design thinking. It explores the conversations that designers engage in with the media they use. This is done through the explanation of a protocol analysis method. Protocol analysis used in the field of psychology, has been used extensively by Eastman et al (starting in the early 70s) as a method to elicit information about design thinking. In the pilot experiment described in this paper, two persons are used. One plays the role of the “hand” while the other is the “mind”- the two elements that are involved in the design “conversation”. This variation on classical protocol analysis sets out to discover how “intelligent” the hand should be to enhance design by reflection. The paper describes the procedures entailed in the pilot experiment and the resulting data. The paper then concludes by discussing future intentions for research and the far reaching possibilities for use of the computer in architectural studio teaching (as teaching aids) as well as a digital design assistant in conceptual design.
keywords CAAD, Sketching, Protocol Analysis, Design Thinking, Design Education
series ACADIA
last changed 2022/06/07 07:54

_id 898a
authors Bay, J.H.
year 2002
title Cognitive Biases and Precedent Knowledge in Human and Computer-Aided Design Thinking
doi https://doi.org/10.52842/conf.caadria.2002.213
source CAADRIA 2002 [Proceedings of the 7th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 983-2473-42-X] Cyberjaya (Malaysia) 18–20 April 2002, pp. 213-220
summary Cognitive biases (illusions) and potential errors can occur when using precedent knowledge for analogical, pre-parametric and qualitative design thinking. This paper refers largely to part of a completed research (Bay 2001) on how heuristic biases, discussed by Tversky and Kahneman (1982) in cognitive psychology, can affect judgement and learning of facts from precedents in architectural design, made explicit using a kernel of conceptual system (Tzonis et. al., 1978) and a framework of architectural representation (Tzonis 1992). These are used here to consider how such illusions and errors may be transferred to computer aided design thinking.
series CAADRIA
email
last changed 2022/06/07 07:54

_id 065b
authors Beitia, S.S., Zulueta, A. and Barrallo, J.
year 1995
title The Virtual Cathedral - An Essay about CAAD, History and Structure
doi https://doi.org/10.52842/conf.ecaade.1995.355
source Multimedia and Architectural Disciplines [Proceedings of the 13th European Conference on Education in Computer Aided Architectural Design in Europe / ISBN 0-9523687-1-4] Palermo (Italy) 16-18 November 1995, pp. 355-360
summary The Old Cathedral of Santa Maria in Vitoria is the most representative building of the Gothic style in the Basque Country. Built during the XIV century, it has been closed to the cult in 1994 because of the high risk of collapse that presents its structure. This closure was originated by the structural analysis that was entrusted to the University of the Basque Country in 1992. The topographic works developed in the Cathedral to elaborate the planimetry of the temple revealed that many structural elements of great importance like arches, buttresses and flying buttresses were removed, modified or added along the history of Santa Maria. The first structural analysis made in the church suggested that the huge deformations showed in the resistant elements, specially the piers, were originated by interventions made in the past. A deep historical investigation allowed us to know how the Cathedral was built and the changes executed until our days. With this information, we started the elaboration of a virtual model of the Cathedral of Santa Maria. This model was introduced into a Finite Elements Method system to study the deformations suffered in the church during its construction in the XIV century, and the intervention made later in the XV, XVI and XX centuries. The efficiency of the virtual model simulating the geometry of the Cathedral along history allowed us to detect the cause of the structural damage, that was finally found in many unfortunate interventions along time.

series eCAADe
more http://dpce.ing.unipa.it/Webshare/Wwwroot/ecaade95/Pag_43.htm
last changed 2022/06/07 07:54

_id 2312
authors Carrara, G., Kalay Y.E. and Novembri, G.
year 1992
title Multi-modal Representation of Design Knowledge
doi https://doi.org/10.52842/conf.ecaade.1992.055
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 55-66
summary Explicit representation of design knowledge is needed if scientific methods are to be applied in design research, and if computers are to be used in the aid of design education and practice. The representation of knowledge in general, and design knowledge in particular, have been the subject matter of computer science, design methods, and computer-aided design research for quite some time. Several models of design knowledge representation have been developed over the last 30 years, addressing specific aspects of the problem. This paper describes a different approach to design knowledge representation that recognizes the multimodal nature of design knowledge. It uses a variety of computational tools to encode different kinds of design knowledge, including the descriptive (objects), the prescriptive (goals) and the operational (methods) kinds. The representation is intended to form a parsimonious, communicable and presentable knowledge-base that can be used as a tool for design research and education as well as for CAAD.
keywords Design Methods, Design Process Goals, Knowledge Representation, Semantic Networks
series eCAADe
email
last changed 2022/06/07 07:55

_id 6ef4
authors Carrara, Gianfranco and Kalay, Yehuda E.
year 1992
title Multi-Model Representation of Design Knowledge
doi https://doi.org/10.52842/conf.acadia.1992.077
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 77-88
summary Explicit representation of design knowledge is needed if scientific methods are to be applied in design research, and if comPuters are to be used in the aid of design education and practice. The representation of knowledge in general, and design knowledge in particular, have been the subject matter of computer science, design methods, and computer- aided design research for quite some time. Several models of design knowledge representation have been developed over the last 30 years, addressing specific aspects of the problem. This paper describes a different approach to design knowledge representation that recognizes the Multi-modal nature of design knowledge. It uses a variety of computational tools to encode different kinds of design knowledge, including the descriptive (objects), the prescriptive (goals) and the operational (methods) kinds. The representation is intended to form a parsimonious, communicable and presentable knowledge-base that can be used as a tool for design research and education as well as for CAAD.
keywords Design Methods, Design Process, Goals, Knowledge Representation, Semantic Networks
series ACADIA
email
last changed 2022/06/07 07:55

_id caadria2010_042
id caadria2010_042
authors Celento, David
year 2010
title Open-source, parametric architecture to propagate hyper-dense, sustainable urban communities: parametric urban dwellings for the experience economy
doi https://doi.org/10.52842/conf.caadria.2010.443
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 443-452
summary Rapid developments in societal, technological, and natural systems suggest profound changes ahead if research in panarchical systems (Holling, 2001) is to be believed. Panarchy suggests that systems, both natural and man-made, rise to the point of vulnerability then fail due to disruptive forces in a process of ‘creative destruction.’ This sequence allows for radical, and often unpredictable, renewal. Pressing sustainability concerns, burgeoning urban growth, and emergent ‘green manufacturing’ laws, suggest that future urban dwellings are headed toward Gladwell’s ‘tipping point’ (2002). Hyper-dense, sustainable, urban communities that employ open-source standards, parametric software, and web-based configurators are the new frontier for venerable visions. Open-source standards will permit the design, manufacture, and sale of highly diverse, inter-operable components to create compact urban living environments that are technologically sophisticated, sustainable, and mobile. These mass-customised dwellings, akin to branded consumer goods, will address previous shortcomings for prefabricated, mobile dwellings by stimulating consumer desire in ways that extend the arguments of both Joseph Pine (1992) and Anna Klingman (2007). Arguments presented by authors Makimoto and Manners (1997) – which assert that the adoption of digital and mobile technologies will create large-scale societal shifts – will be extended with several solutions proposed.
keywords Mass customisation; urban dwellings; open source standards; parametric design; sustainability
series CAADRIA
email
last changed 2022/06/07 07:55

_id 2325
authors Chilton, John C.
year 1992
title Computer Aided Structural Design in Architectural Instruction
doi https://doi.org/10.52842/conf.ecaade.1992.443
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 443-450
summary In schools of architecture there is a tendency to associate the use of computers solely with the production of graphic images as part of the architectural design process. However, if the architecture is to work as a building it is also essential that technical aspects of the design are adequately investigated. One of the problem areas for most architectural students is structural design and they are often reluctant to use hand calculations to determine sizes of structural elements within their projects. In recent years, much of the drudgery of hand calculation has been removed from the engineer by the use of computers, and this has, hopefully, allowed a more thorough investigation of conceptual ideas and alternatives. The same benefit is now becoming available to architectural students. This is in the form of structural analysis and design programs that can be used, even by those having a limited knowledge of structural engineering, to assess the stability of designs and obtain approximate sizes for individual structural elements. The paper discusses how the use of such programs is taught, within the School of Architecture at Nottingham. Examples will be given of how they can assist students in the architectural design process. In particular, the application of GLULAM, a program for estimating sizes of laminated timber elements and SAND, a structural analysis and design package, will be described.
series eCAADe
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 12HOMELOGIN (you are user _anon_49352 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002