CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 226

_id ddss9208
id ddss9208
authors Lucardie, G.L.
year 1993
title A functional approach to realizing decision support systems in technical regulation management for design and construction
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary Technical building standards defining the quality of buildings, building products, building materials and building processes aim to provide acceptable levels of safety, health, usefulness and energy consumption. However, the logical consistency between these goals and the set of regulations produced to achieve them is often hard to identify. Not only the large quantities of highly complex and frequently changing building regulations to be met, but also the variety of user demands and the steadily increasing technical information on (new) materials, products and buildings have produced a very complex set of knowledge and data that should be taken into account when handling technical building regulations. Integrating knowledge technology and database technology is an important step towards managing the complexity of technical regulations. Generally, two strategies can be followed to integrate knowledge and database technology. The main emphasis of the first strategy is on transferring data structures and processing techniques from one field of research to another. The second approach is concerned exclusively with the semantic structure of what is contained in the data-based or knowledge-based system. The aim of this paper is to show that the second or knowledge-level approach, in particular the theory of functional classifications, is more fundamental and more fruitful. It permits a goal-directed rationalized strategy towards analysis, use and application of regulations. Therefore, it enables the reconstruction of (deep) models of regulations, objects and of users accounting for the flexibility and dynamics that are responsible for the complexity of technical regulations. Finally, at the systems level, the theory supports an effective development of a new class of rational Decision Support Systems (DSS), which should reduce the complexity of technical regulations and restore the logical consistency between the goals of technical regulations and the technical regulations themselves.
series DDSS
last changed 2003/08/07 16:36

_id b4c4
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 2000
title A framework for an Architectural Collaborative Design
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 57-60
doi https://doi.org/10.52842/conf.ecaade.2000.057
summary The building industry involves a larger number of disciplines, operators and professionals than other industrial processes. Its peculiarity is that the products (building objects) have a number of parts (building elements) that does not differ much from the number of classes into which building objects can be conceptually subdivided. Another important characteristic is that the building industry produces unique products (de Vries and van Zutphen, 1992). This is not an isolated situation but indeed one that is spreading also in other industrial fields. For example, production niches have proved successful in the automotive and computer industries (Carrara, Fioravanti, & Novembri, 1989). Building design is a complex multi-disciplinary process, which demands a high degree of co-ordination and co-operation among separate teams, each having its own specific knowledge and its own set of specific design tools. Establishing an environment for design tool integration is a prerequisite for network-based distributed work. It was attempted to solve the problem of efficient, user-friendly, and fast information exchange among operators by treating it simply as an exchange of data. But the failure of IGES, CGM, PHIGS confirms that data have different meanings and importance in different contexts. The STandard for Exchange of Product data, ISO 10303 Part 106 BCCM, relating to AEC field (Wix, 1997), seems to be too complex to be applied to professional studios. Moreover its structure is too deep and the conceptual classifications based on it do not allow multi-inheritance (Ekholm, 1996). From now on we shall adopt the BCCM semantic that defines the actor as "a functional participant in building construction"; and we shall define designer as "every member of the class formed by designers" (architects, engineers, town-planners, construction managers, etc.).
keywords Architectural Design Process, Collaborative Design, Knowledge Engineering, Dynamic Object Oriented Programming
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id cb5a
authors Oxman, Rivka E.
year 1992
title Multiple Operative and Interactive Modes in Knowledge-Based Design Systems
source New York: John Wiley & Sons, 1992. pp. 125-143 : ill. includes bibliography
summary A conceptual basis for the development of an expert system which is capable of integrating various modes of generation and evaluation in design is presented. This approach is based upon two sets of reasoning processes in the design system. The first enables a mapping between design requirements and solution descriptions in a generative mode of design; and the second enables a mapping between solution descriptions and performance evaluation in an evaluative and predictive mode. This concept supports a formal framework necessary for a knowledge-based design system to operate in a design partnership relation with the designer. Another fundamental concept in expert systems for design, dual direction interpretation between graphic and textual modes, is presented and elaborated. This encoding of knowledge behind the geometrical representation can be achieved in knowledge- based design systems by the development of a 'semantic interpreter' which supports a dual direction mapping process employing a geometrical knowledge, typological knowledge and evaluative knowledge. An implemented expert system for design, PREDIKT, demonstrates these concepts in the domain of kitchen design. It provides the user with a choice of alternative modes of interaction, such as: a 'design critic' for the evaluation of a design, a 'design generator' for the generation of a design, or a 'design critic-generator' for the completion of partial solutions
keywords architecture, knowledge base, design, systems, expert systems
series CADline
email
last changed 2003/06/02 10:24

_id daff
authors Richens, P.
year 1994
title CAD Research at the Martin Centre
source Automation in Construction, No. 3
summary The Martin Centre CADLAB has recently been established to investigate software techniques that could be of practical importance to architects within the next five years. In common with most CAD researchers, we are interested in the earlier, conceptual, stages of design, where commercial CAD systems have had little impact. Our approach is not Knowledge-Based, but rather focuses on using the computer as a medium for design and communication. This leads to a concentration on apparently superficial aspects such as visual appearance, the dynamics of interaction, immediate feedback, plasticity. We try to avoid building-in theoretical attitudes, and to reduce the semantic content of our systems to a low level on the basis that flexibility and intelligence are inversely related; and that flexibility is more important. The CADLAB became operational in January 1992. First year work in three areas – building models, experiencing architecture, and making drawings – is discussed.
series journal
email
more http://www.arct.cam.ac.uk/research/pubs/pdfs/rich94a.pdf
last changed 2000/03/05 19:05

_id c804
authors Richens, P.
year 1994
title Does Knowledge really Help?
source G. Carrara and Y.E. Kalay (Eds.), Knowledge-Based Computer-Aided Architectural Design, Elsevier
summary The Martin Centre CADLAB has recently been established to investigate software techniques that could be of practical importance to architects within the next five years. In common with most CAD researchers, we are interested in the earlier, conceptual, stages of design, where commercial CAD systems have had little impact. Our approach is not Knowledge-Based, but rather focuses on using the computer as a medium for design and communication. This leads to a concentration on apparently superficial aspects such as visual appearance, the dynamics of interaction, immediate feedback, plasticity. We try to avoid building-in theoretical attitudes, and to reduce the semantic content of our systems to a low level on the basis that flexibility and intelligence are inversely related; and that flexibility is more important. The CADLAB became operational in January 1992. First year work in three areas – building models, experiencing architecture, and making drawings – is discussed.
series other
more http://www.arct.cam.ac.uk/research/pubs/
last changed 2003/03/05 13:19

_id fd02
authors Tsou, Jin-Yeu
year 1992
title Using conceptual modelling and an object-oriented environment to support building cost control during early design
source College of Architecture and Urban Planning, University of Michigan
summary This research investigated formal information modelling techniques and the object-oriented knowledge representation on the domain of building cost control during early design stages. The findings contribute to an understanding of the advantages and disadvantages of applying formal modelling techniques to the analysis of architectural problems and the representation of domain knowledge in an object-oriented environment. In this study, information modelling techniques were reviewed, formal information analysis was performed, a conceptual model based on the cost control problem domain was created, a computational model based on the object-oriented approach was developed, a mechanism to support information broadcasting for representing interrelationships was implemented, and an object-oriented cost analysis system for early design (OBCIS) was demonstrated. The conceptual model, based on the elemental proposition analysis of NIAM, supports a formal approach for analyzing the problem domain; the analysis results are represented by high-level graphical notations, based on the AEC Building System Model, to visually display the information framework of the domain. The conceptual model provides an intermediate step between the system designer's view of the domain and the internal representation of the implementation platform. The object-oriented representation provides extensive data modelling abilities to help system designers intuitively represent the semantics of the problem domain. The object-oriented representation also supports more structured and integrated modules than conventional programming approaches. Although there are many advantages to applying this technique to represent the semantics of cost control knowledge, there are several issues which need to be considered: no single satisfactory classification method can be directly applied; object-oriented systems are difficult to learn; and designing reusable classes is difficult. The dependency graph and information broadcasting implemented in this research is an attempt to represent the interrelationships between domain objects. The mechanism allows users to explicitly define the interrelationships, based on semantic requirements, among domain objects. In the conventional approach, these relationships are directly interpreted by system designers and intertwined into the programming code. There are several issues which need to be studied further: indirect dependency relationship, conflict resolution, and request-update looping based on least-commitment approach.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 4bd2
authors Carrara, G., Kalay, Y.E. and Novembri, G.
year 1992
title A Computational Framework for Supporting Creative Architectural Design
source New York: John Wiley & Sons, 1992. pp. 17-34 : ill. includes Bibliography
summary Design can be considered a process leading to the definition of a physical form that achieves a certain predefined set of performance criteria. The process comprises three distinct operations: (1) Definition of the desired set of performance criteria (design goals); (2) generation of alternative design solutions; (3) evaluation of the expected performances of alternative design solutions, and comparing them to the predefined criteria. Difficulties arise in performing each one of the three operations, and in combining them into a purposeful unified process. Computational techniques were developed to assist each of the three operations. A comprehensive and successful computational design assistant will have to recognize the limitations of current computational techniques, and incorporate a symbiosis between the machine and the human designer. This symbiosis comprises allocating design tasks between the designer and the computer in a manner that is most appropriate for the task at hand. The task allocation must, therefore, be done dynamically, responding to the changing circumstances of the design process. This report proposes a framework for such a symbiotic partnership, which comprises four major components: (1) User interface and design process control; (2) design goals; (3) evaluators; (4) database
keywords architecture, knowledge base, systems, design process, control
series CADline
email
last changed 2003/06/02 14:41

_id cbed
authors Yakubu, G.S.
year 1994
title Maximising the Benefits of CAD Systems in Architectural Education
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 228
doi https://doi.org/10.52842/conf.ecaade.1994.x.u8n
summary The positive impact of Computer Aided Design (CAD) in professional architectural practice has been in focus in recent times but relatively little has been written on its significance in the education of the contemporary architect. It is common knowledge that the profession of architecture is currently undergoing enormous strains as it battles to keep abreast of trends and developments in a period of series of rapid advancement in science, technology and management (RIBA, 1992). Whilst attempts are being made to redress the shortcomings of the profession in the above context, the requirements for architectural education are yet to forge a coherent strategy for the implementation of CAD/IT in the curriculum of schools of architecture. In almost every other field, including engineering, medicine and the humanities, computing application to problem-solving and decision-making is seen as a way forward as we move into 21st century. Architectural education must integrate CAD/IT into the teaching of core modules that give the architect distinctive competence: studio design. That is one of the best ways of doing justice to the education of the architect of today and the future. Some approaches to the teaching of CAD in schools of architecture have been touched upon in the recent past. Building upon this background as well as an understanding of the nature of design teaching/learning, this paper examines ways of maximising the benefits of CAD systems in architectural education and of bringing computer aided designing into the studio not only to enhance design thinking and creativity but also to support interactive processes. In order to maximise or optimise any function, one approach is to use the hard systems methodology which utilises analytic, analogic and iconic models to show the effect of those factors which are significant for the purposes being considered. The other approach is to use the soft systems methodology in which the analysis encompasses the concept of a human activity system as a means of improving a situation. The use of soft systems methodology is considered more appropriate for dealing with the problem of design which is characterised by a flux of interacting events and ideas that unroll through time. The paper concludes that the main impediment to maximising the benefits of CAD systems in architectural education is not only the inappropriate definition of the objectives for the implementation of CAD education but also that the control subsystems are usually ill-structured and relatively poorly defined. Schools must attempt to define a coherent and consistent policy on the use of CAD systems as an integral part of studio design and evolve an in-house strategic and operational controls that enable the set objectives to be met. Furthermore, it is necessary to support the high level of productivity from CAD systems with a more efficient management system, especially in dealing with communication, data sharing via relational database, co-ordination and integration. Finally, the use of soft systems methodology is recommended as the way forward to optimising CAD systems in design education as it would provide continuous improvements while maintaining their productive value.

series eCAADe
last changed 2022/06/07 07:50

_id 4857
authors Escola Tecnica Superior D'arquitectura de Barcelona (Ed.)
year 1992
title CAAD Instruction: The New Teaching of an Architect?
source eCAADe Conference Proceedings / Barcelona (Spain) 12-14 November 1992, 551 p.
doi https://doi.org/10.52842/conf.ecaade.1992
summary The involvement of computer graphic systems in the transmission of knowledge in the areas of urban planning and architectural design will bring a significant change to the didactic programs and methods of those schools which have decided to adopt these new instruments. Workshops of urban planning and architectural design will have to modify their structures, and teaching teams will have to revise their current programs. Some european schools and faculties of architecture have taken steps in this direction. Others are willing to join them.

This process is only delayed by the scarcity of material resources, and by the slowness with which a sufficient number of teachers are adopting these methods.

ECAADE has set out to analyze the state of this issue during its next conference, and it will be discussed from various points of view. From this confrontation of ideas will come, surely, the guidelines for progress in the years to come.

The different sessions will be grouped together following these four themes:

(A.) Multimedia and Course Work / State of the art of the synthesis of graphical and textual information favored by new available multimedia computer programs. Their repercussions on academic programs. (B.) The New Design Studio / Physical characteristics, data concentration and accessibility of a computerized studio can be better approached in a computerized workshop. (C.) How to manage the new education system / Problems and possibilities raised, from the practical and organizational points of view, of architectural education by the introduction of computers in the classrooms. (D.) CAAI. Formal versus informal structure / How will the traditional teaching structure be affected by the incidence of these new systems in which the access to knowledge and information can be obtained in a random way and guided by personal and subjective criteria.

series eCAADe
email
last changed 2022/06/07 07:49

_id 7ce5
authors Gal, Shahaf
year 1992
title Computers and Design Activities: Their Mediating Role in Engineering Education
source Sociomedia, ed. Edward Barret. MIT Press
summary Sociomedia: With all the new words used to describe electronic communication (multimedia, hypertext, cyberspace, etc.), do we need another one? Edward Barrett thinks we do; hence, he coins the term "sociomedia." It is meant to displace a computing economy in which technicity is hypostasized over sociality. Sociomedia, a compilation of twenty-five articles on the theory, design and practice of educational multimedia and hypermedia, attempts to re-value the communicational face of computing. Value, of course, is "ultimately a social construct." As such, it has everything to do with knowledge, power, education and technology. The projects discussed in this book represent the leading edge of electronic knowledge production in academia (not to mention major funding) and are determining the future of educational media. For these reasons, Sociomedia warrants close inspection. Barrett's introduction sets the tone. For him, designing computer media involves hardwiring a mechanism for the social construction of knowledge (1). He links computing to a process of social and communicative interactivity for constructing and desseminating knowledge. Through a mechanistic mapping of the university as hypercontext (a huge network that includes classrooms as well as services and offices), Barrett models intellectual work in such a way as to avoid "limiting definitions of human nature or human development." Education, then, can remain "where it should be--in the human domain (public and private) of sharing ideas and information through the medium of language." By leaving education in a virtual realm (where we can continue to disagree about its meaning and execution), it remains viral, mutating and contaminating in an intellectually healthy way. He concludes that his mechanistic model, by means of its reductionist approach, preserves value (7). This "value" is the social construction of knowledge. While I support the social orientation of Barrett's argument, discussions of value are related to power. I am not referring to the traditional teacher-student power structure that is supposedly dismantled through cooperative and constructivist learning strategies. The power to be reckoned with in the educational arena is foundational, that which (pre)determines value and the circulation of knowledge. "Since each of you reading this paragraph has a different perspective on the meaning of 'education' or 'learning,' and on the processes involved in 'getting an education,' think of the hybris in trying to capture education in a programmable function, in a displayable object, in a 'teaching machine'" (7). Actually, we must think about that hybris because it is, precisely, what informs teaching machines. Moreover, the basic epistemological premises that give rise to such productions are too often assumed. In the case of instructional design, the episteme of cognitive sciences are often taken for granted. It is ironic that many of the "postmodernists" who support electronic hypertextuality seem to have missed Jacques Derrida's and Michel Foucault's "deconstructions" of the epistemology underpinning cognitive sciences (if not of epistemology itself). Perhaps it is the glitz of the technology that blinds some users (qua developers) to the belief systems operating beneath the surface. Barrett is not guilty of reactionary thinking or politics; he is, in fact, quite in line with much American deconstructive and postmodern thinking. The problem arises in that he leaves open the definitions of "education," "learning" and "getting an education." One cannot engage in the production of new knowledge without orienting its design, production and dissemination, and without negotiating with others' orientations, especially where largescale funding is involved. Notions of human nature and development are structural, even infrastructural, whatever the medium of the teaching machine. Although he addresses some dynamics of power, money and politics when he talks about the recession and its effects on the conference, they are readily visible dynamics of power (3-4). Where does the critical factor of value determination, of power, of who gets what and why, get mapped onto a mechanistic model of learning institutions? Perhaps a mapping of contributors' institutions, of the funding sources for the projects showcased and for participation in the conference, and of the disciplines receiving funding for these sorts of projects would help visualize the configurations of power operative in the rising field of educational multimedia. Questions of power and money notwithstanding, Barrett's introduction sets the social and textual thematics for the collection of essays. His stress on interactivity, on communal knowledge production, on the society of texts, and on media producers and users is carried foward through the other essays, two of which I will discuss. Section I of the book, "Perspectives...," highlights the foundations, uses and possible consequences of multimedia and hypertextuality. The second essay in this section, "Is There a Class in This Text?," plays on the robust exchange surrounding Stanley Fish's book, Is There a Text in This Class?, which presents an attack on authority in reading. The author, John Slatin, has introduced electronic hypertextuality and interaction into his courses. His article maps the transformations in "the content and nature of work, and the workplace itself"-- which, in this case, is not industry but an English poetry class (25). Slatin discovered an increase of productive and cooperative learning in his electronically- mediated classroom. For him, creating knowledge in the electronic classroom involves interaction between students, instructors and course materials through the medium of interactive written discourse. These interactions lead to a new and persistent understanding of the course materials and of the participants' relation to the materials and to one another. The work of the course is to build relationships that, in my view, constitute not only the meaning of individual poems, but poetry itself. The class carries out its work in the continual and usually interactive production of text (31). While I applaud his strategies which dismantle traditional hierarchical structures in academia, the evidence does not convince me that the students know enough to ask important questions or to form a self-directing, learning community. Stanley Fish has not relinquished professing, though he, too, espouses the indeterminancy of the sign. By the fourth week of his course, Slatin's input is, by his own reckoning, reduced to 4% (39). In the transcript of the "controversial" Week 6 exchange on Gertrude Stein--the most disliked poet they were discussing at the time (40)--we see the blind leading the blind. One student parodies Stein for three lines and sums up his input with "I like it." Another, finds Stein's poetry "almost completey [sic] lacking in emotion or any artistic merit" (emphasis added). On what grounds has this student become an arbiter of "artistic merit"? Another student, after admitting being "lost" during the Wallace Steven discussion, talks of having more "respect for Stevens' work than Stein's" and adds that Stein's poetry lacks "conceptual significance[, s]omething which people of varied opinion can intelligently discuss without feeling like total dimwits...." This student has progressed from admitted incomprehension of Stevens' work to imposing her (groundless) respect for his work over Stein's. Then, she exposes her real dislike for Stein's poetry: that she (the student) missed the "conceptual significance" and hence cannot, being a person "of varied opinion," intelligently discuss it "without feeling like [a] total dimwit." Slatin's comment is frightening: "...by this point in the semester students have come to feel increasingly free to challenge the instructor" (41). The students that I have cited are neither thinking critically nor are their preconceptions challenged by student-governed interaction. Thanks to the class format, one student feels self-righteous in her ignorance, and empowered to censure. I believe strongly in student empowerment in the classroom, but only once students have accrued enough knowledge to make informed judgments. Admittedly, Slatin's essay presents only partial data (there are six hundred pages of course transcripts!); still, I wonder how much valuable knowledge and metaknowledge was gained by the students. I also question the extent to which authority and professorial dictature were addressed in this course format. The power structures that make it possible for a college to require such a course, and the choice of texts and pedagogy, were not "on the table." The traditional professorial position may have been displaced, but what took its place?--the authority of consensus with its unidentifiable strong arm, and the faceless reign of software design? Despite Slatin's claim that the students learned about the learning process, there is no evidence (in the article) that the students considered where their attitudes came from, how consensus operates in the construction of knowledge, how power is established and what relationship they have to bureaucratic insitutions. How do we, as teaching professionals, negotiate a balance between an enlightened despotism in education and student-created knowledge? Slatin, and other authors in this book, bring this fundamental question to the fore. There is no definitive answer because the factors involved are ultimately social, and hence, always shifting and reconfiguring. Slatin ends his article with the caveat that computerization can bring about greater estrangement between students, faculty and administration through greater regimentation and control. Of course, it can also "distribute authority and power more widely" (50). Power or authority without a specific face, however, is not necessarily good or just. Shahaf Gal's "Computers and Design Activities: Their Mediating Role in Engineering Education" is found in the second half of the volume, and does not allow for a theory/praxis dichotomy. Gal recounts a brief history of engineering education up to the introduction of Growltiger (GT), a computer-assisted learning aid for design. He demonstrates GT's potential to impact the learning of engineering design by tracking its use by four students in a bridge-building contest. What his text demonstrates clearly is that computers are "inscribing and imaging devices" that add another viewpoint to an on-going dialogue between student, teacher, earlier coursework, and other teaching/learning tools. The less proficient students made a serious error by relying too heavily on the technology, or treating it as a "blueprint provider." They "interacted with GT in a way that trusted the data to represent reality. They did not see their interaction with GT as a negotiation between two knowledge systems" (495). Students who were more thoroughly informed in engineering discourses knew to use the technology as one voice among others--they knew enough not simply to accept the input of the computer as authoritative. The less-advanced students learned a valuable lesson from the competition itself: the fact that their designs were not able to hold up under pressure (literally) brought the fact of their insufficient knowledge crashing down on them (and their bridges). They also had, post factum, several other designs to study, especially the winning one. Although competition and comparison are not good pedagogical strategies for everyone (in this case the competitors had volunteered), at some point what we think we know has to be challenged within the society of discourses to which it belongs. Students need critique in order to learn to push their learning into auto-critique. This is what is lacking in Slatin's discussion and in the writings of other avatars of constructivist, collaborative and computer-mediated pedagogies. Obviously there are differences between instrumental types of knowledge acquisition and discoursive knowledge accumulation. Indeed, I do not promote the teaching of reading, thinking and writing as "skills" per se (then again, Gal's teaching of design is quite discursive, if not dialogic). Nevertheless, the "soft" sciences might benefit from "bridge-building" competitions or the re-institution of some forms of agonia. Not everything agonistic is inhuman agony--the joy of confronting or creating a sound argument supported by defensible evidence, for example. Students need to know that soundbites are not sound arguments despite predictions that electronic writing will be aphoristic rather than periodic. Just because writing and learning can be conceived of hypertextually does not mean that rigor goes the way of the dinosaur. Rigor and hypertextuality are not mutually incompatible. Nor is rigorous thinking and hard intellectual work unpleasurable, although American anti-intellectualism, especially in the mass media, would make it so. At a time when the spurious dogmatics of a Rush Limbaugh and Holocaust revisionist historians circulate "aphoristically" in cyberspace, and at a time when knowledge is becoming increasingly textualized, the role of critical thinking in education will ultimately determine the value(s) of socially constructed knowledge. This volume affords the reader an opportunity to reconsider knowledge, power, and new communications technologies with respect to social dynamics and power relationships.
series other
last changed 2003/04/23 15:14

_id e7c8
authors Kalisperis, Loukas N., Steinman, Mitch and Summers, Luis H.
year 1992
title Design Knowledge, Environmental Complexity in Nonorthogonal Space
source New York: John Wiley & Sons, 1992. pp. 273-291 : ill. includes bibliography
summary Mechanization and industrialization of society has resulted in most people spending the greater part of their lives in enclosed environments. Optimal design of indoor artificial climates is therefore of increasing importance. Wherever artificial climates are created for human occupation, the aim is that the environment be designed so that individuals are in thermal comfort. Current design methodologies for radiant panel heating systems do not adequately account for the complexities of human thermal comfort, because they monitor air temperature alone and do not account for thermal neutrality in complex enclosures. Thermal comfort for a person is defined as that condition of mind which expresses satisfaction with the thermal environment. Thermal comfort is dependent on Mean Radiant Temperature and Operative Temperature among other factors. In designing artificial climates for human occupancy the interaction of the human with the heated surfaces as well the surface-to-surface heat exchange must be accounted for. Early work in the area provided an elaborate and difficult method for calculating radiant heat exchange for simplistic and orthogonal enclosures. A new improved method developed by the authors for designing radiant panel heating systems based on human thermal comfort and mean radiant temperature is presented. Through automation and elaboration this method overcomes the limitations of the early work. The design procedure accounts for human thermal comfort in nonorthogonal as well as orthogonal spaces based on mean radiant temperature prediction. The limitation of simplistic orthogonal geometries has been overcome with the introduction of the MRT-Correction method and inclined surface-to-person shape factor methodology. The new design method increases the accuracy of calculation and prediction of human thermal comfort and will allow designers to simulate complex enclosures utilizing the latest design knowledge of radiant heat exchange to increase human thermal comfort
keywords applications, architecture, building, energy, systems, design, knowledge
series CADline
last changed 2003/06/02 10:24

_id 88ca
authors Kane, Andy and Szalapaj, Peter
year 1992
title Teaching Design By Analysis of Precedents
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 477-496
doi https://doi.org/10.52842/conf.ecaade.1992.477
summary Designers, using their intuitive understanding of the decomposition of particular design objects, whether in terms of structural, functional, or some other analytical framework, should be able to interact with computational environments such that the understanding they achieve in turn invokes changes or transformations to the spatial properties of design proposals. Decompositions and transformations of design precedents can be a very useful method of enabling design students to develop analytical strategies. The benefit of an analytical approach is that it can lead to a structured understanding of design precedents. This in turn allows students to develop their own insights and ideas which are central to the activity of designing. The creation of a 3-D library of user-defined models of precedents in a computational environment permits an under-exploited method of undertaking analysis, since by modelling design precedents through the construction of 3-D Computer-Aided Architectural Design (CAAD) models, and then analytically decomposing them in terms of relevant features, significant insights into the nature of designs can be achieved. Using CAAD systems in this way, therefore, runs counter to the more common approach of detailed modelling, rendering and animation; which produces realistic pictures that do not reflect the design thinking that went into their production. The significance of the analytical approach to design teaching is that it encourages students to represent design ideas, but not necessarily the final form of design objects. The analytical approach therefore, allows students to depict features and execute tasks that are meaningful with respect to design students' own knowledge of particular domains. Such computational interaction can also be useful in helping students explore the consequences of proposed actions in actual design contexts.
series eCAADe
last changed 2022/06/07 07:52

_id ddss9217
id ddss9217
authors Kim, Y.S. and Brawne, M.
year 1993
title An approach to evaluating exhibition spaces in art galleries
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary There are certain building types in which movement of people is the most significant evaluation factor. Among these are art galleries and museums. Unlike other building types, which are often explicated by investigating the relationship between people and people, and between people and the built environment, art galleries and museums are a building type in which the social relationship between people hardly exists and peoples movement through space, that is, the functional relationship between people and space, is one of the most significant factors for their description. The typical museum experience is through direct, sequential, and visual contact with static objects on display as the visitor moves. Therefore, the movement pattern of the visitors must exert a significant influence on achieving the specific goal of a museum. There is a critical need for predicting the consequences of particular spatial configurations with respect to visitors movement. In this sense, it is the intention of this paper to find out the relationship between the spatial configuration of exhibition space and the visitors' movement pattern.
series DDSS
last changed 2003/08/07 16:36

_id 46c7
id 46c7
authors Ozel, Filiz
year 1992
title Data Modeling Needs of Life Safety Code (LSC) Compliance Applications
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 177-185
doi https://doi.org/10.52842/conf.acadia.1992.177
summary One of the most complex code compliance issues originates from the conformance of designs to Life Safety Code (NFPA 101). The development of computer based code compliance checking programs attracted the attention of building researchers and practitioners alike. These studies represent a number of approaches ranging from CAD based procedural approaches to rule based, non graphic ones, but they do not address the interaction of the rule base of such systems with graphic data bases that define the geometry of architectural objects. Automatic extraction of the attributes and the configuration of building systems requires 11 architectural object - graphic entity" data models that allow access and retrieval of the necessary data for code compliance checking. This study aims to specifically focus on the development of such a data model through the use of AutoLISP feature of AutoCAD (Autodesk Inc.) graphic system. This data model is intended to interact with a Life Safety Code rule base created through Level5-Object (Focus Inc.) expert system.

Assuming the availability of a more general building data model, one must define life and fire safety features of a building before any automatic checking can be performed. Object oriented data structures are beginning to be applied to design objects, since they allow the type versatility demanded by design applications. As one generates a functional view of the main data model, the software user must provide domain specific information. A functional view is defined as the process of generating domain specific data structures from a more general purpose data model, such as defining egress routes from wall or room object data structure. Typically in the early design phase of a project, these are related to the emergency egress design features of a building. Certain decisions such as where to provide sprinkler protection or the location of protected egress ways must be made early in the process.

series ACADIA
email
last changed 2022/06/07 08:00

_id ddss9210
id ddss9210
authors Poortman, E.R.
year 1993
title Ratios for cost control
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary The design of buildings takes place in phases representing a development from rough to precision planning. Estimates are made in order to test whether the result is still within the budget set by the client or developer. In this way, the decisions taken during the design phase can be quantified and expressed in monetary terms. To prevent blaming the wrong person when an overrun is discovered, the cost control process has to be improved. For that purpose, two new procedures have been developed: (i) a new translation activity; and (ii) ratios by which quantities can be characterized. 'Translation is the opposite of estimation. A monetary budget is converted -'translated' - into quantities, reflecting the desired quality of the building materials. The financial constraints of the client are thus converted into quantities - the building components used by the designers. Characteristic quantity figures play an important role in this activity. In working out an estimate, the form factor (i.e., the ratio between two characteristic values of a building component) has to be determined. The unit cost is then tested against that ratio. The introduction of the 'translation' activity and the use of characteristic quantity figures and form factors enhance existing estimation methods. By implementing these procedures, cost control becomes considerably more reliable.
series DDSS
last changed 2003/08/07 16:36

_id bdbb
authors Pugh, D.
year 1992
title Designing solid objects using interactive sketch interpretation
source Computer Graphics (1992 Symposium on Interactive 3D Graphics), 25(2):117-126, Mar. 1992
summary Before the introduction of Computer Aided Design and solid modeling systems, designers had developed a set of techniques for designing solid objects by sketching their ideas on pencil and paper and refining them into workable designs. Unfortunately, these techniques are different from those for designing objects using a solid modeler. Not only does this waste avast reserve of talent and experience (people typically start drawing from the moment they can hold a crayon), but it also has a more fundamental problem: designers can use their intuition more effectively when sketching than they can when using a solid modeler. Viking is a solid modeling system whose user-interface is based on interactive sketch interpretation. Interactive sketch interpretation lets the designer create a line-drawing of a de- sired object while Viking generates a three-dimensional ob- ject description. This description is consistent with both the designer's line-drawing, and a set of geometric constraints either derived from the line-drawing or placed by the de- signer. Viking's object descriptions are fully compatible with the object descriptions used by traditional solid modelers. As a result, interactive sketch interpretation can be used with traditional solid modeling techniques, combining the advan- tages of both sketching and solid modeling.
series journal paper
last changed 2003/04/23 15:50

_id 5a7c
authors Schneiderman, B.
year 1992
title Designing the User Interface. Strategies for Effective Human-Computer Interaction
source Reading, Mass. etc, Addison-Wesley
summary Ben Shneiderman again provides a complete, current, and authoritative introduction to user-interface design. Students will learn practical techniques and guidelines needed to develop good systems designs - systems with interfaces the typical user can understand, predict, and control. This third edition features new chapters on the World Wide Web, information visualization, and computer-supported cooperative work. It contains expanded and earlier coverage of development methodologies, evaluation techniques, and user-interface building tools. The author provides provocative discussion of speech input/output, natural-language interaction, anthropomorphic design, virtual environments, and intelligent (software) agents.
series other
last changed 2003/04/23 15:14

_id a89d
authors Wiederhold, G.
year 1992
title Mediators in the Architecture of Future Information Systems
source IEEE Computer 25, no. 3: 38-48
summary The installation of high-speed networks using optical fiber and high bandwidth messsage forwarding gateways is changing the physical capabilities of information systems. These capabilities must be complemented with corresponding software systems advances to obtain a real benefit. Without smart software we will gain access to more data, but not improve access to the type and quality of information needed for decision making. To develop the concepts needed for future information systems we model information processing as an interaction of data and knowledge. This model provides criteria for a high-level functional partitioning. These partitions are mapped into information processing modules. The modules are assigned to nodes of the distributed information systems. A central role is assigned to modules that mediate between the users' workstations and data resources. Mediators contain the administrative and technical knowledge to create information needed for decision-making.
series journal paper
last changed 2003/04/23 15:14

_id 2312
authors Carrara, G., Kalay Y.E. and Novembri, G.
year 1992
title Multi-modal Representation of Design Knowledge
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 55-66
doi https://doi.org/10.52842/conf.ecaade.1992.055
summary Explicit representation of design knowledge is needed if scientific methods are to be applied in design research, and if computers are to be used in the aid of design education and practice. The representation of knowledge in general, and design knowledge in particular, have been the subject matter of computer science, design methods, and computer-aided design research for quite some time. Several models of design knowledge representation have been developed over the last 30 years, addressing specific aspects of the problem. This paper describes a different approach to design knowledge representation that recognizes the multimodal nature of design knowledge. It uses a variety of computational tools to encode different kinds of design knowledge, including the descriptive (objects), the prescriptive (goals) and the operational (methods) kinds. The representation is intended to form a parsimonious, communicable and presentable knowledge-base that can be used as a tool for design research and education as well as for CAAD.
keywords Design Methods, Design Process Goals, Knowledge Representation, Semantic Networks
series eCAADe
email
last changed 2022/06/07 07:55

_id 6ef4
authors Carrara, Gianfranco and Kalay, Yehuda E.
year 1992
title Multi-Model Representation of Design Knowledge
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 77-88
doi https://doi.org/10.52842/conf.acadia.1992.077
summary Explicit representation of design knowledge is needed if scientific methods are to be applied in design research, and if comPuters are to be used in the aid of design education and practice. The representation of knowledge in general, and design knowledge in particular, have been the subject matter of computer science, design methods, and computer- aided design research for quite some time. Several models of design knowledge representation have been developed over the last 30 years, addressing specific aspects of the problem. This paper describes a different approach to design knowledge representation that recognizes the Multi-modal nature of design knowledge. It uses a variety of computational tools to encode different kinds of design knowledge, including the descriptive (objects), the prescriptive (goals) and the operational (methods) kinds. The representation is intended to form a parsimonious, communicable and presentable knowledge-base that can be used as a tool for design research and education as well as for CAAD.
keywords Design Methods, Design Process, Goals, Knowledge Representation, Semantic Networks
series ACADIA
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 11HOMELOGIN (you are user _anon_952579 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002