CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures
Hits 1 to 20 of 242
Reformat results as: short short into frame detailed detailed into frame
The curriculum of the Faculty has been radically revised over the last two years and is now based on the concept of "Problem-Based Learning". The subject matter taught is divided thematically into specific issues that are taught in six week blocks. The vehicles for these blocks are specially selected and adapted case studies prepared by teams of staff members. These provide a focus for integrating specialist subjects around a studio based design theme. In the case of second year this studio is largely computer-based: many drawings are produced by computer and several specially written computer applications are used in association with the specialist inputs.
This paper describes the "block structure" used in second year, giving examples of the special computer programs used, but also raises a number of broader educational issues. Introduction of the block system arose as a method of curriculum integration in response to difficulties emerging from the independent functioning of strong discipline areas in the traditional work groups. The need for a greater level of selfdirected learning was recognised as opposed to the "passive information model" of student learning in which the students are seen as empty vessels to be filled with knowledge - which they are then usually unable to apply in design related contexts in the studio. Furthermore, the value of electives had been questioned: whilst enabling some diversity of choice, they may also be seen as diverting attention and resources from the real problems of teaching architecture.
This process is only delayed by the scarcity of material resources, and by the slowness with which a sufficient number of teachers are adopting these methods.
ECAADE has set out to analyze the state of this issue during its next conference, and it will be discussed from various points of view. From this confrontation of ideas will come, surely, the guidelines for progress in the years to come.
The different sessions will be grouped together following these four themes:
(A.) Multimedia and Course Work / State of the art of the synthesis of graphical and textual information favored by new available multimedia computer programs. Their repercussions on academic programs. (B.) The New Design Studio / Physical characteristics, data concentration and accessibility of a computerized studio can be better approached in a computerized workshop. (C.) How to manage the new education system / Problems and possibilities raised, from the practical and organizational points of view, of architectural education by the introduction of computers in the classrooms. (D.) CAAI. Formal versus informal structure / How will the traditional teaching structure be affected by the incidence of these new systems in which the access to knowledge and information can be obtained in a random way and guided by personal and subjective criteria.
The majority of architectural programs teach technology topics through content specific courses which appear as an educational sequence within the curriculum. These technology topics have traditionally included structural design, environmental systems, and construction materials and methods. Likewise, that course model has been broadly applied to the teaching of computer aided design, which is identified as a technology topic. Computer technology has resulted in a proliferation of courses which similarly introduce the student to computer graphic and design systems through a traditional course structure.
Inevitably, competition for priority arises within the curriculum, introducing the potential risk that otherwise valuable courses and/or course content will be replaced by the "'newer" technology, and providing fertile ground for faculty and administrative resistance to computerization as traditional courses are pushed aside or seem threatened.
An alternative view is that computer technology is not a "topic", but rather the medium for creating a design (and studio) environment for informed decision making.... deciding what it is we should build. Such a viewpoint urges the development of a curricular structure, through which the impact of computer technology may be understood as that medium for design decision making, as the initial step in addressing the current and future needs of architectural education.
One example of such a program currently in place at the College of Architecture and Planning, Ball State University takes an approach which overlays, like a transparent tissue, the computer aided design content (or a computer emphasis) onto the primary curriculum.
With the exception of a general introductory course at the freshman level, computer instruction and content issues may be addressed effectively within existing studio courses. The level of operational and conceptual proficiency achieved by the student, within an electronic design studio, makes the electronic design environment selfsustaining and maintainable across the entire curriculum. The ability to broadly apply computer aided design to the educational experience can be independent of the availability of many specialized computer aided design faculty.
One cannot conduct such studies on real cities except, perhaps, as a point of departure at some specific point in time to provide an initial layout for a city knowing that future forms derived by the studies will diverge from that recorded in history. An entirely imaginary city is therefore chosen. Although the components of this city at the level of individual buildings are taken from known cities in history, this choice does not preclude alternative forms of the city. To some degree, building types are invariants and, as argued in the Appendix, so are the urban typologies into which they may be grouped. In this imaginary city students of urban history play the role of citizens or groups of citizens. As they defend their interests and make concessions, while interacting with each other in their respective roles, they determine the nature of the city as it evolves through the major periods of Western urban history in the form of threedimensional computer models.
My colleague R.J. van Pelt and I presented this approach to the study of urban history previously at ACADIA (Seebohm and van Pelt 1990). Yet we did not pay sufficient attention to the manner in which such urban models should be structured and how the efforts of the participants should be coordinated. In the following sections I therefore review what the requirements are for three-dimensional modeling to support studies in urban history as outlined both from the viewpoint of file structure of the models and other viewpoints which have bearing on this structure. Three alternative software schemes of progressively increasing complexity are then discussed with regard to their ability to satisfy these requirements. This comparative study of software alternatives and their corresponding file structures justifies the present choice of structure in relation to the simpler and better known generic alternatives which do not have the necessary flexibility for structuring the urban model. Such flexibility means, of course, that in the first instance the modeling software is more timeconsuming to learn than a simple point and click package in accord with the now established axiom that ease of learning software tools is inversely related to the functional power of the tools. (Smith 1987).
For more results click below: