CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 21

_id 7ce5
authors Gal, Shahaf
year 1992
title Computers and Design Activities: Their Mediating Role in Engineering Education
source Sociomedia, ed. Edward Barret. MIT Press
summary Sociomedia: With all the new words used to describe electronic communication (multimedia, hypertext, cyberspace, etc.), do we need another one? Edward Barrett thinks we do; hence, he coins the term "sociomedia." It is meant to displace a computing economy in which technicity is hypostasized over sociality. Sociomedia, a compilation of twenty-five articles on the theory, design and practice of educational multimedia and hypermedia, attempts to re-value the communicational face of computing. Value, of course, is "ultimately a social construct." As such, it has everything to do with knowledge, power, education and technology. The projects discussed in this book represent the leading edge of electronic knowledge production in academia (not to mention major funding) and are determining the future of educational media. For these reasons, Sociomedia warrants close inspection. Barrett's introduction sets the tone. For him, designing computer media involves hardwiring a mechanism for the social construction of knowledge (1). He links computing to a process of social and communicative interactivity for constructing and desseminating knowledge. Through a mechanistic mapping of the university as hypercontext (a huge network that includes classrooms as well as services and offices), Barrett models intellectual work in such a way as to avoid "limiting definitions of human nature or human development." Education, then, can remain "where it should be--in the human domain (public and private) of sharing ideas and information through the medium of language." By leaving education in a virtual realm (where we can continue to disagree about its meaning and execution), it remains viral, mutating and contaminating in an intellectually healthy way. He concludes that his mechanistic model, by means of its reductionist approach, preserves value (7). This "value" is the social construction of knowledge. While I support the social orientation of Barrett's argument, discussions of value are related to power. I am not referring to the traditional teacher-student power structure that is supposedly dismantled through cooperative and constructivist learning strategies. The power to be reckoned with in the educational arena is foundational, that which (pre)determines value and the circulation of knowledge. "Since each of you reading this paragraph has a different perspective on the meaning of 'education' or 'learning,' and on the processes involved in 'getting an education,' think of the hybris in trying to capture education in a programmable function, in a displayable object, in a 'teaching machine'" (7). Actually, we must think about that hybris because it is, precisely, what informs teaching machines. Moreover, the basic epistemological premises that give rise to such productions are too often assumed. In the case of instructional design, the episteme of cognitive sciences are often taken for granted. It is ironic that many of the "postmodernists" who support electronic hypertextuality seem to have missed Jacques Derrida's and Michel Foucault's "deconstructions" of the epistemology underpinning cognitive sciences (if not of epistemology itself). Perhaps it is the glitz of the technology that blinds some users (qua developers) to the belief systems operating beneath the surface. Barrett is not guilty of reactionary thinking or politics; he is, in fact, quite in line with much American deconstructive and postmodern thinking. The problem arises in that he leaves open the definitions of "education," "learning" and "getting an education." One cannot engage in the production of new knowledge without orienting its design, production and dissemination, and without negotiating with others' orientations, especially where largescale funding is involved. Notions of human nature and development are structural, even infrastructural, whatever the medium of the teaching machine. Although he addresses some dynamics of power, money and politics when he talks about the recession and its effects on the conference, they are readily visible dynamics of power (3-4). Where does the critical factor of value determination, of power, of who gets what and why, get mapped onto a mechanistic model of learning institutions? Perhaps a mapping of contributors' institutions, of the funding sources for the projects showcased and for participation in the conference, and of the disciplines receiving funding for these sorts of projects would help visualize the configurations of power operative in the rising field of educational multimedia. Questions of power and money notwithstanding, Barrett's introduction sets the social and textual thematics for the collection of essays. His stress on interactivity, on communal knowledge production, on the society of texts, and on media producers and users is carried foward through the other essays, two of which I will discuss. Section I of the book, "Perspectives...," highlights the foundations, uses and possible consequences of multimedia and hypertextuality. The second essay in this section, "Is There a Class in This Text?," plays on the robust exchange surrounding Stanley Fish's book, Is There a Text in This Class?, which presents an attack on authority in reading. The author, John Slatin, has introduced electronic hypertextuality and interaction into his courses. His article maps the transformations in "the content and nature of work, and the workplace itself"-- which, in this case, is not industry but an English poetry class (25). Slatin discovered an increase of productive and cooperative learning in his electronically- mediated classroom. For him, creating knowledge in the electronic classroom involves interaction between students, instructors and course materials through the medium of interactive written discourse. These interactions lead to a new and persistent understanding of the course materials and of the participants' relation to the materials and to one another. The work of the course is to build relationships that, in my view, constitute not only the meaning of individual poems, but poetry itself. The class carries out its work in the continual and usually interactive production of text (31). While I applaud his strategies which dismantle traditional hierarchical structures in academia, the evidence does not convince me that the students know enough to ask important questions or to form a self-directing, learning community. Stanley Fish has not relinquished professing, though he, too, espouses the indeterminancy of the sign. By the fourth week of his course, Slatin's input is, by his own reckoning, reduced to 4% (39). In the transcript of the "controversial" Week 6 exchange on Gertrude Stein--the most disliked poet they were discussing at the time (40)--we see the blind leading the blind. One student parodies Stein for three lines and sums up his input with "I like it." Another, finds Stein's poetry "almost completey [sic] lacking in emotion or any artistic merit" (emphasis added). On what grounds has this student become an arbiter of "artistic merit"? Another student, after admitting being "lost" during the Wallace Steven discussion, talks of having more "respect for Stevens' work than Stein's" and adds that Stein's poetry lacks "conceptual significance[, s]omething which people of varied opinion can intelligently discuss without feeling like total dimwits...." This student has progressed from admitted incomprehension of Stevens' work to imposing her (groundless) respect for his work over Stein's. Then, she exposes her real dislike for Stein's poetry: that she (the student) missed the "conceptual significance" and hence cannot, being a person "of varied opinion," intelligently discuss it "without feeling like [a] total dimwit." Slatin's comment is frightening: "...by this point in the semester students have come to feel increasingly free to challenge the instructor" (41). The students that I have cited are neither thinking critically nor are their preconceptions challenged by student-governed interaction. Thanks to the class format, one student feels self-righteous in her ignorance, and empowered to censure. I believe strongly in student empowerment in the classroom, but only once students have accrued enough knowledge to make informed judgments. Admittedly, Slatin's essay presents only partial data (there are six hundred pages of course transcripts!); still, I wonder how much valuable knowledge and metaknowledge was gained by the students. I also question the extent to which authority and professorial dictature were addressed in this course format. The power structures that make it possible for a college to require such a course, and the choice of texts and pedagogy, were not "on the table." The traditional professorial position may have been displaced, but what took its place?--the authority of consensus with its unidentifiable strong arm, and the faceless reign of software design? Despite Slatin's claim that the students learned about the learning process, there is no evidence (in the article) that the students considered where their attitudes came from, how consensus operates in the construction of knowledge, how power is established and what relationship they have to bureaucratic insitutions. How do we, as teaching professionals, negotiate a balance between an enlightened despotism in education and student-created knowledge? Slatin, and other authors in this book, bring this fundamental question to the fore. There is no definitive answer because the factors involved are ultimately social, and hence, always shifting and reconfiguring. Slatin ends his article with the caveat that computerization can bring about greater estrangement between students, faculty and administration through greater regimentation and control. Of course, it can also "distribute authority and power more widely" (50). Power or authority without a specific face, however, is not necessarily good or just. Shahaf Gal's "Computers and Design Activities: Their Mediating Role in Engineering Education" is found in the second half of the volume, and does not allow for a theory/praxis dichotomy. Gal recounts a brief history of engineering education up to the introduction of Growltiger (GT), a computer-assisted learning aid for design. He demonstrates GT's potential to impact the learning of engineering design by tracking its use by four students in a bridge-building contest. What his text demonstrates clearly is that computers are "inscribing and imaging devices" that add another viewpoint to an on-going dialogue between student, teacher, earlier coursework, and other teaching/learning tools. The less proficient students made a serious error by relying too heavily on the technology, or treating it as a "blueprint provider." They "interacted with GT in a way that trusted the data to represent reality. They did not see their interaction with GT as a negotiation between two knowledge systems" (495). Students who were more thoroughly informed in engineering discourses knew to use the technology as one voice among others--they knew enough not simply to accept the input of the computer as authoritative. The less-advanced students learned a valuable lesson from the competition itself: the fact that their designs were not able to hold up under pressure (literally) brought the fact of their insufficient knowledge crashing down on them (and their bridges). They also had, post factum, several other designs to study, especially the winning one. Although competition and comparison are not good pedagogical strategies for everyone (in this case the competitors had volunteered), at some point what we think we know has to be challenged within the society of discourses to which it belongs. Students need critique in order to learn to push their learning into auto-critique. This is what is lacking in Slatin's discussion and in the writings of other avatars of constructivist, collaborative and computer-mediated pedagogies. Obviously there are differences between instrumental types of knowledge acquisition and discoursive knowledge accumulation. Indeed, I do not promote the teaching of reading, thinking and writing as "skills" per se (then again, Gal's teaching of design is quite discursive, if not dialogic). Nevertheless, the "soft" sciences might benefit from "bridge-building" competitions or the re-institution of some forms of agonia. Not everything agonistic is inhuman agony--the joy of confronting or creating a sound argument supported by defensible evidence, for example. Students need to know that soundbites are not sound arguments despite predictions that electronic writing will be aphoristic rather than periodic. Just because writing and learning can be conceived of hypertextually does not mean that rigor goes the way of the dinosaur. Rigor and hypertextuality are not mutually incompatible. Nor is rigorous thinking and hard intellectual work unpleasurable, although American anti-intellectualism, especially in the mass media, would make it so. At a time when the spurious dogmatics of a Rush Limbaugh and Holocaust revisionist historians circulate "aphoristically" in cyberspace, and at a time when knowledge is becoming increasingly textualized, the role of critical thinking in education will ultimately determine the value(s) of socially constructed knowledge. This volume affords the reader an opportunity to reconsider knowledge, power, and new communications technologies with respect to social dynamics and power relationships.
series other
last changed 2003/04/23 15:14

_id e039
authors Bertin, Vito
year 1992
title Structural Transformations (Basic Architectural Unit 6)
doi https://doi.org/10.52842/conf.ecaade.1992.413
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 413-426
summary While the teaching of the phenomenon of form as well as space is normally seen within an environment of free experimentation and personal expression, other directions prove to be worth of pursuit. The proposed paper represents such an exploration. The generation of controlled complexity and structural transformations have been the title of the project which forms the base of this paper. In it, the potential for creative development of the student was explored in such a way, that as in the sciences a process can be reproduced or an exploration utilized in further experimentation. The cube as a well proven B.A.U. or basic architectural unit has again been used in our work. Even a simple object like a cube has many properties. As properties are never pure, but always related to other properties, and looking at a single property as a specific value of a variable, it is possible to link a whole field of objects. These links provide a network of paths through which exploration and development is possible. The paper represents a first step in a direction which we think will compliment the already established basic design program.

series eCAADe
email
last changed 2022/06/07 07:52

_id eabb
authors Boeykens, St. Geebelen, B. and Neuckermans, H.
year 2002
title Design phase transitions in object-oriented modeling of architecture
doi https://doi.org/10.52842/conf.ecaade.2002.310
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 310-313
summary The project IDEA+ aims to develop an “Integrated Design Environment for Architecture”. Its goal is providing a tool for the designer-architect that can be of assistance in the early-design phases. It should provide the possibility to perform tests (like heat or cost calculations) and simple simulations in the different (early) design phases, without the need for a fully detailed design or remodeling in a different application. The test for daylighting is already in development (Geebelen, to be published). The conceptual foundation for this design environment has been laid out in a scheme in which different design phases and scales are defined, together with appropriate tests at the different levels (Neuckermans, 1992). It is a translation of the “designerly” way of thinking of the architect (Cross, 1982). This conceptual model has been translated into a “Core Object Model” (Hendricx, 2000), which defines a structured object model to describe the necessary building model. These developments form the theoretical basis for the implementation of IDEA+ (both the data structure & prototype software), which is currently in progress. The research project addresses some issues, which are at the forefront of the architect’s interest while designing with CAAD. These are treated from the point of view of a practicing architect.
series eCAADe
email
last changed 2022/06/07 07:52

_id 4129
authors Fargas, Josep and Papazian, Pegor
year 1992
title Metaphors in Design: An Experiment with a Frame, Two Lines and Two Rectangles
doi https://doi.org/10.52842/conf.acadia.1992.013
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 13-22
summary The research we will discuss below originated from an attempt to examine the capacity of designers to evaluate an artifact, and to study the feasibility of replicating a designer's moves intended to make an artifact more expressive of a given quality. We will present the results of an interactive computer experiment, first developed at the MIT Design Research Seminar, which is meant to capture the subject’s actions in a simple design task as a series of successive "moves"'. We will propose that designers use metaphors in their interaction with design artifacts and we will argue that the concept of metaphors can lead to a powerful theory of design activity. Finally, we will show how such a theory can drive the project of building a design system.

When trying to understand how designers work, it is tempting to examine design products in order to come up with the principles or norms behind them. The problem with such an approach is that it may lead to a purely syntactical analysis of design artifacts, failing to capture the knowledge of the designer in an explicit way, and ignoring the interaction between the designer and the evolving design. We will present a theory about design activity based on the observation that knowledge is brought into play during a design task by a process of interpretation of the design document. By treating an evolving design in terms of the meanings and rules proper to a given way of seeing, a designer can reduce the complexity of a task by focusing on certain of its aspects, and can manipulate abstract elements in a meaningful way.

series ACADIA
email
last changed 2022/06/07 07:55

_id d919
authors Heckbert, P.S.
year 1992
title Discontinuity Meshing for Radiosity
source Eurographics Workshop on Rendering. May 1992, pp. 203-216
summary The radiosity method is the most popular algorithm for simulating interreflection of light between diffuse surfaces. Most existing radiosity algorithms employ simple meshes and piecewise constant approximations, thereby constraining the radiosity function to be constant across each polygonal element. Much more accurate simulations are possible if linear, quadratic, or higher degree approximations are used. In order to realize the potential accuracy of higher-degree approximations, however, it is necessary for the radiosity mesh to resolve discontinuities such as shadow edges in the radiosity function. A discontinuity meshing algorithm is presented that places mesh boundaries directly along discontinuities. Such algorithms offer the potential of faster, more accurate simulations. Results are shown for three-dimensional scenes.
series other
last changed 2003/04/23 15:14

_id 32eb
authors Henry, Daniel
year 1992
title Spatial Perception in Virtual Environments : Evaluating an Architectural Application
source University of Washington
summary Over the last several years, professionals from many different fields have come to the Human Interface Technology Laboratory (H.I.T.L) to discover and learn about virtual environments. In general, they are impressed by their experiences and express the tremendous potential the tool has in their respective fields. But the potentials are always projected far in the future, and the tool remains just a concept. This is justifiable because the quality of the visual experience is so much less than what people are used to seeing; high definition television, breathtaking special cinematographic effects and photorealistic computer renderings. Instead, the models in virtual environments are very simple looking; they are made of small spaces, filled with simple or abstract looking objects of little color distinctions as seen through displays of noticeably low resolution and at an update rate which leaves much to be desired. Clearly, for most applications, the requirements of precision have not been met yet with virtual interfaces as they exist today. However, there are a few domains where the relatively low level of the technology could be perfectly appropriate. In general, these are applications which require that the information be presented in symbolic or representational form. Having studied architecture, I knew that there are moments during the early part of the design process when conceptual decisions are made which require precisely the simple and representative nature available in existing virtual environments. This was a marvelous discovery for me because I had found a viable use for virtual environments which could be immediately beneficial to architecture, my shared area of interest. It would be further beneficial to architecture in that the virtual interface equipment I would be evaluating at the H.I.T.L. happens to be relatively less expensive and more practical than other configurations such as the "Walkthrough" at the University of North Carolina. The set-up at the H.I.T.L. could be easily introduced into architectural firms because it takes up very little physical room (150 square feet) and it does not require expensive and space taking hardware devices (such as the treadmill device for simulating walking). Now that the potential for using virtual environments in this architectural application is clear, it becomes important to verify that this tool succeeds in accurately representing space as intended. The purpose of this study is to verify that the perception of spaces is the same, in both simulated and real environment. It is hoped that the findings of this study will guide and accelerate the process by which the technology makes its way into the field of architecture.
keywords Space Perception; Space (Architecture); Computer Simulation
series thesis:MSc
last changed 2003/02/12 22:37

_id ascaad2006_paper18
id ascaad2006_paper18
authors Huang, Chie-Chieh
year 2006
title An Approach to 3D Conceptual Modelling
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary This article presents a 3D user interface required by the development of conceptual modeling. This 3D user interface provides a new structure for solving the problems of difficult interface operations and complicated commands due to the application of CAD 2D interface for controlling 3D environment. The 3D user interface integrates the controlling actions of “seeing – moving –seeing” while designers are operating CAD (Schön and Wiggins, 1992). Simple gestures are used to control the operations instead. The interface also provides a spatial positioning method which helps designers to eliminate the commands of converting a coordinate axis. The study aims to discuss the provision of more intuitively interactive control through CAD so as to fulfil the needs of designers. In our practices and experiments, a pair of LED gloves equipped with two CCD cameras for capturing is used to sense the motions of hands and positions in 3D. In addition, circuit design is applied to convert the motions of hands including selecting, browsing, zoom in / zoom out and rotating to LED switches in different colours so as to identify images.
series ASCAAD
email
last changed 2007/04/08 19:47

_id 831d
authors Seebohm, Thomas
year 1992
title Discoursing on Urban History Through Structured Typologies
doi https://doi.org/10.52842/conf.acadia.1992.157
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 157-175
summary How can urban history be studied with the aid of three-dimensional computer modeling? One way is to model known cities at various times in history, using historical records as sources of data. While such studies greatly enhance the understanding of the form and structure of specific cities at specific points in time, it is questionable whether such studies actually provide a true understanding of history. It can be argued that they do not because such studies only show a record of one of many possible courses of action at various moments in time. To gain a true understanding of urban history one has to place oneself back in historical time to consider all of the possible courses of action which were open in the light of the then current situation of the city, to act upon a possible course of action and to view the consequences in the physical form of the city. Only such an understanding of urban history can transcend the memory of the actual and hence the behavior of the possible. Moreover, only such an understanding can overcome the limitations of historical relativism, which contends that historical fact is of value only in historical context, with the realization, due to Benedetto Croce and echoed by Rudolf Bultmann, that the horizon of "'deeper understanding" lies in "'the actuality of decision"' (Seebohm and van Pelt 1990).

One cannot conduct such studies on real cities except, perhaps, as a point of departure at some specific point in time to provide an initial layout for a city knowing that future forms derived by the studies will diverge from that recorded in history. An entirely imaginary city is therefore chosen. Although the components of this city at the level of individual buildings are taken from known cities in history, this choice does not preclude alternative forms of the city. To some degree, building types are invariants and, as argued in the Appendix, so are the urban typologies into which they may be grouped. In this imaginary city students of urban history play the role of citizens or groups of citizens. As they defend their interests and make concessions, while interacting with each other in their respective roles, they determine the nature of the city as it evolves through the major periods of Western urban history in the form of threedimensional computer models.

My colleague R.J. van Pelt and I presented this approach to the study of urban history previously at ACADIA (Seebohm and van Pelt 1990). Yet we did not pay sufficient attention to the manner in which such urban models should be structured and how the efforts of the participants should be coordinated. In the following sections I therefore review what the requirements are for three-dimensional modeling to support studies in urban history as outlined both from the viewpoint of file structure of the models and other viewpoints which have bearing on this structure. Three alternative software schemes of progressively increasing complexity are then discussed with regard to their ability to satisfy these requirements. This comparative study of software alternatives and their corresponding file structures justifies the present choice of structure in relation to the simpler and better known generic alternatives which do not have the necessary flexibility for structuring the urban model. Such flexibility means, of course, that in the first instance the modeling software is more timeconsuming to learn than a simple point and click package in accord with the now established axiom that ease of learning software tools is inversely related to the functional power of the tools. (Smith 1987).

series ACADIA
email
last changed 2022/06/07 07:56

_id c54a
authors Welch, W. and Witkin, A.
year 1992
title Variational surface modeling
source Computer Graphics, 26, Proceedings, SIGGRAPH 92
summary We present a newapproach to interactivemodeling of freeform surfaces. Instead of a fixed mesh of control points, the model presented to the user is that of an infinitely malleable surface, with no fixed controls. The user is free to apply control points and curves which are then available as handles for direct manipulation. The complexity of the surface's shape may be increased by adding more control points and curves, without apparent limit. Within the constraints imposed by the controls, the shape of the surface is fully determined by one or more simple criteria, such as smoothness. Our method for solving the resulting constrained variational optimization problems rests on a surface representation scheme allowing nonuniform subdivision of B-spline surfaces. Automatic subdivision is used to ensure that constraints are met, and to enforce error bounds. Efficient numerical solutions are obtained by exploiting linearities in the problem formulation and the representation.
series journal paper
last changed 2003/04/23 15:50

_id aa78
authors Bayazit, Nigan
year 1992
title Requirements of an Expert System for Design Studios
doi https://doi.org/10.52842/conf.ecaade.1992.187
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 187-194
summary The goal of this paper is to study problems of the transition from traditional architectural studio teaching to CAAD studio teaching which requires a CAAD expert system as studio tutor, and to study the behavior of the student in this new environment. The differences between the traditional and computerized studio teaching and the experiences in this field are explained referring to the requirements for designing time in relation to the expertise of the student in the application of a CAD program. Learning styles and the process of design in computerized and non-computerized studio teaching are discussed. Design studio requirements of the students in traditional studio environment while doing design works are clarified depending on the results of an empirical study which explained the relations between the tutor and the student while they were doing studio critiques. Main complaints of the students raised in the empirical study were the lack of data in the specific design problem area, difficulties of realization of ideas and thoughts, not knowing the starting point of design, having no information about the references to be used for the specific design task, having difficulties in the application of presentation techniques. In the concluding parts of the paper are discussed the different styles of teaching and their relation to the CAAD environment, the transformation of the instructional programs for the new design environment, the future expectations from the CAAD programs, properties of the new teaching environment and the roles of the expert systems in design studio education.

keywords CAAD Education, Expert System, Architectural Design Studio, Knowledge Acquisition
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade03_473_175_flanagan_neu
id ecaade03_473_175_flanagan_neu
authors Flanagan, Robert H.
year 2003
title Generative Logic in Digital Design
doi https://doi.org/10.52842/conf.ecaade.2003.473
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 473-484
summary This exploration of early-stage, architectural design pedagogy is in essence, a record of an ongoing transformation underway in architecture, from its practice in the art of geometry of space to its practice in the art of geometry of space-time. A selected series of student experiments, from 1992 to the present, illustrate a progression in architectural theory, from Pythagorean concepts of mathematics and geometry, to the symbolic representation of space and non-linear time in film. The dimensional expansion of space, from xyz to xyz+t (time), represents a tactical and strategic opportunity to incorporate multisensory design variables in architectural practice, as well as in its pedagogy.
keywords Generative; process; derivative; logic; systemic
series eCAADe
email
last changed 2022/06/07 07:51

_id ddss9214
id ddss9214
authors Friedman, A.
year 1993
title A decision-making process for choice of a flexible internal partition option in multi-unit housing using decision theory techniques
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary Recent demographic changes have increased the heterogeneity of user groups in the North American housing market. Smaller households (e.g. elderly, single parent) have non-traditional spatial requirements that cannot be accommodated within the conventional house layout. This has created renewed interest in Demountable/Flexible internal partition systems. However, the process by which designers decide which project or user groups are most suited for the use of these systems is quite often complex, non-linear, uncertain and dynamic, since the decisions involve natural processes and human values that are apparently random. The anonymity of users when mass housing projects are conceptualized, and the uncertainty as to the alternative to be selected by the user, given his/her constantly changing needs, are some contributing factors to this effect. Decision Theory techniques, not commonly used by architects, can facilitate the decision-making process through a systematic evaluation of alternatives by means of quantitative methods in order to reduce uncertainty in probabilistic events or in cases when data is insufficient. The author used Decision Theory in the selection of flexible partition systems. The study involved a multi-unit, privately initiated housing project in Montreal, Canada, where real site conditions and costs were used. In this paper, the author outlines the fundamentals of Decision Theory and demonstrates the use of Expected Monetary Value and Weighted Objective Analysis methods and their outcomes in the design of a Montreal housing project. The study showed that Decision Theory can be used as an effective tool in housing design once the designer knows how to collect basic data.
series DDSS
last changed 2003/08/07 16:36

_id ddss9211
id ddss9211
authors Gilleard, J. and Olatidoye, O.
year 1993
title Graphical interfacing to a conceptual model for estimating the cost of residential construction
source Timmermans, Harry (Ed.), Design and Decision Support Systems in Architecture (Proceedings of a conference held in Mierlo, the Netherlands in July 1992), ISBN 0-7923-2444-7
summary This paper presents a method for determining elemental square foot costs and cost significance for residential construction. Using AutoCAD's icon menu and dialogue box' facilities, a non-expert may graphically select (i) residential configuration; (ii) construction quality level; (iii) geographical location; (iv) square foot area; and finally, (v) add-ons, e.g. porches and decks, basement, heating and cooling equipment, garages and carports etc. in order to determine on-site builder's costs. Subsequent AutoLisp routines facilitate data transfer to a Lotus 1-2-3 spreadsheet where an elemental cost breakdown for the project may be determined. Finally, using Lotus 1-2-3 macros, computed data is transferred back to AutoCAD, where all cost significant items are graphically highlighted.
series DDSS
last changed 2003/08/07 16:36

_id c5d7
authors Kuffer, Monika
year 2003
title Monitoring the Dynamics of Informal Settlements in Dar Es Salaam by Remote Sensing: Exploring the Use of Spot, Ers and Small Format Aerial Photography
source CORP 2003, Vienna University of Technology, 25.2.-28.2.2003 [Proceedings on CD-Rom]
summary Dar es Salaam is exemplary for cities in the developing world facing an enormous population growth. In the last decades, unplanned settlements have tremendously expanded, causing that around 70 percent of the urban dwellers are living now-a-days in these areas. Tools for monitoring such tremendous growth are relatively weak in developing countries, thus an effective satellite based monitoring system can provide a useful instrument for monitoring the dynamics of urban development. An investigation to asses the ability of extracting reliable information on the expansion and consolidation levels (density) of urban development of the city of Dar es Salaam from SPOT-HRV and ERS-SAR images is described. The use of SPOT and ERS should provide data that is complementary to data derived from the most recent aerial photography and from digital topographic maps. In a series of experiments various classification and fusion techniques are applied to the SPOT-HRV and ERS-SAR data to extract information on building density that is comparable to that obtained from the 1992 data. Ultimately, building density is estimated by linear and non-linear regression models on the basis of an one ha kernel and further aggregation is made to the level of informal settlements for a final analysis. In order to assess the reliability, use is made of several sample areas that are relatively stable over the study period, as well as, of data derived from small format aerial photography. The experiments show a high correlation between the density data derived from the satellite images and the test areas.
series other
email
last changed 2003/03/11 20:39

_id 46c7
id 46c7
authors Ozel, Filiz
year 1992
title Data Modeling Needs of Life Safety Code (LSC) Compliance Applications
doi https://doi.org/10.52842/conf.acadia.1992.177
source Mission - Method - Madness [ACADIA Conference Proceedings / ISBN 1-880250-01-2] 1992, pp. 177-185
summary One of the most complex code compliance issues originates from the conformance of designs to Life Safety Code (NFPA 101). The development of computer based code compliance checking programs attracted the attention of building researchers and practitioners alike. These studies represent a number of approaches ranging from CAD based procedural approaches to rule based, non graphic ones, but they do not address the interaction of the rule base of such systems with graphic data bases that define the geometry of architectural objects. Automatic extraction of the attributes and the configuration of building systems requires 11 architectural object - graphic entity" data models that allow access and retrieval of the necessary data for code compliance checking. This study aims to specifically focus on the development of such a data model through the use of AutoLISP feature of AutoCAD (Autodesk Inc.) graphic system. This data model is intended to interact with a Life Safety Code rule base created through Level5-Object (Focus Inc.) expert system.

Assuming the availability of a more general building data model, one must define life and fire safety features of a building before any automatic checking can be performed. Object oriented data structures are beginning to be applied to design objects, since they allow the type versatility demanded by design applications. As one generates a functional view of the main data model, the software user must provide domain specific information. A functional view is defined as the process of generating domain specific data structures from a more general purpose data model, such as defining egress routes from wall or room object data structure. Typically in the early design phase of a project, these are related to the emergency egress design features of a building. Certain decisions such as where to provide sprinkler protection or the location of protected egress ways must be made early in the process.

series ACADIA
email
last changed 2022/06/07 08:00

_id eaff
authors Shaviv, Edna and Kalay, Yehuda E.
year 1992
title Combined Procedural and Heuristic Method to Energy Conscious Building Design and Evaluation
source New York: John Wiley & Sons, 1992. pp. 305-325 : ill. includes bibliography
summary This paper describes a methodology that combines both procedural and heuristic methods by means of integrating a simulation model with a knowledge based system (KBS) for supporting all phases of energy conscious design and evaluation. The methodology is based on partitioning the design process into discrete phases and identifying the informational characteristics of each phase, as far as energy conscious design is concerned. These informational characteristics are expressed in the form of design variables (parameters) and the relationships between them. The expected energy performance of a design alternative is evaluated by a combination of heuristic and procedural methods, and the context-sensitive application of default values, when necessary. By virtue of combining knowledge based evaluations with procedural ones, this methodology allows for testing the applicability of heuristic rules in non-standard cases,Ô h)0*0*0*°° ÔŒ thereby improving the predictable powers of the evaluation
keywords design process, evaluation, energy, analysis, synthesis, integration, architecture, knowledge base, heuristics, simulation
series CADline
email
last changed 2003/06/02 10:24

_id 6208
authors Abou-Jaoude, Georges
year 1992
title To Master a Tool
source Proceedings of the 4rd European Full-Scale Modelling Conference / Lausanne (Switzerland) 9-12 September 1992, Part B, p. 15
summary The tool here is the computer or to be precise, a unit that includes the computer, the peripherals and the software needed to fulfill a task. These tools are getting very sophisticated and user interfaces extremly friendly, therefore it is very easy to become the slave of such electronic tools and reach self satisfaction with strait forward results and attractive images. In order to master and not to become slaves of sophisticated tools, a very solid knowledge of related fields or domains of application becomes necessary. In the case of this seminar, full scale modelling, is a way to understand the relation between a mental model and it's full-scale modelling, it is a way of communicating what is in a designers mind. Computers and design programs can have the same goal, rather than chosing one method or the other let us try to say how important it is today to complement designing with computer with other means and media such as full scale modelling, and what computer modelling and simulation can bring to full scale modelling or other means.
keywords Full-scale Modeling, Model Simulation, Real Environments
series other
more http://info.tuwien.ac.at/efa
last changed 2003/08/25 10:12

_id cf5c
authors Carpenter, B.
year 1992
title The logic of typed feature structures with applications to unification grammars, logic programs and constraint resolution
source Cambridge Tracts in Theoretical Computer Science, Cambridge University Press
summary This book develops the theory of typed feature structures, a new form of data structure that generalizes both the first-order terms of logic programs and feature-structures of unification-based grammars to include inheritance, typing, inequality, cycles and intensionality. It presents a synthesis of many existing ideas into a uniform framework, which serves as a logical foundation for grammars, logic programming and constraint-based reasoning systems. Throughout the text, a logical perspective is adopted that employs an attribute-value description language along with complete equational axiomatizations of the various systems of feature structures. Efficiency concerns are discussed and complexity and representability results are provided. The application of feature structures to phrase structure grammars is described and completeness results are shown for standard evaluation strategies. Definite clause logic programs are treated as a special case of phrase structure grammars. Constraint systems are introduced and an enumeration technique is given for solving arbitrary attribute-value logic constraints. This book with its innovative approach to data structures will be essential reading for researchers in computational linguistics, logic programming and knowledge representation. Its self-contained presentation makes it flexible enough to serve as both a research tool and a textbook.
series other
last changed 2003/04/23 15:14

_id 3105
authors Novak, T.P., Hoffman, D.L., and Yung, Y.-F.
year 1996
title Modeling the structure of the flow experience
source INFORMS Marketing Science and the Internet Mini-Conference, MIT
summary The flow construct (Csikszentmihalyi 1977) has recently been proposed by Hoffman and Novak (1996) as essential to understanding consumer navigation behavior in online environments such as the World Wide Web. Previous researchers (e.g. Csikszentmihalyi 1990; Ghani, Supnick and Rooney 1991; Trevino and Webster 1992; Webster, Trevino and Ryan 1993) have noted that flow is a useful construct for describing more general human-computer interactions. Hoffman and Novak define flow as the state occurring during network navigation which is: 1) characterized by a seamless sequence of responses facilitated by machine interactivity, 2) intrinsically enjoyable, 3) accompanied by a loss of self-consciousness, and 4) selfreinforcing." To experience flow while engaged in an activity, consumers must perceive a balance between their skills and the challenges of the activity, and both their skills and challenges must be above a critical threshold. Hoffman and Novak (1996) propose that flow has a number of positive consequences from a marketing perspective, including increased consumer learning, exploratory behavior, and positive affect."
series other
last changed 2003/04/23 15:50

_id 1992
authors Russell, Peter
year 2002
title Using Higher Level Programming in Interdisciplinary teams as a means of training for Concurrent Engineering
doi https://doi.org/10.52842/conf.ecaade.2002.014
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 14-19
summary The paper explains a didactical method for training students that has been run three times to date. The premise of the course is to combine students from different faculties into interdisciplinary teams. These teams then have a complex problem to resolve within an extremely short time span. In light of recent works from Joy and Kurzweil, the theme Robotics was chosen as an exercise that is timely, interesting and related, but not central to the studies of the various faculties. In groups of 3 to 5, students from faculties of architecture, computer science and mechanical engineering are entrusted to design, build and program a robot which must successfully execute a prescribed set of actions in a competitive atmosphere. The entire course lasts ten days and culminates with the competitive evaluation. The robots must navigate a labyrinth, communicate with on another and be able to cover longer distances with some speed. In order to simplify the resources available to the students, the Lego Mindstorms Robotic syshed backgrounds instaed of synthetic ones. The combination of digitally produced (scanned) sperical images together with the use of HDR open a wide range of new implementation in the field of architecture, especially in combining synthetic elements in existing buildings, e.g. new interior elements in an existing historical museum).ural presentations in the medium of computer animation. These new forms of expression of design thoughts and ideas go beyond mere model making, and move more towards scenemaking and storytelling. The latter represents new methods of expression within computational environments for architects and designers.its boundaries. The project was conducted using the pedagogical framework of the netzentwurf.de; a relatively well established Internet based communication platform. This means that the studio was organised in the „traditional“ structure consisting of an initial 3 day workshop, a face to face midterm review, and a collective final review, held 3,5 months later in the Museum of Communication in Frankfurt am Main, Germany. In teams of 3 (with each student from a different university and a tutor located at a fourth) the students worked over the Internet to produce collaborative design solutions. The groups ended up with designs that spanned a range of solutions between real and virtual architecture. Examples of the student’s work (which is all available online) as well as their working methods are described. It must be said that the energy invested in the studio by the organisers of the virtual campus (as well as the students who took part) was considerably higher than in normal design studios and the paper seeks to look critically at the effort in relation to the outcomes achieved. The range and depth of the student’s work was surprising to many in the project, especially considering the initial hurdles (both social and technological) that had to overcome. The self-referential nature of the theme, the method and the working environment encouraged the students to take a more philosg and programming a winning robot. These differences became apparent early in the sessions and each group had to find ways to communicate their ideas and to collectively develop them by building on the strengths of each team member.
series eCAADe
type normal paper
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1HOMELOGIN (you are user _anon_326432 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002